
The TCP Minimum RTO Revisited

Ioannis Psaras and Vassilis Tsaoussidis

(ipsaras, vtsaousi)@ee.duth.gr

COMputer NETworks (COMNET) Group

Democritus University of Thrace, Xanthi, Greece

http://comnet.ee.duth.gr/

The TCP Minimum RTO Revisited – s.1/22

 http://comnet.ee.duth.gr/

Introductory Notes

According to RFC 2988 (Computing TCP’s
Retransmission Timer):

1. RTO = SRTT + 4 × RTTV AR,

2. RTO ≥ 1 second (i.e., Minimum RTO)

The Minimum RTO protects TCP against spurious
timeouts caused by:

1. coarse-grained clocks (500ms for most OSs at that
time, i.e., Nov. 2000)

2. the Delayed Acknowledgments (usually set to 200
ms), RFC1122

The TCP Minimum RTO Revisited – s.2/22

Our Contribution

• We re-examine the two reasons for the
conservative 1-second Minimum TCP-RTO:
1. the OS clock granularity, and
2. the Delayed ACKs.

• We find that reason 1 is canceled in modern OSs,
• We carefully design a mechanism to deal with

reason 2.
• We show (through simulations) that in next

generation’s high-speed, wireless-access
networks, TCP-RTO should not be limited by a
fixed, conservative lower bound.

The TCP Minimum RTO Revisited – s.3/22

Cost Function

We define a Cost Function to capture the impact of the
Minimum RTO to TCP’s performance:

C(f) = RTOmin

RTOcurrent

• If C(f) ≤ 1, the Minimum RTO adds no extra
waiting time.

• Otherwise, the Minimum RTO will negatively
impact TCP Throughput.

The TCP Minimum RTO Revisited – s.4/22

Clock Granularity (1/5): Motivation

We simulate a coarse-grained flow (i.e., G=500ms)
over a 500ms Round-Trip Propagation Delay (RTPD)
path, to observe:

1. the rationale behind the conservative 1-second
Minimum RTO setting, and

2. the impact of the Minimum RTO value relatively
with the actual TCP-RTO value.

The TCP Minimum RTO Revisited – s.5/22

Clock Granularity (2/5): Observations

We observe that:

1. C(f) < 1 (no negative impact on TCP Throughput),

2. the Minimum RTO is only needed as a safety
margin.

 10

 12

 14

 16

 18

 20

 22

 24

 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14

S
eq

ue
nc

e
N

um
be

r

Time (s)

DATA pkt
ACK

RTO
min RTO

(a) G = 500ms, RTPD = 500ms

 420

 425

 430

 435

 440

 15 15.5 16 16.5 17 17.5

S
eq

ue
nc

e
N

um
be

r

Time (s)

DATA pkt
ACK

RTO
min RTO

(b) G = 500ms, RTPD = 6ms

Figure 1: 500ms Clock Granularity
The TCP Minimum RTO Revisited – s.6/22

Clock Granularity (3/5): OS Details

Table 1: Details on Modern OSs
OS Clock Granularity Delayed ACK
Windows 15-16ms 200ms
Solaris 10ms 50-100ms
Linux ≤ 25ms Dynamically Set

• We repeat the above experiment using, this time, a
finer-grained clock of 10ms.

The TCP Minimum RTO Revisited – s.7/22

Clock Granularity (4/5): Impact

• C(f) ≈ RTOmin

T (ACK Arr) ≤
RTOmin

RCG+RTPD+QD
≈ 62.5

 1450

 1455

 1460

 1465

 1470

 1475

 1480

 7.2 7.4 7.6 7.8 8 8.2 8.4 8.6

S
eq

ue
nc

e
N

um
be

r

Time (s)

DATA pkt
ACK

RTO
min RTO

Figure 2: G = 10ms, RTPD = 6ms

The TCP Minimum RTO Revisited – s.8/22

Clock Granularity (5/5): Conclusions

We conclude that:

1. the clock granularity should not be a matter of
concern for the setting of the Minimum RTO, and

2. the conservative 1-second Minimum RTO will have
major impact on TCP’s performance, in case of
packet losses.

The TCP Minimum RTO Revisited – s.9/22

Delayed ACKs (1/6): Notes

• TCP sends D back-to-back packets, according to
RFC 2581:
D = snd.una + min(cwnd, rwnd) -
snd.nxt.

• TCP does not know the application’s sending
pattern.

• Only the ACK of the last packet of the "train" of
back-to-back packets may be delayed.

• Every 2nd packet will always be ACKed.

The TCP Minimum RTO Revisited – s.10/22

Delayed ACKs (2/6): An Example

• At time t0 all previously transmitted packets are
already ACKed.

• D = 4: (or generally D: even)
• The client will ACK the 2nd and 4th packets.
• No Delayed ACKs ⇒ no need for extended

Minimum RTO.
• D = 3: (or generally D: odd)

• Client will ACK the 2nd packet and will trigger
the DelACK timer for the 3rd packet.

• The 3rd packet’s ACK may be Delayed ⇒ extend
the Minimum RTO, for the 3rd packet only.

The TCP Minimum RTO Revisited – s.11/22

Delayed ACKs (3/6): Algorithm States

The proposed mechanism operates in one of the
following States:

• State 1: "noMINRTO". Do not apply extended
Minimum RTO to any outgoing packet (i.e., the
receiver will always ACK the last packet of the
back-to-back train of packets); set set_odd to
false.

• State 2: "extended MINRTO". Apply extended
Minimum RTO to the last packet of the next train of
back-to-back packets; set set_odd to true.

The TCP Minimum RTO Revisited – s.12/22

Delayed ACKs (4/6): State Diagram

1st packet of the Slow-Start phase

extend MINRTO
set_odd:false

noMINRTO
set_odd:false

extend MINRTO for
 last pkt of train
set_odd:true

D:even D:odd

D:odd

D:odd

D:even
D:even

Figure 3: State Diagram

The TCP Minimum RTO Revisited – s.13/22

Delayed ACKs (5/6): Example

 1476

 1478

 1480

 1482

 1484

 1486

 1488

 1490

 7 7.2 7.4 7.6 7.8 8

S
eq

ue
nc

e
N

um
be

r

Time (s)

2 pkts b2b

2 pkts b2b

3 pkts b2b

2 pkts b2b

2 pkts b2b

2 pkts b2b

The ACK of the last b2b
pkt may be delayed.

Extend the Minimum RTO

DATA pkt
ACK

RTO
min RTO

Figure 4: Modeling ACKs Arrival
The TCP Minimum RTO Revisited – s.14/22

Delayed ACKs (6/6): Impact

RTOmin =

{

R ms, for the last pkt if set_odd = 1,

RTOcur, otherwise,

where R is a fixed, extended value for the Minimum
RTO.

C(f) =

{

R ms
RTOcur

, for the last pkt if set_odd = 1,

1, otherwise.

The TCP Minimum RTO Revisited – s.15/22

Performance Evaluation (1/2)

• TCP version: Reno
• SACK: enabled
• Timestamps: enabled
• Spurious response: enabled
• Delayed ACK Timer: 200ms
• Granularity: 10ms
• Buffers use RED, Buffer size = BDP
• We measure the System Goodput:

Goodput = Original_Data
Connection_time

The TCP Minimum RTO Revisited – s.16/22

Performance Evaluation (2/2)

We compare the proposed algorithm with three
different TCP implementations:

1. Linux TCP: Minimum RTO = 200ms

2. Solaris TCP: Minimum RTO = 400ms

3. IETF Proposal (RFC 2988): Minimum RTO = 1s
(probably Windows TCP)

The TCP Minimum RTO Revisited – s.17/22

Results (1/4): The Need for a
Standard Mechanism (1/2)

If
Srv′s Min RTO < RTPD + QD + Clnt′s DelACK Timer

and
Minimum RTO > RTOcur,
then the TCP server will spuriously timeout every time
an ACK is delayed and D = 1.

The TCP Minimum RTO Revisited – s.18/22

Results (2/4): The Need for a
Standard Mechanism (2/2)

 596

 598

 600

 602

 604

 606

 608

 36 36.1 36.2 36.3 36.4 36.5 36.6 36.7 36.8

S
eq

ue
nc

e
N

um
be

r

Time (s)

Spurious Retransmission

DATA pkt
ACK

RTO
min RTO

(a) Linux Server - 200ms Delayed

ACK Client (e.g., Windows client)

 596

 598

 600

 602

 604

 606

 608

 36 36.1 36.2 36.3 36.4 36.5 36.6 36.7 36.8

S
eq

ue
nc

e
N

um
be

r

Time (s)

Extended Minimum RTO
to avoid spurious Timeout

DATA pkt
ACK

RTO
min RTO

(b) Modified Linux Server - 200ms

Delayed ACK Client (e.g., Win-

dows client)

Figure 5: The Need for a Standard Mechanism

The TCP Minimum RTO Revisited – s.19/22

Results (3/4): Long FTP Flows (1/2)

Figure 6: Simulation Topology

Table 2: Experiment Details
PER TCP Flows bw_bb

Fig. 7(a) see Fig. 3 6 Mbps
Fig. 7(b) 3% see Fig. 100 Mbps
Fig. 7(c) 3% 500 see Fig.

The TCP Minimum RTO Revisited – s.20/22

Results (4/4): Long FTP Flows (2/2)

Packet Error Rate (%)
2 3 4 5

G
oo

dp
ut

 (
B

/s
)

0
50000

100000
150000
200000
250000
300000
350000
400000

IETF Solaris Linux noMINRTO

(a) Increasing PER

Number of Participating Flows
20 40 60 80 100

G
oo

dp
ut

 (
B

/s
)

0

2e+06

4e+06

6e+06

8e+06

1e+07

IETF Solaris Linux noMINRTO

(b) Increasing TCP Contention

Backbone Bandwidth Capacity (Gbps)
2 4 6 8 10

G
oo

dp
ut

 (
B

/s
)

0
1e+07
2e+07
3e+07
4e+07
5e+07
6e+07
7e+07

IETF Solaris Linux noMINRTO

(c) Increasing Bandwidth Capacity

Figure 7: Impact on Long FTP Flows
The TCP Minimum RTO Revisited – s.21/22

Conclusions

1. The conservative 1-second Minimum RTO setting
causes severe TCP performance degradation.

2. The Minimum RTO setting is not needed, since:
• modern OSs use fine-grained clocks, and
• the proposed algorithm deals with the Delayed

ACK response.

3. The proposed algorithm:
• may improve TCP performance up to 50%,
• effectively avoids spurious timeouts, and
• overcomes communication inconsistencies,

caused by the absense of official instructions
regarding the Minimum RTO setting.

The TCP Minimum RTO Revisited – s.22/22

	 Introductory Notes
	Our Contribution
	Cost Function
	Clock Granularity (1/5):
Motivation
	Clock Granularity (2/5):
Observations
	Clock Granularity (3/5):
OS Details
	Clock Granularity (4/5):
Impact
	Clock Granularity (5/5):
Conclusions
	Delayed ACKs (1/6):
Notes
	Delayed ACKs (2/6):
An Example
	Delayed ACKs (3/6):
Algorithm States
	Delayed ACKs (4/6):
State Diagram
	Delayed ACKs (5/6):
Example
	Delayed ACKs (6/6):
Impact
	Performance Evaluation (1/2)
	Performance Evaluation (2/2)
	Results (1/4): The
Need for a Standard Mechanism (1/2)
	Results (2/4): The
Need for a Standard Mechanism (2/2)
	Results (3/4): Long
FTP Flows (1/2)
	Results (4/4): Long
FTP Flows (2/2)
	Conclusions

