
The impact of chunk size on
Named Data Networking performance

Christos Natsis†, Christos-Alexandros Sarros†, Vassilis Tsaoussidis∗†
∗ Athena Research and Innovation Center

† Electrical and Computer Engineering Dept.
Democritus University of Thrace

{chrinats, csarros, vtsaousi}(at)ee.duth.gr

Abstract—Internet usage has evolved during the years towards
accessing content, regardless of its location. The Named Data
Networking architecture was designed to satisfy that need and
replace today’s host-centric TCP/IP stack by placing named
content at the core of the architecture. In this paper, we provide
the first evaluation specifically targeting the impact of packet
size in NDN performance. Our results show the impact of chunk
sizes is far from negligible; it clearly affects NDN performance
as measured by metrics such as throughput, delay, cache hits
and cache entry lifetime. Attention should, therefore, be given to
the selection of an appropriate chunk size in NDN deployments.

Index Terms—Information-Centric Networking, Named Data
Networking, ICN, NDN, network performance

I. INTRODUCTION

The current TCP/IP Internet architecture was designed to
meet the needs of a different era, which focused on the
interconnection of fixed hosts. However, technological ad-
vancements led to the huge expansion of the Internet and
a shift of its main use towards content dissemination and
retrieval.

This led to new network architectures, such as Named Data
Networking (NDN) [12], the origins of which can be traced
back to the Information-Centric Networking (ICN) paradigm
[9]. Although previous studies have, so far, evaluated various
aspects of the NDN architecture, little attention has been given
to the impact of packet size on NDN performance. In this
paper, we aim to close this gap by conducting experiments
specifically focused in this aspect.

Current packet size distributions on the Internet are concen-
trated around 2 main sizes (40KB and 1500 KB), according to
previous research [8]. NDN traffic in large scale deployments
may follow similar characteristics, as clusters of Interests and
Data packets (which vary largely in size) are expected around
their respective typical sizes. Data packets are typically larger
than Interests, as they introduce a bigger overhead (even more
than TCP/IP [1]) and carry more payload information; they
are therefore responsible for most of the NDN traffic volume.
Interest packets also yield less network traffic due to the
NDN Interest suppression mechanism, which results in similar

This research was partly funded by the Greek State Scholarships Foun-
dation (IKY) action “Supporting human research resources through doctoral
research”, Operational Programme “Developing Human Resources, Education
and Lifelong Learning”, 2014–2020

Interests arriving from different sources being aggregated at
routers. Therefore, we focus this study on Data packets and
their respective chunk size.

The maximum packet size in NDN is currently, by de-
fault, 8800KBs1. This may be sufficient for supporting typ-
ical traffic, however larger chunk sizes might be useful in
certain circumstances. For instance, NDN deployments over
Delay/Disruption-Tolerant Networks (DTNs) [4] may benefit
from an increased packet size in order to decrease the total
number of chunks needed to retrieve some content.

A decreased number of chunks means that fewer Inter-
ests need to be sent by the consumer, something especially
desirable in such network conditions. First, more chunks
will cause more PIT entries and significantly larger memory
consumption, as those entries are expected to stay in the
PIT for long periods of time (as DTNs involve delays in
the orders of minutes or hours). Secondly, a consumer in a
delay-/disruption- tolerant environment benefits greatly from
requesting multiple chunks at a parallel fashion, as additional
round trips of sequential requests and responses are very
costly in these circumstances, incurring large additional delays.
Therefore, the ability to encapsulate a object content into a
single Data packet which can be retrieved by sending a single
Interest, can make a large overall difference. Lastly, splitting
a content object into several chunks which are encapsulated
into different DTN bundles, increases the chance that a single
chunk may be lost (as delivery is not guaranteed in DTNs).
In some cases, this would mean that the whole content may
be rendered useless. An example is service-centric networking
over DTN [5], in which case the service cannot be executed
unless the entire docker container has been transferred. All of
the aforementioned problems may be alleviated by increasing
NDN’s default chunk size.

As larger sizes might also be desirable in other deployments,
we focus this study on the impact of an increased chunk
size and target more typical, fixed network deployments. We
shed light on its effect on several network metrics such as
Throughput, Delay, Cache Hit Ratio and Cache Entry Lifetime.
In the rest of the sections, we present previous work on the
subject, our methodology and the results of our experiments.

1https://github.com/named-data/ndn-cxx/blob/master/ndn-
cxx/encoding/tlv.hpp



II. RELATED WORK

No previous peer-reviewed work has, to the best of our
knowledge, specifically studied the influence of packet size on
NDN performance. Most relevant results are scattered across
several, unrelated, papers that focus on other primary targets.

The authors of [1] model the impact of different payload
sizes to find the optimal chunk size. They develop a model
linking chunk size, loss rate and Goodput-to-Throughput ratio
(G2T) and subsequently develop a mechanism aiming to
dynamically adjust the chunk size depending on the link
loss ratio to achieve the optimum G2T. Their model and
simulations indicate that, when NDN operates over lossless
links or reliable lower-level protocols, greater chunk sizes
result in better performance (with respect to G2T). When NDN
is deployed over lossy links or unreliable lower-level protocols,
there exists an optimum chunk size which depends on the
loss rate - either too small or too large chunk sizes can cause
G2T to degrade. However, the authors do not include other
metrics in their evaluation (such as delay or cache hit ratio,
on which chunk size can also have an effect). Another report
[10] which analyzed the contribution of different NDN param-
eters (Content Store Capacity, Content Name Length, Packet
Size, Content Diversity) to the overall network throughput,
concluded that packet size had the largest impact on system
performance.

In paper [11], experiments were conducted with variable
NDN packet size for two different scenarios (caching/non-
caching). 32 and 16 client-server pairs were used for traffic
generation, respectively, and the throughput was measured for
different Data payload sizes. Their results showed that, for
larger packet sizes, throughput increased. However, in their
experiments packet rates were the same for all payload sizes,
contrary to our setup in which they were adjusted. Therefore,
the fact that data rates were increasing while payload size
increased was of no surprise. Of relevance to our work is the
fact that the peak throughput achieved in the ’all packet shared’
scenario (caching-enabled), was not only much bigger than
the no-caching scenario, but that the difference between the
peak throughput achieved by smaller packet sizes and the one
achieved by larger ones, is more pronounced. This reinforces
the results in the present paper, where caching was included,
and correlates well with our findings.

Approaching the issue from a different angle, paper [2]
evaluates server-side NDN performance, focusing on the sig-
nature generation overhead on Data packets. The authors set
up four relevant experiments: In the first two, the receiver
cannot retrieve packets from cache; packet sizes were set to
1024, 2048, 4096 and 8192 octets. In the first experiment, Data
packets were generated using a simple SHA-256 hash and
packet throughput decreased from 9000 packets per second
(1024 payload size) to less than 8000 packets per second (for
the 8192 payload case), a change around the -10% mark. In the
second experiment an RSA digital signature was used; packet
throughput also decreased as the packet size increased, but the
decrease was much less noticeable. However, in both cases the

packet throughput decrease was more than counterbalanced by
the fact that the payload size was increasing, therefore the total
’byte throughput’ significantly increased when using bigger
payload sizes.

In the next two experiments, the authors evaluated the
NFD cache performance throughput - the Data packets were
received from client-side NFD cache in one experiment and
server-side cache, on the other. In both cases, the general trend
was that packet throughput decreased as payload size increased
(by around 5%), results which are consistent with the previous
experiments. Based on their results, the authors concluded that
the PIT and FIB lookup process on the client-side NFD has a
high price performance-wise.

The authors of [6] take a different approach. They do not
assume that Data packet sizes are known or predictable and
evaluate their proposed congestion control scheme by varying
the packet size during the simulations. Their results show that,
in their setup, when the Data chunk size suddenly increases,
the router queues fill up and consumers will experience a
temporary higher delay - proportional to the change in Data
size - before the congestion control algorithm reduces the
cwnd and the queue starts draining.

The authors of [3] measure the computation overhead of
authentication mechanisms for two different packet sizes: 1500
bytes and 9000 bytes (corresponding to the standard Ethernet
and the jumbo Ethernet MTU, respectively). Their results show
that bigger Data chunk sizes reduced the time during which the
data authentication credentials are prepared at the content pro-
ducer (’generation time’) for their manifestation mechanism.
This is explained by the fact that a single manifest could hold
more hashes and fewer manifests were needed, overall. Larger
Data chunk sizes also reduced the communication overhead
in some mechanisms, as the digital signature and hash values
introduce a smaller overhead on each Data packet.

Lastly, researchers in [7] focus on an IoT environment, in
which they experiment with two different Data sizes during
their evaluation of NDN-RIOT (100/196 bytes). When a packet
is fetched from the producer, both packet sizes result in a
similar Round Trip Time (280ms and 286ms, respectively).
The extra 6ms delay is attributed to the fact that the 196-
byte packet is fragmented into two pieces at the producer,
which is not the case for 100-byte packets. However, when the
consumer fetches data from its local cache, no fragmentation
is required for either packet size.

III. NDN OVERVIEW

The Named Data Networking architecture (NDN) is the
most prominent Information-Centric Networking (ICN) im-
plementation. It is a receiver-driven network layer protocol,
whose aim is to network named data. Human-readable content
names replace IP host addresses and form the centerpiece of
the architecture. Some of its main features include in-network
caching and name-based forwarding and routing.

Communication in NDN is performed using two types of
packets: Interest and Data packets. NDN Consumers initiate



communications by sending an Interest packet, which cor-
responds to a unique content object. The Interest packet is
forwarded to a Producer which can satisfy the Interest and the
Producer responds to the Interest with a Data packet containing
the requested content object. Data packets can be received
either from NDN Producers, or from intermediate caches (e.g.
router caches), if the Interest packet arrives at a node where
the requested content object has been previously cached.

To achieve the above, three main structures are used by
NDN: the Pending Interest Table (PIT), the Forwarding Inter-
est Base (FIB) and the Content Store (CS). The PIT contains
information about all the Interests that have been forwarded
but not been satisfied and their corresponding interfaces
(’faces’). The FIB contains forwarding information and is used
to forward Interests for certain prefixes towards faces that are
most likely to return the corresponding Data packets. The CS
serves as each node’s cache and stores the node’s received Data
packets according to the selected cache replacement policy.

IV. METHODOLOGY

In our experiments a dumbbell topology was deployed
consisting of 6 nodes: 2 Consumers, 2 Producers and 2
Routers. The Consumers were located on one side of the
network and connected to one Router, while the Producers are
located on the other side and connected to a different router;
the two routers are connected via a backbone link.

The Named Data Networking Simulator (ndnSIM) was used
for the experiments. The following simulator parameters were
used: Point-to-point interconnection (P2P) links were set up
between nodes and two scenarios were formed, depending
on the link bandwidth: ’Congestion-Free’ and ’Mild Conges-
tion’. In the ’Congestion-Free’ scenario, the Producer-Router
and Consumer-Router links were set at 40 Mbps, while the
backbone link (Rtr1-Rtr2) was set to 160Mbps. In the ’Mild
Congestion’ scenario, the backbone bandwidth was reduced to
60 Mbps while the other ones remained at 40Mbps.

The propagation delay on all P2P links was set at 10ms and
kept constant throughout the experiments, while the cache size
was set at 1000 content objects on each node, regardless of the
size of each object. The ConsumerZipf application was used
for Interest generation; the number different content names that
could be selected by the application was set to 2000. Finally,
the simulation time was set to 30 seconds.

During the simulations, we gradually increased the Data
chunk size. To account for the payload increase, each time the
chunk size was doubled, the application’s Interest generation
rate was halved. Thus, the total volume of data sent in all
experiments was the same; this way we factored out the
impact of payload size on network throughput. For each one
of the different chunk size values, we repeated the experiment
using a different cache replacement policy and compared
their results against each other. Overall, the following cache
replacement policies were used: First In First Out (FIFO),
Least Frequently Used (LFU), Least Recently Used (LRU),
and Random Replacement (RANDOM).

Packet Size [KB] Interests [per second]
5 900

10 450
20 225
40 112
80 56
120 42
160 28

TABLE I
CHUNK SIZE-INTEREST RATE CORRELATION

To assess performance, we use the following metrics:
Throughput, Delay, Cache Hit Ratio, Cache Entries Lifetime
(more specifically, their average values). Measurements re-
garding the first and last metrics were taken in the consumer-
side Router, while the rest were taken in the consumer nodes.

V. RESULTS

In this section, we present the results of our experiments.
In each figure, we use a different metric to assess different
aspects of NDN performance. Our overall goal is to assess
the impact of various Data chunk sizes on different aspects
of NDN performance. In all experiments, content requests
by the Consumers follow a Zipf-Mandelbrot distribution to
approximate real-world user behaviour.

A. Cache Hit Ratio

In Figure 1, each consumer’s average Cache Hit Ratio can
be observed with respect to different Data packet sizes. Based
on the figure, we can infer that larger Data packet sizes
incur a lower Cache Hit Ratio. This holds true in all cases,
regardless of the cache replacement policy being chosen.The
aforementioned results can be explained by the fact that our
experiments run until a fixed amount of data was retrieved
(i.e. 4.5 MB of data). Therefore, increasing the Data chunk
size meant that less Interests had to be sent to retrieve the
specified amount of data. Less Interests meant that less Data
packets were returned which, in turn, meant less overall cache
entries during the experiment. For instance, 900 Interests were
sent overall in the case of 5 KB packet size, while only 28
Interests were sent in the case of 160 KB packet size. This
meant that, e.g. for 5KB packets, when the last Interest of
each sub-experiment was received by the cache, there were
up to 899 entries stored in the Content Store. Those 899
entries could potentially satisfy the Interest, while in the case
of 160KB packet size there were only 27 entries. Therefore,
self-evidently, the chance that a subsequent Interest could be
answered by previously-received content that was stored in
the cache, was less for bigger chunk sizes, which eventually
resulted in a lower cache hit ratio.

What can also be inferred by Figure 1, is the fact that setting
the right cache replacement policies seems to make more
of a difference (with respect to the Cache Hit Ratio) when
using smaller Data packet sizes, up to 40 KB. In this range,
RANDOM replacement yields the worst results, while LFU
replacement yields the best ones. However, when increasing
the packet size to 80-160 KB, the difference seems to be



Fig. 1. Average Cache Hit Ratio (left: no congestion, right: mild congestion)

minimized and choosing a more sophisticated policy over
random replacement seems to make less of a difference.

B. Average Cache Entries Lifetime

In Figure 2, the Cache Entries Lifetime can be observed,
with respect to different Data packet sizes. On the left side,
the results regarding Scenario 1 (no-congestion) are depicted
while on the right side, the results regarding Scenario 2 (mild
congestion) are depicted. In both cases, there is a notable
difference between using a random cache replacement policy
and using more sophisticated ones, as cache entries stay
significantly longer in the Content Store when using either
LRU, LFU or FIFO (an 100% increase can be observed when
compared to the time measured for the RANDOM policy).

Furthermore, it also holds true in this case that the difference
between LRU, LFU and FIFO policies is more pronounced
when using smaller packet sizes, with the LFU policy out-
performing the rest. Again, as packet sizes increase, the per-
formance difference between the caching policies decreases,
as was the case concerning the Cache Hit Ratio metric.

Of note are also two things: a) the fact that the entry
lifetimes do not differ significantly between Scenario 1 and

Scenario 2 when using the same packet size and b) the fact
that the entry lifetimes increase as packet sizes increase. This
can be explained by the same cause as the one described in
the previous sub-section: in our setup, larger Data sizes mean
that fewer packets are being transmitted in an experiment.
Therefore, there is less need for replacing the cache entries
during the simulation, resulting in larger lifetimes for each
entry.

C. Average Throughput

In Figure 3, the average throughput can be observed with
respect to the two scenarios. While there is no significant
difference for packet sizes up to 80 KB, a deviation from the
previous trend can be seen for 120 KB and 160 KB packet
sizes. When using these sizes, the throughput is markedly
larger in the non-congested case. It can therefore be inferred
that deployments that use larger packet sizes might be more
susceptible to the effects of congestion that the ones using
smaller Data packets, resulting in degraded performance.

Of note is also the fact that, once again, the performance
difference between the various caching policies is more pro-
nounced for smaller packet sizes. For packet sizes larger than



Fig. 2. Cache Entries Lifetime (left: no congestion, right: mild congestion)

Fig. 3. Throughput (left: no congestion, right: mild congestion)

80 KB, the performance is the same regardless of the cache
replacement policy being chosen. In the smallest range of
packet sizes (5-40 KB), FIFO outperforms the rest of the
policies with respect to the average throughput being achieved.
The worst performance is, counter-intuitively, achieved not by
random replacement but by LFU. Lastly, we can infer that
larger packet sizes result in increased average throughput.
More specifically, increasing the packet size from 5 to 120
KB (24 times), results in a throughput increase ranging from
1.6 (FIFO, congestion) to 3.5 times (LFU, no congestion).

D. Delay

In Figure 4, the average packet delay for each packet
size is being shown. The average delay per packet increases
when experimenting with larger packet sizes. This is to be
expected, as larger packet sizes incur larger processing delays
in intermediate routers and consumers. Furthermore, we can
once more notice the fact that the performance of the different
cache replacement policies converges for larger packet sizes.

For smaller packet sizes, LFU performs better (smaller delays)
while FIFO performs the worst (larger delays).

Furthermore, there is a notable difference regarding the
average delays between the non-congested and congested
scenario, which is more pronounced for larger packet sizes. For
the 160KB case, we can see the average delay doubles when
congestion is incurred (Scenario 2), when compared against
the corresponding average delay in Scenario 1.

VI. CONCLUSIONS

In this paper, we performed experiments to quantify the
impact of packet size on NDN performance. Our results
show that using larger chunk sizes is feasible, but offers
some trade-offs. For the same amount of data being retrieved,
bigger data chunks mean that cache replacement policies assert
less impact on network performance. Furthermore, network
throughput can increase, as bigger chunks entail less overhead
per chunk. However, the average delay also increases, due
to an increased processing overhead. Therefore, using bigger



Fig. 4. Average Delay (left: no congestion, right: mild congestion)

chunk sizes seems to be better suited for certain use cases,
such as bulk data transfers, while smaller chunk sizes seem to
be more suitable for delay-sensitive applications.

REFERENCES

[1] Xiaoke Jiang, Jun Bi, and Lifeng Lin. Modelling the optimum chunk
size for efficient communication over named data networking. Technical
report, Tsinghua University. http://netarchlab.tsinghua.edu.cn/∼shock/
optimum-chunksize.pdf (accessed July 2020).

[2] Xavier Marchal, Thibault Cholez, and Olivier Festor. Server-side per-
formance evaluation of ndn. In Proceedings of the 3rd ACM Conference
on Information-Centric Networking, ACM-ICN ’16, page 148–153, New
York, NY, USA, 2016. Association for Computing Machinery.

[3] T. Refaei, M. Horvath, M. Schumaker, and C. Hager. Data authentication
for ndn using hash chains. In 2015 IEEE Symposium on Computers and
Communication (ISCC), pages 982–987, 2015.

[4] C. Sarros, S. Diamantopoulos, S. Rene, I. Psaras, A. Lertsinsrubtavee,
C. Molina-Jimenez, P. Mendes, R. Sofia, A. Sathiaseelan, G. Pavlou,
J. Crowcroft, and V. Tsaoussidis. Connecting the edges: A universal,
mobile-centric, and opportunistic communications architecture. IEEE
Communications Magazine, 56(2):136–143, 2018.

[5] C. Sarros, A. Lertsinsrubtavee, C. Molina-Jimenez, K. Prasopoulos,
S. Diamantopoulos, D. Vardalis, and A. Sathiaseelan. Icn-based edge
service deployment in challenged networks. In Proceedings of the
4th ACM Conference on Information-Centric Networking, ICN ’17,
page 210–211, New York, NY, USA, 2017. Association for Computing
Machinery.

[6] Klaus Schneider, Cheng Yi, Beichuan Zhang, and Lixia Zhang. A
practical congestion control scheme for named data networking. In
Proceedings of the 3rd ACM Conference on Information-Centric Net-
working, ACM-ICN ’16, page 21–30, New York, NY, USA, 2016.
Association for Computing Machinery.

[7] Wentao Shang, Alex Afanasyev, and Lixia Zhang. The design and
implementation of the ndn protocol stack for riot-os. In 2016 IEEE
Globecom Workshops (GC Wkshps), pages 1–6. IEEE, 2016.

[8] Rishi Sinha, Christos Papadopoulos, and John Heidemann. Internet
packet size distributions: Some observations. USC/Information Sciences
Institute, Tech. Rep. ISI-TR-2007-643, pages 1536–1276, 2007.

[9] George Xylomenos, Christopher N Ververidis, Vasilios A Siris, Nikos
Fotiou, Christos Tsilopoulos, Xenofon Vasilakos, Konstantinos V Kat-
saros, and George C Polyzos. A survey of information-centric network-
ing research. IEEE communications surveys & tutorials, 16(2):1024–
1049, 2013.

[10] Haowei Yuan and Raj Jain. Performance measurement of content
distribution in named data networking. Technical report, Washington
University in St. Louis. https://www.cse.wustl.edu/∼jain/cse567-11/ftp/
ndn.pdf (accessed July 2020).

[11] Haowei Yuan, Tian Song, and Patrick Crowley. Scalable ndn forwarding:
Concepts, issues and principles. In 2012 21st International Conference
on computer communications and networks (ICCCN), pages 1–9. IEEE,
2012.

[12] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson,
KC Claffy, Patrick Crowley, Christos Papadopoulos, Lan Wang, and
Beichuan Zhang. Named data networking. ACM SIGCOMM Computer
Communication Review, 44(3):66–73, 2014.


