The TCP Minimum RTO Revisited

loannis Psaras and Vassilis Tsaoussidis

(i psaras, vtsaousi) @e. duth. gr

COMputer NETworks (COMNET) Group
Democritus University of Thrace, Xanthi, Greece
http://comet.ee.autnh.gr/

l The TCP Minimum RTO Revisited — s.1/22

 http://comnet.ee.duth.gr/

Introductory Notes

According to RFC 2988 (Computing TCP’s
Retransmission Timer):

1. RTO = SRTT + 4 x RTTV AR,
2. RTO > 1 second (I.e., Minimum RTO)

The Minimum RTO protects TCP against spurious
timeouts caused by:

1. coarse-grained clocks (500ms for most OSs at that
time, 1.e., Nov. 2000)

2. the Delayed Acknowledgments (usually set to 200
ms), RFC1122

. The TCP Minimum RTO Reuvisited — s.2/22

Our Contribution

e \We re-examine the two reasons for the
conservative 1-second Minimum TCP-RTO:

1. the OS clock granularity, and
2. the Delayed ACKSs.

e \We find that reason 1 is canceled in modern OSs,

e \We carefully design a mechanism to deal with
reason 2.

 We show (through simulations) that in next
generation’s high-speed, wireless-access
networks, TCP-RTO should not be limited by a
fixed, conservative lower bound.

. The TCP Minimum RTO Revisited — s.3/22

Cost Function

e define a Cost Function to capture the impact of the
Minimum RTO to TCP’s performance:

T min
C(f) — R?Oguﬂrent

e If C(f) <1, the Minimum RTO adds no extra
waiting time.

e Otherwise, the Minimum RTO will negatively
Impact TCP Throughput.

. The TCP Minimum RTO Reuvisited — s.4/22

Clock Granularity (1/5): Motivation

We simulate a coarse-grained flow (i.e., G=500ms)
over a 500ms Round-Trip Propagation Delay (RTPD)
path, to observe:

1. the rationale behind the conservative 1-second
Minimum RTO setting, and

2. the impact of the Minimum RTO value relatively
with the actual TCP-RTO value.

. The TCP Minimum RTO Revisited — s.5/22

Clock Granularity (2/5): Observations

e observe that:
1. C(f) <1 (no negative impact on TCP Throughput),

2. the Minimum RTO Is only needed as a safety
margin.

28— 440 = = e
= = 2 H » 3 A
22 | DD *% LA A
= -]
& 20+ O X A S 435 ¢ . A
= S : 2
- O Xl]
g 5 % A 5 sl 0 n 2 A
© 16t O PO Q N
S L O im 5 E - § A
- O [3
o o] A
Q] X A 0] L A
O o121 0 *a A o 425 H | ¢ A
0 [S - 2
10 [0 X o A
1 K. /N, 1 1 1 1 1 1 420 E 1 . 1 } 1 1
95 10 105 11 115 12 125 13 135 14 15 15.5 16 16.5 17 17.5
Time (s) Time (s)
DATApkt [J RTO £ DATApkt [J RTO £
ACK ® minRTO % ACK MW minRTO

(a) G =500ms, RTPD = 500ms (b) G =500ms, RTPD = 6ms

. The TCP Minimum RTO Revisited — s.6/22

Clock Granularity (3/5): OS Detalls

Table 1: Details on Modern OSs
OS Clock Granularity | Delayed ACK
Windows | 15-16ms 200ms
Solaris 10ms 50-100ms
Linux < 25ms Dynamically Set

e \We repeat the above experiment using, this time, a
finer-grained clock of 10ms.

. The TCP Minimum RTO Revisited — s.7/22

Clock Granularity (4/5). Impact

* CKf)m’TQKU(AM)EERCG+RTPD+QD’V625

1480

_ 1475 ¢

5]

o}

E 1470 }

>

2

Q 1465 |

c

S

2 1460 |

Q

n
1455 |
1450 —

7.2

Figure 2: G = 10ms, RTPD = 6ms

l The TCP Minimum RTO Reuvisited — s.8/22

Clock Granularity (5/5): Conclusions

e conclude that:

1. the clock granularity should not be a matter of
concern for the setting of the Minimum RTO, and

2. the conservative 1-second Minimum RTO will have
major impact on TCP’s performance, in case of
packet losses.

. The TCP Minimum RTO Revisited — s.9/22

Delayed ACKs (1/6): Notes

e TCP sends D back-to-back packets, according to
RFC 2581
D = snd.una + mn(cwnd, rwnd) -
snd. nxt .

 TCP does not know the application’s sending
pattern.

 Only the ACK of the last packet of the "train" of
back-to-back packets may be delayed.

o Every 2 packet will always be ACKed.

. The TCP Minimum RTO Revisited — s.10/22

Delayed ACKs (2/6): An Example

o At time ¢, all previously transmitted packets are
already ACKed.
e D = 4: (orgenerally D: even)
e The client will ACK the 2"¢ and 4" packets.
 No Delayed ACKs = no need for extended
Minimum RTO.
e D = 3: (or generally D: odd)
* Client will ACK the 2"? packet and will trigger
the DelACK timer for the 3¢ packet.

e The 37 packet's ACK may be Delayed = extend
the Minimum RTO, for the 37¢ packet only.

. The TCP Minimum RTO Revisited — s.11/22

Delayed ACKs (3/6): Algorithm States

The proposed mechanism operates in one of the

following States:

e State 1: "noMINRTQO". Do not apply extended
Minimum RTO to any outgoing packet (i.e., the
receiver will always ACK the last packet of the
back-to-back train of packets); set set odd to
false.

e State 2: "extended MINRTQO". Apply extended
Minimum RTO to the last packet of the next train of
back-to-back packets; set set odd to true.

Delayed ACKs (4/6). State Diagram

1st packet of the Slow-Start phase

extend MINRTO
set_odd:false

D:even D:odd
D:even
D:even
D:odd extend MINRTO for
NnoMINRTO _
D:odd last pkt of train
set odd:false >
— set_odd:true

Figure 3: State Diagram

l The TCP Minimum RTO Revisited — s.13/22

Delayed ACKs (5/6): Example

Sequence Number

OO
"o

[N

[_ES

[N

[_ES

The ACK of the last b2b
WX pkt may be delayed.

A Extend the Minimum RTO

1476 2pktsb2b W |]
7 7.2 7.4 7.6 7.8 8
Time (s)
DATA pkt [RTO 2
ACK =m min RTO

Figure 4: Modeling ACKs Arrival

The TCP Minimum RTO Revisited — s.14/22

Delayed ACKs (6/6): Impact

R ms, forthe last pktif set odd =1,

RT O,y =
e {RTOCW, otherwise,

where R iIs a fixed, extended value for the Minimum
RTO.

RTOcur !

LmS - for the last pkt if set _odd =1,
1, otherwise.

. The TCP Minimum RTO Revisited — s.15/22

Performance Evaluation (1/2)

TCP version: Reno
e SACK: enabled
 Timestamps: enabled

e Spurious response: enabled

e Delayed ACK Timer: 200ms

e Granularity: 10ms

e Buffers use RED, Buffer size = BDP

 \We measure the System Goodput:

__ Original Data
GOOdp ut = Connection__time

. The TCP Minimum RTO Revisited — s.16/22

Performance Evaluation (2/2)

e compare the proposed algorithm with three
different TCP implementations:

1. Linux TCP: Minimum RTO = 200ms
2. Solaris TCP: Minimum RTO = 400ms

3. IETF Proposal (RFC 2988): Minimum RTO = 1s
(probably Windows TCP)

. The TCP Minimum RTO Revisited — s.17/22

Results (1/4): The Need for a
Standard Mechanism (1/2)

Srv's Min RTO < RTPD + QD + Clnt's Del ACK Timer
and

Minimum RTO > RTO,.,,,

then the TCP server will spuriously timeout every time
an ACK is delayed and D= 1.

. The TCP Minimum RTO Revisited — s.18/22

Results (2/4): The Need for a
Standard Mechanism (2/2)

E\ K\ T E ._ﬁ T
608 om X A A 608 O *
| X A LJm S
5 606 Spurious Retransmission [H X A 5 606 O S
Q 0l X A 2 Lom %
E 604 ml X A E 604 O #
z O] X A z 0om S
8 602 | Cm X A 1 Q602 - O S
5] AR H ALK S L] A N x
S 600 | 1 S 600
o oy
% 598 (% 598
Extended Minimum RTO
506 | i 596 | to avoid spurious Timeout
36 36.1 36.2 36.3 364 365 36.6 36.7 36.8 36 36.1 36.2 36.3 364 365 36.6 36.7 36.8
Time (s) Time (s)
DATApkt [RTO A DATApkt [RTO A
ACK =1 min RTO X ACK =& min RTO X

(a) Linux Server - 200ms Delayed (b) Modified Linux Server - 200ms
ACK Client (e.g., Windows client) Delayed ACK Client (e.g., Win-

dows client)

Figure 5: The Need for a Standard Mechanism

. The TCP Minimum RTO Revisited — s.19/22

10Mbps, 1ms

10Mbps, 5ms

10Mbps, 10ms

O

n/3

Results (3/4): Long FTP Flows (1/2)

Figure 6: Simulation Topology

Table 2: Experiment Detalls

PER TCP Flows | bw_bb
Fig. 7(a) | see Fig. | 3 6 Mbps
Fig. 7(b) | 3% see Fig. 100 Mbps
Fig. 7(c) | 3% 500 see Fig.

The TCP Minimum RTO Revisited — s.20/22

Results (4/4). Long FTP Flows (2/2)

1e+07 4
400000 - _
@ 350000 @ 8e+06 -
9 300000)
= 250000 s 6e+06]
2 200000 - =]
8 150000- g e
100000 - 2e+06 |
© 50000 | ©
0 0
2 3 4 5 20 40 60 80 100
Packet Error Rate (%) Number of Participating Flows
= [IETF Solaris = Linux = noMINRTO = [ETF Solaris = Linux = noMINRTO
(a) Increasing PER (b) Increasing TCP Contention
_ Te+071
2 6e+07-
— 5e+07
3 4e+07-
T 3e+07-
Q 2e+07-
O 1e+07]
0,
2 4 6 8 10

Backbone Bandwidth Capacity (Gbps)
= I[ETF Solaris = Linux =« NOMINRTO

(c) Increasing Bandwidth Capacity

. The TCP Minimum RTO Revisited — s.21/22

Conclusions

1. The conservative 1-second Minimum RTO setting
causes severe TCP performance degradation.
2. The Minimum RTO setting Is not needed, since:
 modern OSs use fine-grained clocks, and
* the proposed algorithm deals with the Delayed
ACK response.
3. The proposed algorithm:
e may improve TCP performance up to 50%,
o effectively avoids spurious timeouts, and

e overcomes communication inconsistencies,
caused by the absense of official instructions
regarding the Minimum RTO setting.

. e TCP Minimum RTO Revisited — s.22/22

	 Introductory Notes
	Our Contribution
	Cost Function
	Clock Granularity (1/5):
Motivation
	Clock Granularity (2/5):
Observations
	Clock Granularity (3/5):
OS Details
	Clock Granularity (4/5):
Impact
	Clock Granularity (5/5):
Conclusions
	Delayed ACKs (1/6):
Notes
	Delayed ACKs (2/6):
An Example
	Delayed ACKs (3/6):
Algorithm States
	Delayed ACKs (4/6):
State Diagram
	Delayed ACKs (5/6):
Example
	Delayed ACKs (6/6):
Impact
	Performance Evaluation (1/2)
	Performance Evaluation (2/2)
	Results (1/4): The
Need for a Standard Mechanism (1/2)
	Results (2/4): The
Need for a Standard Mechanism (2/2)
	Results (3/4): Long
FTP Flows (1/2)
	Results (4/4): Long
FTP Flows (2/2)
	Conclusions

