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Abstract—Message Queuing Telemetry Transport (MQTT) is
an OASIS standard publish/subscribe protocol widely used for
Internet of Things (IoT) deployments since it provides efficient
many-to-many communications. IoT deployments may include
mobile devices leading to unstable and intermittent wireless
connections. MQTT relies on TCP and hence faces difficulties
with intermittent connectivity. In support of this challenging task,
Delay/Disruption Tolerant Networking (DTN) architecture han-
dles intermittent IoT communications; however, it is incompatible
with current IoT standards.

In this work, we combine the recently released MQTT version
5.0 and DTN into an integrated architecture for edge IoT nodes
to allow interoperability between continuously-connected MQTT
and partially-connected DTN devices while preserving MQTT
and DTN operations intact. The proof-of-concept results of
our prototype implementation revealed that our solutions allow
MQTT and DTN devices to stay interconnected under various
disruption patterns.

Index Terms—MQTT, DTN, IoT, Edge Architecture

I. INTRODUCTION

As the number of Internet of Things (IoT) devices in-
creases, IoT technology rapidly evolves and becomes increas-
ingly ubiquitous. Modern IoT deployments encompass various
device types, including stationary sensors, battery-powered
mobile nodes, and high-end edge nodes. This diverse set of
devices extends coverage, enhances resilience, and provides
additional computing resources. For instance, in air quality
monitoring applications, stationary sensors are used for long-
term observations at strategic locations, mobile devices such
as drones are deployed to capture temporary measurements in
inaccessible areas and achieve broader coverage, and edge sta-
tions are utilized to aggregate, store, and process the collected
data locally, see [1].

Communication-wise, conventional IoT protocols should be
adapted to those advances and interoperate with all types of
IoT devices. Message Queuing Telemetry Transport (MQTT)
is practically becoming the de-facto standard IoT protocol,
featuring a publish/subscribe communication scheme and a
lightweight design. However, MQTT relies on TCP for data
transmission. Thus, it cannot operate efficiently upon disrup-
tions or prolonged delays [2]. The recently released MQTT
version 5.0 brings novel features and is intensively investigated
for performance and flexibility improvements [3], [4].

Delay/Disruption Tolerant Networking (DTN) [5] is a store-
carry-and-forward architecture explicitly designed for intermit-
tent and delayed communications. DTN enhances the perfor-
mance and reliability of partially-connected IoT networks [6]
but is not interoperable with other IoT standards. Therefore,
combining DTN with conventional IoT protocols calls for
adjustments [7], [8].

In this work, we fill these gaps by introducing a combined
MQTT 5.0 and DTN architecture for edge IoT nodes that al-
lows interoperability between continuously-connected MQTT
and partially-connected DTN devices. This is accomplished
through an MQTT-DTN gateway design, which is the fun-
damental element of our solution. The MQTT-DTN gateway
operations are supported by an inter-protocol communication
scheme that extends the MQTT 5.0 user properties field
and adjusts accordingly the DTN bundle payload. Since the
proposed solution keeps MQTT 5.0 and DTN protocols intact,
it allows backward compatibility with MQTT 5.0 and DTN
nodes that do not adopt our scheme.

This work’s contribution lies precisely in the design of
a combined MQTT 5.0 and DTN architecture for edge IoT
nodes. It enables the interconnection of continuously and
partially connected IoT devices while keeping MQTT 5.0
and DTN operations intact. We provide a proof-of-concept
evaluation of a prototype implementation to demonstrate the
architecture’s communication dynamics.

The results revealed that our architecture could seamlessly
operate under various disruption periods, allowing MQTT
and DTN devices to stay interconnected even in extreme
conditions.

The paper is organized as follows. In Sections II and III,
we discuss related works in combining MQTT and DTN
protocols and provide background information of these two
technologies, respectively. Section IV presents the architecture
of our combined MQTT 5.0 and DTN solution for edge IoT
nodes, including the MQTT-DTN gateway operations. The
evaluation results are presented and analyzed in Section V.
Finally, we provide conclusions and discuss future work in
Section VI.



(a) Producer mobility.

(b) Consumer mobility.

(c) Producer/Consumer mobility.

Fig. 1: Motivating scenarios

II. RELATED WORK

Recent works consider using the MQTT 5.0 user properties
field to enhance the flexibility of IoT solutions in several di-
rections. In [3], authors introduced an MQTT 5.0 geo-location
extension using the user properties field. Their proposed
design simplifies the integration of location-aware applications
without damaging interoperability with other MQTT versions.
In [4], authors introduced an Over-the-Air (OTA) updating
architecture based on MQTT 5.0, focusing on end-to-end secu-
rity support. As in the aforementioned MQTT 5.0 solutions,
we also utilize the user properties field for keeping MQTT
5.0 protocol intact. However, our primary objective differs
significantly, as we target interoperability between MQTT and
DTN devices.

MQTT and DTN have been combined in various research
works toward improving the reliability of conventional IoT
networks. Authors in [7] and [9] introduced similar MQTT-
DTN architectures for interconnection and Fog Computing
support of remote MQTT deployments. These functionalities
are supported through appropriate MQTT topic and DTN
endpoint naming schemes. Compared to these works, our
solution focuses on the interoperability between MQTT and
DTN devices, follows an edge-based approach, and allows for
flexible inter-protocol communications based on MQTT 5.0
extensions and DTN bundle payload adjustments.

Another group of studies combines MQTT for Sensor
Networks (MQTT-SN) and DTN [8], [10]. The work in [10]
involves a novel design that focuses primarily on reliability
improvements of MQTT-SN via DTN; not on their inter-
operability. Authors in [8] propose an MQTT convergence
layer adapter to DTN, allowing for cross-layer interactions.

Compared to [8], our architecture handles these protocols inde-
pendently but instead, facilitates the interoperability between
MQTT and DTN devices through the MQTT-DTN Gateway.

III. BACKGROUND

MQTT is a communication protocol that dominates the
IoT research and industry area, thanks to its tiny footprint
and publish/subscribe communication principles. The core
MQTT functionality resides on the broker, a central node that
collects messages on specific topics from MQTT publishers
and forwards them to all corresponding subscribers.

MQTT was developed by IBM in 1999 and since then has
been around in many variants (e.g., MQTT version 3.1 and
3.1.1). In 2019, MQTT 5.0 was introduced as a new OASIS
standard. MQTT 5.0 encompasses many novel features, such
as user properties, request/response support, and scalability
enhancements, paving the way for more revised and flexible
designs and use cases [3].

Delay/Disruption Tolerant Networking (DTN) is a net-
working architecture designed for challenging environments
with intermittent connectivity and long delays. It employs
store-and-forward communication, allowing messages to be
forwarded opportunistically when a connection becomes avail-
able. DTN is particularly useful in remote areas, disaster-
stricken regions, and space missions. It supports various proto-
cols and provides message routing, fragmentation, and conges-
tion control mechanisms. In the last decade, DTN architecture
[5], [11] has been rising, and its applicability is extended
besides space communications [12] to challenging terrestrial
networks (such as opportunistic, ad hoc and sensor networks
[6]). DTN architecture is based on the bundle protocol that
follows a store-carry-and-forward approach to address issues
of prolonged delays and intermittent connectivity [13]. This
architecture provides remarkable benefits for disruptive IoT
networks, and therefore, its combination with IoT standards is
largely investigated [7], [8], [10].

IV. ARCHITECTURE

A combination of MQTT and DTN protocols produces
additional functionality that allows for more complicated IoT
scenarios. Our research focuses on devising an edge archi-
tecture that accommodates different communication patterns,
as illustrated in Figure 1. The first scenario, depicted in
Figure 1a, involves MQTT-enabled devices retrieving sensor
measurements from intermittently-connected producers. These
devices act as consumers and rely on MQTT to receive data
from the producers. Conversely, Figure 1b portrays the reverse
scenario, where intermittently-connected consumers receive
sensor measurements from MQTT-enabled devices acting as
producers. This bidirectional communication pattern allows
for data exchange between devices with different connectivity
characteristics. Moreover, our primary objective is to design
an edge architecture that can effectively handle consumer
and producer mobility, as shown in Figure 1c. This scenario
considers the mobility of devices that may alternate between



Fig. 2: Proposed architecture.

producing and consuming data, requiring seamless interop-
erability between MQTT and DTN protocols. By addressing
these diverse communication scenarios, our research aims to
enhance the versatility and robustness of IoT deployments at
the edge.

The overall architecture is illustrated in Figure 2. The
basic functionality of our solution is based on the edge
node, which centrally collects data from MQTT and DTN
devices and enables their interoperability. The edge node
includes three main components: (i) the MQTT broker; (ii)
the DTN daemon; and (iii) the MQTT-DTN Gateway. The
edge node also supports local services, such as databases,
monitoring, and streaming applications, often employed in
edge IoT deployments. The MQTT broker collects IoT mea-
surements from MQTT publishers and forwards messages to
subscribers. The DTN daemon enables communication with
intermittently-connected DTN devices. Thanks to these two
components, the edge node can seamlessly retrieve data from
continuously and intermittently connected IoT devices. In this
manner, local edge services are able to aggregate IoT data
generated from MQTT and DTN devices, through the MQTT-
DTN gateway. The MQTT-DTN gateway component is our
solution’s fundamental element since it enables inter-protocol
communications. In the following subsection, we elaborate on
its supported operations.

A. MQTT-DTN Gateway Operations

The MQTT-DTN gateway communicates locally with the
MQTT broker and the DTN daemon and processes each
received MQTT message and DTN bundle individually. These
messages and bundles contain additional information to enable
the corresponding gateway functionality, as will be detailed
in the following paragraphs. We assume that the employed

edge services and the DTN endpoints are “known” by the
IoT devices (e.g., through edge node advertisements or OTA
firmware updates). Thus, according to the specified field(s) of
each message/bundle, the MQTT-DTN gateway can: (i) trans-
late MQTT publish messages to equivalent DTN bundles; (ii)
translate DTN bundles that contain produced measurements to
equivalent MQTT publish messages; (iii) forward the collected
data to the specified application(s).

A main requirement of our solution is to interconnect
MQTT and DTN-enabled IoT devices without sacrificing
each protocol’s back-compatibility. Therefore, we consider a
flexible and transparent inter-protocol communication scheme
that extends the MQTT 5.0 user properties field and adjusts the
DTN bundle payload accordingly. This scheme is incorporated
in each published message and bundle. The structure of this
scheme is illustrated in Figure 2 and contains three main
sections:

• Device and measurement-specific information: These in-
clude the timestamp and device id fields that indicate the
exact time and the device that produced the original data.

• Application(s) selection: The app field indicates the ap-
plication(s) that this content should be provided (e.g., a
database or a stream process).

• Forwarding Destination(s): The dst field defines the des-
tination(s) that this content should be forwarded.

In Figure 2, we present two relevant examples to illustrate
our architecture’s functionality and communication diversity
in detail. In step 1⃝, the MQTT device publishes a message to
the edge node attempting to forward the contained humidity
measurement: (i) to a database (app1) and a stream application
(app2) running at the edge node (dst1); and (ii) to the specified
DTN node (dst2). The MQTT-DTN gateway receives the
MQTT message, forwards the humidity measurement to the



specified edge applications, converts it to an equivalent bundle
and forwards it to dtn://mobile/humidity, as shown in step 2⃝1.

The reverse scenario is shown in step 3⃝, where a bundle
containing a temperature measurement produced from the
DTN node is sent to the edge node. As in the previous
example, the MQTT-DTN gateway forwards this measurement
to the corresponding edge applications, creates the equivalent
MQTT message, and publishes it to the MQTT broker (dst2).
Then, the MQTT publish message is forwarded from the
broker to all the MQTT devices subscribed to this topic, as
shown in step 4⃝.

V. EVALUATION

To evaluate and study the dynamics of our approach, we
conducted proof-of-concept experiments with our prototype
implementation. To fully reflect the communication diversity
of our architecture, we consider a scenario that involves a
continuously-connected MQTT producer/consumer device, an
intermittently-connected DTN producer/consumer device, and
the edge node, as shown in Figure 2.

The following subsections present the experiment setup, the
considered metrics, and the experimental results.

A. Experiment Setup

We supposed an MQTT device publishing humidity sen-
sor measurements to the humidity topic and subscribed to
the temperature topic. The DTN device sends temperature
measurements to the destination Endpoint Identifier (EID)
dtn://edge/temperature and receives humidity measurements at
the dtn://mobile/humidity EID. In this manner, the MQTT top-
ics and application endpoint identifiers are correctly combined.
The edge node receives the produced measurements, stores the
specified data in a local database (using sqlite3), and translates
MQTT packets to Bundles and vice-versa.

TABLE I: Experiment Parameters

Parameter Value
Bandwidth 1 Mbps
Propagation delay 20 ms
Disruption duration [1, 5, 10, 60, 300] sec
Connection duration 10 sec
Number of connections/disconnections 5
Number of experiment iterations 10
Publishing rate 1 msg/sec

We designed a prototype implementation of the edge node
to validate the feasibility of our solution. We emulated the
described scenario on a single machine (featuring an Intel
Core i5200U CPU and 8 GB of RAM). All the nodes are
implemented using standalone Docker containers. Specifically,
the containers used for the MQTT and DTN devices utilize
the Eclipse Paho MQTT Python client library and the IBR-
DTN implementation, respectively. The edge node container
runs our prototype edge implementation. Specifically, we

1In case that the DTN IoT device supported app1 and app2, the measure-
ment could reach these services too. However, for simplicity, we consider that
the MQTT and DTN IoT devices are not running any services.

developed a Docker container based on ubuntu 14.04 image
and installed the IBR-DTN [14] (version 1.0.1) and Mosquitto
broker (version 1.6.3) implementations for running DTN and
MQTT, respectively.

We implemented the MQTT-DTN gateway functionality in
Python. We utilized the dtnsend and dtnrecv tools of IBR-DTN
to send and receive DTN bundles. Also, we utilized the paho
client library to connect to the local broker, publish MQTT
5.0 messages and subscribe to topics.

Although the edge node could support various services, for
simplicity, we installed and utilized only an sqlite3 database
to store the specified data to support our architecture’s basic
and fundamental functionalities.

Communication of the standalone containers is accom-
plished through a bridge network2. In addition, we utilized
the Linux traffic control (tc) tool to emulate realistic link char-
acteristics (i.e., set the bandwidth to 1 Mbps and propagation
delay to 20 msec) as well as to intermittently connect the DTN
device (i.e., by alternating between 0 and 100% packet loss).

In all the experiments, the DTN IoT device repeats a cycle
of 5 disconnections and connections with the edge node.
Specifically, it is connected for 10 seconds and disconnected
for a specific disruption duration. To investigate the archi-
tecture performance in distinct communication conditions,
we conducted a set of 5 different experiments for varying
disruption duration values (i.e., [1, 5, 10, 60, 300] seconds). To
ensure statistically valid results, we conducted ten iterations
of each experiment.

We configured both IoT devices to publish content to
the edge node with a 1 message/second rate. To thoroughly
investigate the dynamics of our approach, each published
message/bundle has two destinations: the edge node and the
other IoT device, as shown in the example of Figure 2. Thus,
after the reception of a publish message/bundle, the edge
node stores the payload in its local database and forwards the
equivalent bundle/message to the other specified destination.
Table I summarizes the main experiment parameters.

B. Metrics

We consider the following metrics:
• Delay: Corresponds to the time elapsed from the gener-

ation of the publish message/bundle until the reception
of this measurement by the specified destination. Since
each publish message/bundle has two distinct destinations
(i.e., the edge node and the incompatible IoT node) it
is necessary to study independently the delay of each
approach. Therefore we consider the following cases: (i)
DME , is the time elapsed from the generation of the
publish message until the reception of this measurement
by the specified edge application; (ii) DMD, is the time
elapsed from the generation of the publish message until
the reception of this measurement by the specified DTN
device; (iii) DDE , is the time elapsed from the generation
of the bundle that encapsulates the sensor measurement

2See: https://docs.docker.com/network/bridge/. Last accessed: 1st Jun 2023



(a) Delay values. (b) Delivery Ratio (DR) values.

Fig. 3: Experimental results for different disruption duration.

Fig. 4: Generated MQTT and DTN traffic per second.

until the reception of this measurement by the specified
edge application; and (iv) DDM , is the time elapsed from
the generation of the bundle that encapsulates the sensor
measurement until the reception of this measurement by
the MQTT subscriber.

• Delivery Ratio (DR): Corresponds to the ratio between
the delivered and the sent messages/bundles. Like Delay,
we consider the DRME , DRMD, DRDE amd DRDM

metrics for each particular case.
• Communicated KBytes: In such dynamic conditions, it

is crucial to measure the generated traffic of MQTT
and DTN communications and investigate their mutual
influence.

Delay and Delivery Ratio metrics are measured at the
receiver of each message/bundle using the timestamp field.
Communicated Kbytes are calculated using wireshark.

C. Results

The results of our experiments are illustrated in Figures 3
and 4. In Figure 3a we present the average values of DDE ,
DDM , DMD and DME for varying disruption duration values.
In all cases, DME shows a stable performance (around 28
msec) irrespective of the disruption duration. This is justified
because the MQTT publisher is continuously connected with
the edge node.

In contrast, DMD shows increased values compared to
DME since each message is first published to the edge broker,

stored in the local database, converted to an equivalent bundle,
and finally forwarded to the intermittently-connected DTN
node. Delays DDE and DDM are showing non-linear growth
beyond 10 seconds disruptions, compared to DMD. This
results from the transient contacts that hinder the exchange
of the increased DTN traffic. The slight difference between
DDE and DDM is attributed to the additional delay after the
bundle reception from the edge node.

In Figure 3b, we present the average values of DRDE ,
DRDM , DRMD and DRME for varying disruption duration
values. DRME shows increased values in each case (almost
100%) as it concerns the reliable part of our network. Al-
though DRMD is progressively reduced, it shows adequate
values. This means that the communication of MQTT devices
with intermittently-connected DTN devices is successfully
supported.

DRDE and DRDM are significantly reduced as the dis-
ruption duration increases (reaching to 61% and 21% in the
300 seconds disruption, respectively). The limited contact
duration and the growing number of produced bundles and
messages cause this. Note that the Delivery Ratio, in our case,
is measured at the end of each experiment. Thus, the decrease
in Delivery Ratio does not mean that bundles have been lost,
but instead, they are permanently stored at the DTN layer and
could be delivered at any upcoming connection.

Figure 4 shows the Communicated Kbytes of MQTT and
DTN during each experiment. In case of 1 seconds disruptions,
DTN traffic is slightly smaller than the produced MQTT traffic
since disconnections are short.

For longer disruptions, we observe that DTN communica-
tions occur in bursts at the start of each connection. This
is because, during connection establishment, the DTN node
forwards all the bundles produced through the disruption
period, and the edge node forwards all the MQTT-equivalent
bundles. Consequently, more significant disruptions are caus-
ing increased traffic volume exchange during contacts. This
limitation causes the average DDE and DDM values to out-
reach the disruption period since some bundles are forwarded
at the following contact.



VI. CONCLUSIONS AND FUTURE WORK

We presented a combined MQTT 5.0 and DTN architecture
for edge IoT nodes that enables interoperability between
continuously-connected MQTT and partially-connected DTN
devices. This architecture provides high communication flexi-
bility, supports mobility and preserves backward compatibility
with MQTT 5.0 and DTN protocols.

Our study comprehensively evaluated our MQTT-DTN com-
bined architecture for edge IoT nodes. The experimental
results provided valuable insights about the performance and
behavior of the system under varying disruption durations. The
stable performance of continuously-connected MQTT devices
underscores their reliability, while intermittently-connected
DTN devices exhibit increased delays due to transient contacts
and higher traffic volumes. The high delivery ratios achieved
between MQTT and DTN devices demonstrate successful
communication. However, longer disruptions lead to decreased
delivery ratios, revealing the challenges of intermittent connec-
tivity. These findings contribute to a deeper understanding of
the architecture’s capabilities and limitations, providing valu-
able insights for further optimization and refinement. Overall,
our proposed architecture shows promise in enabling interop-
erability between MQTT and DTN in edge IoT deployments.

As a future work we will focus on design extensions of our
architecture to further improve the reliability and performance
of intermittently-connected IoT networks, such as [13], [15].
Also, we plan to expand our architecture towards supporting
distributed MQTT broker communications in remote IoT de-
ployments. Another future direction includes the performance
assessment of our architecture in large-scale and real-world
environments.
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