
ar
X

iv
:2

40
1.

07
71

7v
1

 [
cs

.N
I]

 1
5

Ja
n

20
24

A Pragmatical Approach to Anomaly Detection

Evaluation in Edge Cloud Systems

Sotiris Skaperas∗†, Georgios Koukis‡†, Ioanna Angeliki Kapetanidou‡†, Vassilis Tsaoussidis‡†, Lefteris Mamatas∗†

∗ Department of Applied Informatics, University of Macedonia, Thessaloniki Greece
† Athena Research and Innovation Center, Greece

‡ Department of Electrical and Computer Engineering, Democritus University of Thrace, Greece

Emails: {sotskap, emamatas}@uom.edu.gr, {gkoukis, ikapetan, vtsaousi}@ee.duth.gr

Abstract—Anomaly detection (AD) has been recently employed
in the context of edge cloud computing, e.g., for intrusion de-
tection and identification of performance issues. However, state-
of-the-art anomaly detection procedures do not systematically
consider restrictions and performance requirements inherent to
the edge, such as system responsiveness and resource consump-
tion. In this paper, we attempt to investigate the performance
of change-point based detectors, i.e., a class of lightweight and
accurate AD methods, in relation to the requirements of edge
cloud systems. Firstly, we review the theoretical properties of
two major categories of change point approaches, i.e., Bayesian
and cumulative sum (CUSUM), also discussing their suitability
for edge systems. Secondly, we introduce a novel experimental
methodology and apply it over two distinct edge cloud test-beds
to evaluate the performance of such mechanisms in real-world
edge environments. Our experimental results reveal important
insights and trade-offs for the applicability and the online
performance of the selected change point detectors.

Index Terms—change point analysis, sequential analysis, edge
cloud computing, anomaly detection

I. INTRODUCTION

Edge networks have emerged as an ideal paradigm to

support services that require minimal latency and high band-

width, including the ever-growing Internet-of-Things (IoT)

applications [1]. However, they often exhibit inherent resource

constraints and resource optimization is essential to reap the

benefits of the operation of machine learning (ML) solutions.

Anomaly detection (AD) is a broad category of ML tech-

niques aiming on identifying patterns that significantly deviate

from the “normal” (i.e., expected) behavior, currently used in

various network-related problems, e.g., intrusion detection [2].

In this context, change point (CP) analysis [3] is a suitable

candidate for AD in resource constrained environments, since

it is aligned to the ”quickest” detection of an abrupt change,

also ensuring low computational complexity. Moreover, stem-

ming from the class of sequential statistical analysis [4], these

approaches bypass the need for exhaustive feature mining and

labeling to achieve adequate performance.

This framework has been efficiently incorporated in the

cloud or wireless side of the edge, for instance we utilize

them: (i) to trigger elasticity in unikernel-based edge clouds

[5]; (ii) to detect denial of service attacks in software-defined

wireless sensors networks [6]; and (iii) as a link reliability

detector in software-defined smart-city networks [7].

However, most existing works evaluate the performance

of the CP detectors based on the typical trade-off between

detection delay in data instances and false alarm rate. There-

fore, important aspects related to the computational demands,

e.g., resource utilization, actual detection delay and scalability

properties, remain under-discussed, with only a few excep-

tions delving into the theoretical computational complexity

[8] or energy consumption [9]. Nevertheless, when dealing

with edge devices, computational cost plays a crucial role

and may influence the detection efficiency. For instance,

a computationally complex algorithm may perform poorly

under limited resources, while a less accurate but lightweight

algorithm may lead to quicker responses.

To address this research gap, we propose an experimen-

tation methodology and corresponding facility built on top

of real edge cloud test-beds, that pragmatically assesses the

online performance of alternative CP procedures. Moreover,

we provide support for crucial performance metrics related

to resource utilization, i.e., CPU and memory consumption,

and detection delay (DD), including actual DD and average

response time. Note that our experimentation facility is fully

configurable and extensible, e.g., it can be expanded with ad-

ditional CP mechanisms. For example, it seamlessly incorpo-

rates a containerized implementation of MATLAB functions

within our novel cloud-native AD evaluation framework.

In this context, we investigate the applicability of two

major CP detection approaches, i.e., Bayesian and cumulative

sum (CUSUM), in edge environments. Also, we assess their

various performance trade-offs in terms of actual DD (i.e.,

experimentally measured) and DD in data instances (i.e.,

theoretical), as well as edge cloud resource utilization. Lastly,

we examine their behavior across two test-beds with different

configurations to ensure that our insights do not depend on

server hardware.

The major contributions of this work are enlisted below:

1) We discuss key aspects of selected CP detectors with

respect to their employment in edge environments.

2) We introduce a novel experimentation methodology and

facility for assessing CP procedures, based on kuber-

netes workflows and containerized MATLAB functions.

3) We present valuable insights for the performance of the

considered procedures in real-world Kubernetes-based

http://arxiv.org/abs/2401.07717v1

edge cloud deployments.

The remainder of this paper is organized as follows. In Sec-

tion II, we outline the background concepts and the statistical

properties of the CUSUM and Bayesian-based CP detectors.

In Section III, we present our experimentation methodology,

while in Section IV, we detail our proof-of-concept evaluation

over the two experimentation test-beds. Finally, in Section V,

we provide our concluding remarks.

II. CONSIDERED DETECTION MECHANISMS

Here, we give the theoretical background of this work,

reviewing main CP detectors in the edge cloud context. Se-

quential CP analysis [10] refers to the problem of identifying

abrupt changes in the underlying characteristics of a time-

series as soon as possible, i.e., in an online fashion, with a

fixed false alarm rate. According to the particular assumptions

for the given time-series data-structure, CP procedures are fur-

ther categorized to parametric and non-parametric approaches

[4]. Moreover, considering the prior knowledge of the CP

occurrence distribution, Bayesian procedures treat the time

of a CP as a random variable with a known prior, whereas,

non-Bayesian approaches assume a fixed CP without a prior

of its location [3]. Next, we discuss in brief the statistical

properties of the two aforementioned CP branches.

Regarding the non-Bayesian framework, CUSUM detectors

rely on a straightforward and computationally lightweight

implementation, since they are based on the calculation of

a sequential formula that exclusively involves the current

data sample and the previous values of the test statistic [8].

Additionally, under a fixed false alarm rate, they are known to

achieve minimum detection delay [11]. CUSUM detectors are

non-parametric by design, but can also be applied in a para-

metric setup, as discussed in [12]. However, this application

introduces increased computational costs due to the utilization

of likelihood estimators, e.g., maximum likelihood estimator

(MLE), for the computation of model parameters.

Turning to Bayesian procedures, these are typically para-

metric and are based on the fundamental notion of the

Bayesian inference. In this context, the seminal work in [13],

named as Bayesian on-line change point detector (BOCPD),

applies a recursive message-passing algorithm to model the

posterior distribution p(rt|yt) over the run-length rt, i.e., the

elapsed time since the last observed CP, given the observed

data yt. In contrast to the CUSUM detectors, Bayesian frame-

work derives: i) the quantification of uncertainty in both the

number and the location of the CPs [14], and, ii) improved

accuracy for short data samples, since the threshold does not

rely on the asymptotical behavior of the test statistic [15].

However, these benefits come with the cost of strong assump-

tions for the data-structure, and, an increased computational

complexity due to the computation of the posterior distribution

in each data instance, with respect to the run-length [16].

In summary, when considering their general properties, it

should be noted that CUSUM procedures can offer advan-

tages in edge cloud systems, including: i) handling unknown

underlying data distributions, especially in a non-parametric

setup, due to their model-free nature; ii) demonstrating re-

source efficiency as they are computationally simple, since

they practically compare a fixed pre-change window with the

incoming data sequence; iii) accommodating large amounts

of data, since their threshold is derived asymptotically. On

the other hand, Bayesian approaches offer the following

benefits: i) improved performance in data streams with known

distributions; and ii) stable detection accuracy for both short

and larger data samples. However, these advantages come with

the cost of being computational intensive procedures, which

may be an issue in resource-constrained edge deployments.

In the following subsections, we provide a brief overview

of the evaluated online CP methods. Note that the presented

procedures are being configured with algorithmic extensions

to better align with the demands of edge cloud systems.

A. CUSUM-based

Both CUSUM procedures are implemented based on our

novel algorithmic framework detailed in [17] and [18], rather

than being applied directly as open sequential procedures.

In detail, we employ a window-based sequential procedure,

restricted to l data instances, while we also include a pre-

processing step, based on the off-line CP detector given in

[12], i.e., for the determination of the training sample m. This

framework also allows for multiple CPs detection, since it is

being executed iteratively. Note that, this modified approach

incurs an additional processing cost at the end of each period

of length l, due to the re-computation of the off-line CP

detector in order to calculate the new training period.

Then, we employ a window-based sequential CUSUM

approach relying on the following stopping rule τ(m),

τ(m) = min{t ∈ N : Ts(m, t) ≥ Cα,g}, (1)

where a CP is detected in case the test statistic Ts(m, l) in

the time window t ∈ [1, l] exceeds a threshold function Ca,γ .

The boundary is defined as Ca,γ = cvαgγ , where cvα is

a critical value calculated from the asymptotic convergence

of the fraction Ts(m, l)/gγ and γ ∈ [0, 0.5) is the tuning

parameter of the weight gγ .

1) Non-parametric CUSUM: We follow the work in [19],

in which the statistical assumptions for the time-series yt
allows even (weak) non-linear dependencies. The CUSUM

detector is given by,

Ts =
1

ω̂m




m+l∑

j=m+1

yj −
1

m

m∑

j=1

yj


 , (2)

where ω̂2
m is a suitable estimator of the long-run variance

ω2
m =

∑
i∈Z

cov(y0, yk), cov(.) symbolizes the autocovari-

ance. Here, ω̂m captures the standard error under serial depen-

dence and it is approached using the Bartlett kernel estimator,

ω̂2
m = κ̂0 + 2

∑W−1
j=1 k(j

W
)κj , where W the window length,

κ(.) the empirical autocovariance, and, k(.) the Bartlett kernel.

Next, the threshold Cα,γ applies the weight function,

gγ =
√
m

(
1 +

l

m

)(
l

m+ l

)γ

, γ ∈ [0,
1

2
) (3)

and the critical value,

cvα = sup
t∈[0,1]

W (t)

tγ
, (4)

W (t) denotes the standard Brownian motion and is approxi-

mated using Monte Carlo simulations of its paths on a grid.

It is important to note that the computational cost of the

sequential procedure depends exclusively on the computation

of the CUSUM detector defined in eq. (2). The boundary

function Cα,γ , consisting of eq. (3) and eq. (4), is predefined,

and its computation is independent of the provided data.

2) Parametric CUSUM: The CP procedure [20] imple-

ments a CUSUM of residuals detector based on an ARMA

fit, which is advantageous for linear data structures. Here, the

parameters of the ARMA(p, q) model, described by the vector

β̂ = (µ0, p0, q0, σ
2
0), are estimated in the training period m

and the residuals of the process are given as below,

ǫ̂t = ŷt −
p∑

j=1

p̂j0ŷt−j −
q∑

j=1

q̂j0ǫ̂t−j , (5)

Then, the detector is equal to that in eq. (2), replacing the

raw data yt with the residuals ǫ̂t. As previously, the boundary

function Cα,γ is pre-calculated and does not influence the

computational complexity. On the other hand, the estimation

of the vector β̂ of the parameters of the ARMA model,

essentially increases the computational cost of the procedure,

compared to the non-parametric CUSUM.

B. Bayesian-based

BOCPD applies the following message-passing algorithm

to recursively estimate the run-length distribution p(rt|y1:t),

p(rt|y1:t) ∝
∑

rt−1

p(rt|rt−1)p(yt|rt−1, y1:t−1)p(rt−1|y1:t−1),

(6)

which involves the conditional prior of the run-length

p(rt|rt−1), the predictive probability of the model

p(yt|rt−1, yt−1) and the previous iteration of the recursion.

In [21], the restarted Bayesian online change-point detector

(r-BOCPD) is introduced as a pruned version of the BOCPD.

Assuming that yt follows the Bernoulli distribution, the

change criterion of the r-BOCPD is given by the formula,

Rr:t = I{∃s ∈ (r, t] : ϑr,s,t > ϑr,r,t}, (7)

where the posterior ϑr,s,t = p(rt = t − s|ys:t) is the weight

assigned to the forecaster s at time t for the starting time r,

estimated with the recursive formula (initially ϑr,1,1 = 1),

ϑr,s,t =

{
ηr,s,t

ηr,s,t−1

exp(−ls,tϑr,s,t−1), ∀s < t

ηr,t,t × Vr,t−1, s = t,
(8)

the Hazard ηr,s,t ∈ (0, 1) is the hyper-parameter of the

algorithm (that controls the trade-off between false alarm

and detection delay) and Vr:t−1 = exp
(
−L̂r:t−1

)
the initial

weight, L̂r:t−1 =
∑t−1

s′=r ls′:t−1 is the cumulative cumulative

loss incurred by the forecaster r in the interval [s.t − 1].

Fig. 1: r-BOCPD operation, along with the error bars (shadow

blue) and the modified stopping rule (dashed dark line).

Analogously, ls,t = −logLp(yt|ys:t−1) is the instantaneous

loss of the forecaster s at time t, and,

Lp(yt+1|ys:t) =
{∑

t
i=s

yi+1

t−s+2 if yt+1 = 1
∑

t
i=s

(1−yi)+1

t−s+2 if yt+1 = 0,
(9)

is the Laplace predictor.

r-BOCPD calculates ϑr,s,i of each s ∈ (r, i], i = 1, 2, . . . , t.
If Rr,i = 1 a CP is detected, the algorithm restarts a new

forecaster at r = t + 1 and deletes the forecasters created

before time t. Regarding to the computational cost of the

procedure, two key factors have to be considered: 1) the

chosen starting time r, and, 2) the number of algorithm’s re-

runs n, which are executed to achieve a convergence for the

probabilistic framework.

In Fig. 1, we illustrate the operation of r-BOCPD across

a piece-wise Gaussian process with a CP at time instance

t = 200, averaged over n = 500 runs, where the error bars

before and after t = 200 denote false alarms. As shown,

r-BOCPD provides a descriptive solution for the estimation

of the CPs, which increases its explainability, but also poses

challenges for its applicability, since it does not derive fixed

CP detections; necessary in automated decision making algo-

rithms. For this reason, we modified the Bayesian detector to

handle the false alarm rate and derive fixed CP detections τ̂t,
through the application of following stopping rule,

τ̂t = min{t ∈ N : cpt > tq}, (10)

where cpt symbolizes the CP detections of r-BOCPD at time

instance t, averaged over n number of runs and q is a weight

parameter that serve to handle the false alarm rate. Regarding

Fig. 1 outcomes, the fixed CP detection using the modified

stopping rule is depicted with the dashed dark line.

III. EVALUATION METHODOLOGY

Our experimentation methodology assesses recent, repre-

sentative AD mechanisms in real edge cloud environments,

attempting to uncover the interplay between theoretical prop-

erties of algorithms and their impact on edge cloud resources.

We consider cloud-native AD workflows implemented as

Kubernetes argo workflows1. We assume that new AD work-

flows are being deployed, e.g., somethings happens and raises

the criticality level as high, operate for a time period or

transmit a fixed number of samples, and then the workflows

are being removed. The workflows utilize AD clients and

servers with respect to given configurations.

The clients are able to reproduce traces of measurements

or generate anomalies by embedding an arbitrary number

of time-series with indicative structures. At this point of

investigation, we focus on the impact of AD workflows on

resource utilization, rather than on the theoretical accuracy of

algorithms. The latter is extensively studied in other works,

e.g., [18]. The servers are MATLAB containers supporting all

considered mechanisms, enabled and configured on-demand.

The communication is based on a custom REST API. The

AD server Pods also host side-car containers that trace re-

source utilization of mechanisms, based on an extension of

Kubernetes Network Benchmark tool2.

In practice, clients communicate with a server hosting the

CP detectors in an on-line manner and transmit each new data

sample iteratively (every 100 ms). Subsequently, the server

processes the incoming data using the selected CP mechanism,

and responds if an anomaly is detected. This setup allows

us to specify an experiment configuration with the details of

AD workflows (e.g., number of clients, cluster node affinity,

etc.), mechanisms (e.g., type and configuration), as well as of

communicated and processed data (e.g., out of a trace-file or

generated from known distributions/time-series models).

The performance metrics include: (i) the DD in data in-

stances: number of data points t needed to be processed for

the detection of a CP after its occurrence, (ii) the actual DD:

time duration between the CP occurance and its estimation

(measured in ms), including the data communication and

the processing, (iii) the CPU and memory consumption:

combined impact of AD workflows, i.e., including pod deploy-

ment/removal, data communication / storage / processing, etc,

in percentage (%), and, (iv) the response time: the total time

for a data point to be transmitted from the client, processed by

the server’s containerized AD mechanism, and for the server

to send a response back to the client, measured in ms.

The experiments were replicated in two separate test-beds

to also account for the impact of hardware on results. The

first test-bed, at the University of Macedonia (UOM), has 2

Dell PowerEdge R630 servers with dual Intel(R) Xeon(R)

E5-2620 v4 @ 2.10GHz 16-core CPUs and 50GB RAM.

The second test-bed, at ATHENA Research Center, features a

Dell PowerEdge T640 server with an Intel(R) Xeon(R) Silver

4210R @ 2.40GHz 16-core CPU and 64GB RAM.

The real operation of AD mechanisms is hosted in Ku-

bernetes clusters of one master and two worker nodes. The

three nodes are VMs with limited resource availability (e.g.,

2 CPU cores and 4GB of RAM) to resemble resource-

1https://github.com/argoproj/argo-workflows
2https://github.com/InfraBuilder/k8s-bench-suite/tree/master

TABLE I: Detection accuracy vs detection delay trade-off.

True (false) alarm rate CP gap
npCUSUM 0.95 (0.05) 10
pCUSUM 1 (0) 12

BOCD 0.94 (0.06) 7

constrained edge environments. In the UOM test-bed, the

VMs are distributed across both servers, accounting for phys-

ical network connectivity considerations. All VM nodes are

running Ubuntu 22.04.2 LTS (with kernel version 5.15.0-

71-generic). The kubernetes cluster is being built based on

kubeadm (v1.28.2), with kubectl and kubelet also aligned with

the same version and containerd maintained at version 1.6.24.

The Argo workflow is set to v3.4.4. Furthermore, both test-

beds use the XCP-ng3 virtualization platform and the Flannel

(v0.22.3) container networking plugin4 for the nodes’ and

pods’ inter-communication.

IV. EXPERIMENTAL RESULTS

In this section, we primarily focus on the associated perfor-

mance issues of the adaptation of the CP procedures in real

online AD applications (e.g., measuring the actual response

time), rather than statistical aspects, such as the detection

accuracy with respect to different types of data structures,

which are the main subjects of other studies.

The considered CP methods: i) non-parametric CUSUM

(npCUSUM), ii) ARMA-based CUSUM (pCUSUM), and,

iii) r-BOCPD (BOCD), are being assessed over synthetic

time-series across the UOM (t1) and ATHENA (t2) test-beds

(i.e., being exchanged between containarized AD clients and

servers implemented in the form of Kubernetes workflows).

The parameters of the examined procedures, for a given

significance level α = 0.05, follows: For CUSUM, the tuning

parameter γ = 0.25, the training period m = 100 and the

window size l = 50. Regarding the r-BOCPD, the tuning

parameter ηr,s,t =
1

t−s+1 , the starting time instance r = 1, the

number of runs n = 100, and the weight parameter q = 0.95.

The synthetic time-series Xn have been produced based

on randomly generated values from an ARMA(1,1) auto-

regressive moving average model (as in [18] or [20]), with

parameters φ = 0.4, θ = 0.2 and innovations ǫt ∼ N(0, 1).
The sample size is T = 500, while a CP is introduced at

tcp = 250 by shifting the mean value from µ = 0 to µ = 1.

Finally, results are assessed over 100 Monte Carlo simulations.

Initially, we discuss the trade-off between detection accu-

racy (true/false alarm rate) and detection delay (gap between

the actual and estimated CP in data points, tĉp − tcp).

According to Table I, pCUSUM achieves 100% true alarm

detection but at the cost of increased detection delay. On the

other hand, BOCD concludes on the shortest delay being more

prone to over-estimation error, while npCUSUM provides a

compromise between over-estimation and detection delay.

Fig. 2 illustrates the metrics: i) actual DD, ii) DD in data

points, iii) memory and CPU utilization in percentage (%);

3https://xcp-ng.org
4https://github.com/flannel-io/flannel

5 10 15 20

DD in data points (t)

0

1000

2000

3000

4000

5000

A
c
tu

a
l
D

D
 (

m
s
)

npCUSUM

pCUSUM

BOCD

(a) actual DD vs DD in data points.

6 8 10 12 14 16

CPU consumption (%)

7

8

9

10

11

12

13

14

15

M
e
m

o
ry

 c
o
n
s
u
m

p
ti
o
n
 (

%
)

npCUSUM

pCUSUM

BOCD

(b) Memory vs CPU consumption.

npCUSUM pCUSUM BOCD
0

25

50

75

100

125

150

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

(c) Response time for each data point.

5 10 15 20

DD in data points (t)

0

1000

2000

3000

4000

5000

A
c
tu

a
l
D

D
 (

m
s
)

npCUSUM

pCUSUM

BOCD

(d) actual DD vs DD in data points.

6 8 10 12 14 16

CPU consumption (%)

7

8

9

10

11

12

13

14

15

M
e
m

o
ry

 c
o
n
s
u
m

p
ti
o
n
 (

%
)

npCUSUM

pCUSUM

BOCD

(e) Memory v CPU consumption.

npCUSUM pCUSUM BOCD
0

25

50

75

100

125

150

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

(f) Response time for each data point.

Fig. 2: i) actual DD versus DD in data points, ii) memory versus CPU consumption, and, iii) response time for each time-series

being processed on-line, assuming 1 client. Applying npCUSUM, pCUSUM and BOCD methods, in both UoM test-bed (first

row) and ATHENA test-bed (second row).

and, iii) the response time (in ms), for all three CP procedures,

in t1 (first row) and t2 (second row) test-beds, assuming

that 1 client utilizes the service. As shown in Fig. 2a, for

t1 test-bed, DD in data points may not suffice to determine

the ”fastest” procedure. For example, when comparing BOCP

with npCUSUM and pCUSUM, we observe that the former,

results on a significantly larger actual DD, although it provides

the shortest DD in data points. Moreover, we observe a linear

relationship between the actual DD and DD measured in data

points, with BOCP and pCUSUM displaying greater fluctu-

ations (due to the complexity of the detectors). Analogous

results are derived for the t2 test-bed, illustrated in Fig. 2d.

Figs. 2b and 2e depict the CPU and memory consumption

of each CP method. Concerning both t1 and t2 test-beds, the

npCUSUM method exhibits superior performance in terms

of both CPU and memory consumption, followed by the

pCUSUM, with the BOCD method exhibiting the higher

resource demands. Note that, despite the fluctuations in the

CPU utilization between the two test-beds, an almost stable

performance is indicated for the examined methods in terms of

resource utilization. This implies that the CP detectors exhibit

a degree of independency in relation to the physical machine

configuration (i.e., the algorithms use the same amount of

resources in the virtual space). Consequently, the mechanisms

may be characterized by a relatively stable resource footprint,

which can be valuable to Kubernetes resource-optimization

tasks (e.g., elasticity). However, this issue is complex enough

to deserve additional extensive studies.

Finally, figs. 2c and 2f, illustrate that the response times for

each method remain relatively stable in both test-beds, with

minimal variation, especially in the case of the npCUSUM

method. Note that, the higher variation in response time

regarding to the BOCD procedure, reflects to the variation

of the actual DD for similar DD in data points.

Subsequently, Fig. 3 illustrates the mean actual DD, re-

sponse time, and, CPU and memory utilization, for k =
{1, . . . , 5} clients served simultaneously. Concerning the ac-

tual DD in Fig. 3a, we observe that an increase in the number

of clients mainly affects pCUSUM and BOCD, resulting in

a 2 to 4 times increase in the actual DD, when compared to

the scenario with one client. On the other hand, npCUSUM

shows a relative stable performance irrespective of the number

of clients to be processed. This result is also confirmed by the

corresponding measurements of the response times in Fig. 3b.

In addition, in Figs. 3c and 3d, we identify an increase

in the resource consumption of the CP procedures, which,

however, retain distinct characteristics in terms of CPU and

memory utilization. This fact may be attributed to the initi-

ation and termination of pods that temporarily impact CPU

performance, i.e., this may be significant in the cases with

a larger number of clients and a short experiment duration.

However, this aspect requires further investigations, e.g., to

decouple algorithmic resource consumption from pod ma-

nipulation overhead. Nevertheless, BOCD exhibits a superior

performance in terms of CPU consumption. Interestingly, the

increase in the resource consumption of npCUSUM does not

impact its actual DD, due to its very lightweight algorithm.

We now enlist the most important gained insights with

1 2 3 4 5

Clients

0

2000

4000

6000

8000

10000

12000

M
e

a
n

 a
c
tu

a
l
D

D
 (

m
s
)

npCUSUM-t1

pCUSUM-t1

BOCD-t1

npCUSUM-t2

pCUSUM-t2

BOCD-t2

1 2 3 4 5

Clients

0

100

200

300

400

500

600

700

M
e

a
n

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

npCUSUM-t1

pCUSUM-t1

BOCD-t1

npCUSUM-t2

pCUSUM-t2

BOCD-t2

1 2 3 4 5

Clients

0

10

20

30

40

50

M
e

a
n

 C
P

U
 c

o
n

s
u

m
p

ti
o

n
 (

%
)

npCUSUM-t1 pCUSUM-t1 BOCD-t1

npCUSUM-t2 pCUSUM-t2 BOCD-t2

1 2 3 4 5

Clients

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

M
e

a
n

 m
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n
 (

%
)

npCUSUM-t1 pCUSUM-t1 BOCD-t1

npCUSUM-t2 pCUSUM-t2 BOCD-t2

Fig. 3: Mean: i) actual DD, ii) response time, iii) CPU

consumption, and, iv) memory consumption, in UoM (t1) and

ATHENA (t2) test-beds, regarding k = {1, · · · , 5} clients.

respect to the actual DD and response times of the selected

CP methods. More precisely:

• npCUSUM provides superior performance and offers

scalability advantages, as the number of clients increases.

• pCUSUM results in an increased actual DD, when com-

pared to npCUSUM, especially when dealing with a

larger number of concurrently served clients, which is

attributed to the involved MLE calculations.

• BOCD exhibits significantly higher actual DD than

CUSUM methods, posing scalability challenges for more

clients and highlighting the computational intensity of

Bayesian procedures.

• the typical trade-off between false alarm and detection

delay is not sufficient to characterize the performance of

CP mechanisms in real AD applications, especially of

those deployed at the edge.

Lastly, turning our attention to the resource consumption,

the three CP detectors provide a discrete resource utilization

behavior, with slight variations within each method, which

is also maintained across both test-beds. This observation

intuitively suggests that resource consumption may exhibit

some degree of predictability, which is an important input

for resource optimization mechanisms.

V. CONCLUSIONS

In this paper, we provided a fresh view on the evaluation

of state-of-the-art (CP based) AD algorithms in edge cloud

systems. In our comparative analysis, we utilized a novel

methodology and a cloud-native system for the online assess-

ment of CP algorithms. This framework allowed us to in-

corporate additional metrics to characterize the computational

complexity and the performance of the examined procedures,

such as resource consumption in terms of CPU and memory as

well as actual response time. Our initial results demonstrated

that, on one hand, the statistical properties of CP algorithms

are generally consistent with their behavior in edge cloud

implementations, and on the other hand, underlined limitations

of the typical evaluation metrics for CP procedures.

VI. ACKNOWLEDGMENTS

This work is partially supported by the Horizon Europe

CODECO Project under Grant number 101092696.

REFERENCES

[1] X. Yu, X. Yang, Q. Tan, C. Shan, and Z. Lv, “An edge computing based
anomaly detection method in IoT industrial sustainability,” Appl. Soft

Comput., vol. 128, p. 109486, 2022.
[2] A. Aldweesh, A. Derhab, and A. Z. Emam, “Deep learning approaches

for anomaly-based intrusion detection systems: A survey, taxonomy,
and open issues,” Knowl. Based Syst., vol. 189, p. 105124, 2020.

[3] H. V. Poor and O. Hadjiliadis, Quickest detection. Cambridge
University Press, 2009.

[4] A. S. Polunchenko and A. G. Tartakovsky, “State-of-the-art in sequen-
tial change-point detection,” Methodology Comput. Appl. Probability,
vol. 14, pp. 649–684, 2012.

[5] P. Valsamas, S. Skaperas, and L. Mamatas, “Elastic content distribution
based on Unikernels and change-point analysis,” in Proc. EW, Catania,
Italy, 2018, pp. 1–7.

[6] G. A. N. Segura, S. Skaperas, A. Chorti, L. Mamatas, and C. B. Margi,
“Denial of Service Attacks Detection in Software-Defined Wireless
Sensor Networks,” in Proc. IEEE ICC Workshop, Dublin, Ireland, 2020,
pp. 1–7.

[7] L. Mamatas, V. Demiroglou, S. Kalafatidis, S. Skaperas, and V. Tsaous-
sidis, “Protocol-Adaptive Strategies for Wireless Mesh Smart City
Networks,” IEEE Network, vol. 37, no. 2, pp. 136–143, 2023.

[8] L. Xie, G. V. Moustakides, and Y. Xie, “Window-limited CUSUM for
sequential change detection,” IEEE Trans. Inf. Theory, vol. 69, no. 9,
pp. 5990–6005, 2023.

[9] Y. Li, Z. Zhou, X. Xue, D. Zhao, and P. C. Hung, “Accurate Anomaly
Detection with Energy-Efficiency in IoT-Edge-Cloud Collaborative Net-
works,” IEEE Internet Things J., vol. 10, no. 19, pp. 16 959–16 974,
2023.

[10] M. Basseville, I. V. Nikiforov et al., Detection of Abrupt Changes:

Theory and Application. Englewood Cliffs, NJ, USA: Prentice-Hall,
1993.

[11] G. V. Moustakides, “Optimal stopping times for detecting changes in
distributions,” Ann. of Statist., vol. 14, no. 4, pp. 1379–1387, 1986.

[12] A. Aue and L. Horváth, “Structural breaks in time series,” J. Time Ser.

Anal., vol. 34, no. 1, pp. 1–16, 2013.
[13] R. P. Adams and D. J. MacKay, “Bayesian online changepoint detec-

tion,” arXiv preprint arXiv:0710.3742, 2007.
[14] E. Ruggieri and M. Antonellis, “An exact approach to Bayesian sequen-

tial change point detection,” Computat Statist. Data Anal., vol. 97, pp.
71–86, 2016.

[15] N. Chopin, “Dynamic detection of change points in long time series,”
Ann. Inst. Statist. Math., vol. 59, no. 2, pp. 349–366, 2007.

[16] T. Figliolia and A. G. Andreou, “An FPGA multiprocessor architecture
for Bayesian online change point detection using stochastic computa-
tion,” Microprocessors and Microsystems, vol. 74, p. 102968, 2020.

[17] S. Skaperas, L. Mamatas, and A. Chorti, “Real-time algorithms for the
detection of changes in the variance of video content popularity,” IEEE

Access, vol. 8, pp. 30 445–30 457, 2020.
[18] S. Skaperas, E. Mamatas, and A. Chorti, “Real-time video content

popularity detection based on mean change point analysis,” IEEE

Access, vol. 7, pp. 142 246–142 260, 2019.
[19] S. Fremdt, “Asymptotic distribution of the delay time in Page’s se-

quential procedure,” J. Statist. Planning Inference, vol. 145, pp. 74–91,
2014.

[20] A. Aue, C. Dienes, S. Fremdt, and J. Steinebach, “Reaction times of
monitoring schemes for ARMA time series,” Bernoulli, vol. 21, no. 2,
pp. 1238–1259, 2015.

[21] R. Alami, O. Maillard, and R. Féraud, “Restarted Bayesian online
change-point detector achieves optimal detection delay,” in Int. Conf.

Mach. Learn. PMLR, 2020, pp. 211–221.

	Introduction
	Considered Detection Mechanisms
	CUSUM-based
	Non-parametric CUSUM
	Parametric CUSUM

	Bayesian-based

	Evaluation Methodology
	Experimental Results
	Conclusions
	Acknowledgments
	References

