
I9-P0313 1

Abstract—The continuous increase of Internet users

worldwide, as well as the extensive need to support real-time

traffic and bulk data transfers simultaneously, has directed

research towards Service Differentiation schemes. These schemes

either propose techniques that provide users with the necessary

quality guarantees or follow a “better-than-best-effort” approach

to satisfy broadly the varying needs of different applications. We

depart from our new service principle called Less Impact Better

Service (LIBS) and propose a novel Service Differentiation

method, namely Size-oriented Dropping Policies, which uses

packet size to categorize time-sensitive from delay-tolerant flows

and prioritize packet dropping probability, accordingly. Unlike

existing proposals, the distinction of flows is dynamic and the

notion of packet size is abstract and comparative; a packet size is

judged as a unit within a dynamic sample space, that is, current

queue occupancy. We evaluate Size-oriented Dropping Policies

both analytically and experimentally; we observe a significant

increase on the perceived quality of real-time applications. Delay-

sensitive flows increase their bandwidth share, to reach a state of

system fairness, regulating the dominant behavior of bulk-data

flows.

Index Terms—Active Queue Management, Fairness, Service

Differentiation

I. INTRODUCTION

HE diversity of Internet applications along with the

increased service expectations of modern Internet users

call for networks with diverse service capacity. Due to the

limited management capability of Internet flows on a user- or

application-oriented basis, services and requirements cannot

form a one-to-one corresponding relation; instead, they can

provide the distinctive input to a broader and abstract Service

Differentiation scheme. This allows for preserving the

distributed management structure of the Internet and satisfies

broadly user requirements as well. Hence, the real issue in

Quality of Service supportive schemes is their capability to

provide better service without increasing the management

complexity of the Internet and without damaging its main

S. Dimitriou is with Democritus University, 67100, Greece (phone: +30-

2541079556; fax: +30-2541079554; e-mail: sdimitr@ee.duth.gr).

A. Tsioliaridou is with Democritus University, 67100, Greece (e-mail:

atsiolia@ee.duth.gr).

V. Tsaoussidis is currently with the Massachusetts Institute of Technology

(e-mail: tsaoussi@mit.edu).

This work was funded by the European Commission and the project

PENED 2003 of GSRT.

properties, which is resource sharing, utilization efficiency and

system fairness.

The Size-oriented Dropping Policies (SDP) [12] scheme

that we propose, analyze and evaluate here promotes further a

class of services that we defined in [21] as Less Impact Better

Service (LIBS). The LIBS discipline imposes that traffic that

causes only minor delays should enjoy increased privileges

over the rest of the traffic and in this context, it defines a

delay-oriented (instead of throughput) metric of fairness. This

is a rather logical expectation in many aspects: one that feeds a

network with a few bytes cannot tolerate huge delays; a user

that transfers huge files is prepared to tolerate more delays; the

impact of network delay is crucial for real-time applications;

the impact of small delays on long-lasting applications may

even not be recognized by the user. LIBS relies on that last

idea, precisely: it exploits the time that is statistically

insignificant for delay tolerant applications to promote the

service of delay-intolerant application. Deploying LIBS

practically means that the transmission of a SYN message

should be favored at the expense of an FTP transmission.

LIBS philosophy can be implemented either by scheduling or

by dropping. One way to apply LIBS by scheduling is to favor

high priority packets and forward them to their destination,

immediately upon their arrival. The NCQ [20] algorithm,

which incorporated the LIBS discipline into packet scheduling,

promotes small packets in the queue and increases their

chances of successful arrival. NCQ and its ancestor, NCQ+

[23], distinguish traffic into non-congestive (small and tiny

packets) and congestive (big packets). Non-congestive data,

which includes VoIP and sensor traffic, is considered to have

small impact on contention and receives special service.

While LIBS was realized using scheduling disciplines, here

we exploit the possibility of realizing LIBS by differentiating

dropping policies. Furthermore, we also highlight the

possibility of combining both techniques, which are

complementary indeed.

SDP is implemented using the experience gained by the

RED scheme. Minimum and maximum thresholds define the

regions where unforced and forced dropping occurs. In

addition, SDP records the size of each incoming packet to

calculate an average packet size which serves temporarily as a

rough guide to differentiate small and big packets

comparatively and dynamically. Clearly, a comparative

distinction is vital for the efficiency of the proposed scheme:

Introducing Size-oriented Dropping Policies as

QoS-supportive Functions

Stylianos Dimitriou, Member, IEEE, Ageliki Tsioliaridou, and Vassilis Tsaoussidis, Senior Member,

IEEE

T

I9-P0313 2

whether or not the next arriving packet will be dropped will

depend on this average size. If the next packet exceeds the

average size, it will be dropped with the same probability as

imposed by RED. If, however, the next packet is smaller than

the average size, then its dropping probability will be smaller

and proportional to the packet size. This adaptive behavior of

SDP allows it to define traffic classes dynamically, depending

on the circumstances. We cannot characterize a given packet

as small or big in advance; SDP will decide how to classify it

based on recent arrival history.

So, does packet size suffice as a criterion to differentiate

application services? Small packets usually correspond to real-

time applications, such as VoIP or video streaming, whose

successful and timely delivery affects significantly the user-

perceived quality. Real-time data is sent over UDP or TCP-

friendly protocols; these are typically non-, or less-responsive

and may fail to satisfy the efficiency objective, let alone the

fairness objective [25]. On the other side, bulk-data

applications, such as FTP or BitTorrent [1], use big packets

and TCP. They are characterized by loss and delay tolerance

and their behavior is responsive; losses determine their

sending rate. A network that consists of both real-time and

bulk-data traffic exhibits inevitably service bias when

resources are exhausted: responsive flows can and will exploit

any available bandwidth, compelling unresponsive flows to a

small link share. In SDP gateways, small packets experience

less dropping than in RED, enforcing intentionally dynamic

reallocation of resources. Real-time applications are therefore

allowed to increase their sending rates up to some threshold

that guards prioritized operations within the confines of

fairness. How much priority should we grant to small flows?

As long as bulk-data transmissions dominate network

contention, we should promote time-sensitive applications;

when more real-time flows populate the network and their

service impact becomes significant on other flows, LIBS

services should be canceled.

SDP exhibits three main characteristics:

1. Dynamic Management. Packet classification is performed

on-the-fly and the network dynamics are reflected into the

classification per se. Static quantitative thresholds (e.g. fixed

packet sizes), or dubious qualitative criteria, such as the

underlying transport protocol, limit system flexibility,

including service requirements of future applications.

2. Cost-effective administration. SDP has trivial memory

and processor requirements. It is semi-stateless since it uses

only a single variable and the information needed from the

packet (i.e. size) is easily extractable.

3. Ease to deploy. Its simple design makes SDP easily

deployable. It does not require end-user modifications and its

algorithm can be easily integrated in routers functionality as a

policy furnishing.

During the experimental evaluation of our method, we

tested SDP in a wide spectrum of network topologies, using

various metrics; we compared it with Droptail, RED and

NCQ+. We show that SDP outperforms current

implementations without giving critical flows more resources

than their fair share. SDP not only increases system Fairness

but also Goodput and channel utilization.

The structure of the paper is as follows: In section 2 we

discuss the related work. In section 3, we present our

algorithm analytically and discuss its advantages over other

proposals. In section 4 we analyze the impact of SDP on

packet loss rate and queuing delay and in section 5 we

examine how SDP deters users from misbehaving with packet

fragmentation. In section 6, we describe our evaluation

methodology including the simulation setup and, in section 7,

the evaluation metrics. Sections 8 and 9 outline and analyze

the experimental evaluation of SDP. Finally section 10

outlines our conclusive remarks and future work.

II. RELATED WORK

Service differentiation has been developed on the basis of

resource reallocation in line with the corresponding service

requirements of diverse applications. Relevant applications are

those with strict delay, jitter or loss constraints, which can be

satisfied, typically, by prioritizing real-time data over bulk

data transfers. The DiffServ [2] approach enables prioritization

by relying on marking with corresponding service identifiers,

whereas the IntServ [4] approach reengineers the architecture

itself to allow for guarantees through signalling and

reservation. However, a significant number of proposals have

emerged on the basis of router enhancements in order to

support service differentiation without affecting the end-nodes.

Among those, the LIBS principle shares a common objective

and relies on common packet-oriented policies; however,

LIBS redefines fairness in terms of delay and the fair-share in

reverse terms of contribution to delay. The NCQ mechanism

[20], which deployed LIBS using a scheduling-oriented

approach, distinguishes packets into big packets that cause

significant delays and eventually inflict congestions

(congestive) and small packets that cause minor delays (non-

congestive). Non-congestive packets are prioritized in the

queue as long as their number does not exceed a threshold. In

turn, this threshold is adjusted in accord with the fairness

performance of participating flows. Although the concept is

generally known to networking and operating system

communities, the dynamic resource management techniques

within the framework of delay-oriented fairness has not been

previously analysed. NCQ, as a product of LIBS philosophy,

manages to increase fairness among congestive and non-

congestive applications.

Several dropping-oriented approaches exist that either

provide some service differentiation or manage resources

fairly and, occasionally, in an application-oriented manner.

Although they do not exhibit the same level of service

sophistication as NCQ and SDP, along with their primary

objectives, they also achieve some fundamental service

differentiation. In [14], Floyd and Fall introduced mechanisms

based on the identification of high bandwidth flows from the

drop-history of RED. In [7] the authors propose an explicit

I9-P0313 3

allocation of bandwidth to various flows based on their

respective needs and determine this allocation by modifying

accordingly the dropping probability. Unfortunately, both

these methods demand costly memory structures. Weighted

RED with Thresholds (WRT) [3] calculates a separate average

length for the higher-priority packets, preventing starvation for

the lower-priority traffic. Flow RED (FRED) [18] uses per-

active-flow accounting to impose on each flow a loss rate that

depends on the flow’s buffer use. Certainly, extended memory

and processor power is required for a large number of flows.

On the other hand, RED-PD (Preferential Dropping) [19]

maintains a state only for the high-bandwidth flows and drops

their packets more frequently than packets from low-

bandwidth flows. Still, increased number of flows require

memory-demanding approaches. Note that, unlike LIBS, in all

the above approaches, bandwidth is considered the scarce

resource and mechanisms are designed to manage bandwidth

allocation.

Fair Queuing [11] maintains equal queues for each flow and

in Weighted Fair Queuing the queues can have different

length. Core-Stateless Fair Queuing [24] uses two types of

routers; edge and core. Edge routers compute per-flow rate

estimates and label the packets with these estimates, whereas

core routers drop the packets probabilistically based on these

labels. Nevertheless, such techniques involve radical

modifications on the network’s structure. Finally, the CHOKe

mechanism [22] attempts to identify flows that heavily occupy

the bottleneck queue by matching every incoming packet

against a random packet in the queue and either drop both, if

they belong to the same flow, or accept them with a certain

probability. The accuracy, however, of this method remains an

open issue as it does not take account of real-time traffic.

III. SIZE-ORIENTED DROPPING POLICIES

A. Justification

Application layer protocols define the structure of a packet

as well as specific transport details of the traffic pattern that

will be followed by the respective flow. Probably, packet size

is the most typical and easy-to-extract indicator of the type of

the application that created the packet. The transmission delay

of a packet is proportional to its size and determines its

probability of being accepted successfully by the router. Small

packets are utilized by applications that require fast delivery

times, constant inter-arrival times, limited packet losses or by

applications that do not generate periodically great volumes of

data. This is not a product of coincidence or some negotiation;

real-time applications rely on sampling techniques for voice or

images and hence, packet generation and content is not really

an administrative issue. Beyond that, these applications

include real-time applications such as audio and, less often,

low bit-rate video streaming (VoIP and IPTV) or critical

applications, such as DNS and sensor monitoring. Due to the

demands of such applications, continuous packet losses usually

degrade severely their performance, distort the user-perceived

result or cause unnecessary retransmissions that limit the

lifetime of battery-powered devices.

On the other hand, big packets are preferred for bulk data

transfers as they are characterized by small overhead to

payload ratios. In such cases, we can tolerate small delays, as

long as the throughput remains greater than an acceptable

limit, which certainly may vary from application to application

or from user to user but also may vary depending on network

contention, time of the day, and end-to-end distance. Big

packets are mainly used by file sharing protocols such as FTP

or BitTorrent [1]. Dropping such packets affects the

application’s throughput, since the underlying transport

protocol (TCP) will detect the loss and respond; yet data

integrity will not be damaged as the packet will be recovered.

It is apparent that a protocol capable of categorizing flows

by the size of their packets will potentially provide Service

Differentiation. Yet, the characterization of the packet size is

(and should remain) flexible. In common networks, real-time

applications typically utilize packet sizes bellow 200B (for

example VoIP uses 140B packets) and bulk data applications

utilize 1KB packets. However, in the next few years as high-

speed networks will be further spread and new types of traffic

will emerge, it is difficult to predict how the correlation of

packet sizes will evolve. Thus, utilizing static thresholds for a

packet classification system, would impawn the algorithms

adaptability to future applications.

Other packet properties could serve as indicators to identify

packets as well, such as Type of Service, Source and

Destination Ports (determine the type of application), and

Time to Live. However, extracting these properties requires

costly packet inspection and large reference tables (for Ports),

which should be updated regularly and doesn't necessarily

guarantee better results.

B. The algorithm

Based on the previous reasoning, SDP uses packet size to

classify flows. However, this is not a fixed classification: SDP

keeps track of one variable, sdp_thresh, which is the moving

average of the incoming packets in the queue and which is

used to dynamically and comparatively classify big or small

packets
1
. If the size of the next arriving packet is greater than

sdp_thresh, then the packet is classified as big and will be

dropped with the same probability as imposed by the RED

algorithm. On the other hand, if the size is less than

sdp_thresh, then the packet is classified as small and the

dropping probability will be less than the RED probability and

is calculated based on sdp_thresh and the packet size (Fig. 1).

In Fig. 1, sdp_drop and red_drop are the dropping

probabilities of SDP and RED respectively, while pkt_size is

the size of the last packet entered the router. Fig. 1 depicts

graphically the following:

in case pkt_size<sdp_thresh:

threshsdp

sizepkt
dropreddropsdp

_

_
__ = (1)

1 Note that our work does not require two classes of service necessarily;

instead, packet classification may integrate more application categories.

I9-P0313 4

in case pkt_size≥sdp_thresh:

dropreddropsdp __ = (2)

finally sdp_thresh is calculated as follows:

() sizepktathreshsdpathreshsdp __1_ ⋅+⋅−= (3),

where the weight factor α can take small values, below 0.1,

that can capture router's state. During the initialization,

sdp_thresh is equal to the size of the first arriving packet.

Fig. 1. SDP dropping probability.

We demonstrate the pseudo-code for the SDP algorithm.

We consider a router that accepts packets noted as pkt. We use

the following variables and functions (Table 1);

TABLE 1

Pseudo-code variables and functions
NAME DESCRIPTION

size(pkt) returns the size of the packet pkt in bytes

red_drop the dropping probability of RED; computed elsewhere in the

code

rand(x,y) returns a random number between x and y

enqueue(pkt) enqueues the packet pkt in the queue

drop(pkt) drops the packet pkt from the queue

pkt_size=size(pkt)

sdp_thresh=0.9*sdp_thresh+0.1*pkt_size

if (sdp_thresh<pkt_size)

 then sdp_drop=red_drop*(pkt_size/sdp_thresh)

 else sdp_drop=red_drop

prop=rand(0,1)

if (prop<sdp_drop)

 then drop(pkt)

 else enqueue(pkt)

As we see, sdp_thresh depends more on the sizes of recently

arrived packets and less on the packets that have recently

departed - this renders sdp_thresh an implicit measure of the

network’s activity. Moreover, by giving equal priority to all

packet sizes above sdp_thresh, we manage to serve smaller

packets more effectively but still confine their service with the

bandwidth restriction of the fair share. We elaborate on SDP

functionality below, based on some selected scenarios.

C. Case studies

Managing effectively small packets

First consider a router mainly occupied by 1kB-packets

when a 100B packet arrives. Since sdp_thresh is near 1kB, the

probability of rejecting the last small packet is almost 90% less

than dropping any other big packet (see (1), (2)), thus we can

almost guarantee that this packet will be forwarded. After

some time, small packets start gradually populating the queue.

Sdp_thresh is decreased (see (3)) until small packets do not

enjoy the same privilege, since they now contribute to the

router contention.

Fair treatment for big packets

Next assume that the router serves mainly 100B-packets and

a 1kB packet arrives. According to (2), this last big packet will

have the same priority as the smaller ones, since sdp_thresh is

near 100B. Although this might seem absurd, due to the

predominance of small flows, the buffer space occupied by a

sole big packet will cause only a small additional queuing

delay, compared to the total. Dropping this packet will have a

significant negative impact on its generating flow, but only a

minor positive impact on the rest of the flows. We remind that

a RED gateway operating in byte-mode (see [8]) would have

probably blindly dropped this packet.

Adaptive behavior

Consider now a router that serves only 100B-packets until

1kB-packet flows begin their transmission. Sdp_thresh starts

increasing and small packets enjoy comparatively less

proactive dropping. As 1kB packet flows end their

transmission, sdp_thresh, will again decrease, restoring the

dropping probability at the previous levels. Throughout the

entire time, SDP will eventually manage to maintain the same

service quality for small packets.

Serving effectively multiple traffic classes

Finally, assume a queue of 1kB packets, where one 100B

and one 500B packet arrive. Although they are both below

sdp_thresh, they will not be dropped with the same

probability. The 500B packet will be assigned bigger dropping

probability than the 100B packet, but smaller than the 1kB

packets.

D. The significance of the weight factor α

An important component of SDP that we analyze last is the

α variable. We explained earlier why sdp_thresh should reflect

the router's current state. As packets of different size populate

the queue, sdp_thresh should be able to adjust fast enough to

reflect the new state.

Fig. 2. Convergence of sdp_thresh with different values of α.

We assume that sdp_thresh=1040B and 140B packets arrive

at the router. By setting a=0.1, sdp_thresh's value will be

below 150B in 43 steps, or 43 packets. If the buffer's capacity

is near 140·43≈6kB then sdp_thresh will reflect only the

I9-P0313 5

packets currently in the queue, otherwise a bigger or smaller α

value might be more appropriate (this is not exactly accurate

however, since sdp_thresh takes account also the sizes of the

packets that have been dropped). Different α values result in

different convergence times (Fig. 2). For now we consider a

static and equal to 0.1.

IV. IMPACT ANALYSIS

We will now examine the impact of SDP on packets. Being

SDP a dropping-oriented protocol, it affects both the Packet

Loss Rate and the Queuing Delay. The aim of our analysis is

to confirm that SDP achieves successfully Service

Differentiation and whether there are cases that lead to

unfairness or underutilization. Since RED and SDP are based

on the same core-algorithm, we will study the impact of SDP

on packets, in contrast to the behavior of packets served by

RED gateways. For the readers’ convenience, we will refer to

flows that generate big packet sizes as big flows and to flows

that generate small packet sizes as small flows.

During our analysis we use some variables (Table 2). When

these variables have the letter R subscripted, they refer to

RED, whereas when they have the letter S subscribed, they

refer to SDP.
TABLE 2

Analysis variables
NAME DESCRIPTION

Db, Ds the dropping probability of big and small packets, respectively

x the sdp_thresh variable

sb, ss the size, in bytes, of big and small packets, respectively. Unless

stated otherwise, we assume that all big and all small packets

have the same size

TD1B the transmission delay of 1 byte in the given link conditions, used

as delay unit

Qd the queuing delay of a packet

A. Packet Loss Rate

SDP aims at minimizing the loss of small packets. Since

small packets usually characterize real-time traffic that is not

typically governed by the AIMD principle, the effect on

decreased dropping is related directly to the lost data.

Moreover, since SDP does not penalize big packets more than

RED, its impact on loss rate due to dropping is zero
2
. To

estimate the packet loss rate, we first calculate the dropping

probability.

Big packets:

dropredDb
R

_=

dropreddropsdpDb
S

__ ==

0=−=
RS

DbDbimpact (4)

Small packets:

dropredDs
R

_=

dropred
x

ss
dropsdpDs

S
__ ⋅==

2 In fact, we have increased loss due to the increased queue length which

we consider trivial

01_ <






 −⋅=−=
x

ss
dropredDbDbimpact

RS
 (5)

Equation (4) shows that SDP does not increase loss rate of

big packets more than RED. Equation (5), on the other hand,

shows that SDP decreases the PLR of small packets providing

them with increased privileges. For small packets, the loss rate

is a function of ss and x. Smaller values of ss and/or bigger x

signify less proactive drops. The packet size is determined by

the corresponding application, while sdp_thresh is calculated

by the packet sizes that populate the queue. In general, the

packet size is predefined; there are, however, cases that we

may wish to adjust it dynamically for better service. As this is

not uncommon, we demonstrate later how SDP can overcome

such actions.

B. Queuing delay

We consider a router where big and small packets (noted as

‘b’ and ‘s’, respectively) have arrived. Some of them have

been accepted and some others have been dropped. A packet

arrives. Regardless of its size, this packet will experience some

queuing delay. This queuing delay will depend on the

dropping probabilities of the packets that arrived previously in

the queue. For simplicity, we assume that the dropping

probability is independent of the packet’s position in the

queue.

() ()
()()sssbsbdropredsssbsbT

dropredTsssdropredTbsbQd

BD

BDBDR

⋅+⋅⋅−⋅+⋅⋅=

=−⋅⋅⋅+−⋅⋅⋅=

_

_1_1

1

11

() ()

()

















⋅⋅+⋅⋅−⋅+⋅⋅=

=














 ⋅−⋅⋅+−⋅⋅⋅=

=−⋅⋅⋅+−⋅⋅⋅=

2

1

1

11

1
_

_1_1

_1_1

sss
x

bsbdropredsssbsbT

dropred
x

s
sssdropredbsbT

dropsdpTsssdropsdpTbsbQd

BD

BD

BDBDS

()()⇔⋅+⋅⋅−⋅+⋅⋅−

















⋅⋅+⋅⋅−⋅+⋅

⋅=−=

sssbsbdropredsssbsbT

sss
x

bsbdropredsssbsb

TQdQdimpact

BD

BDRS

_

1
_

1

2

1

01_
1

>






 −⋅⋅⋅⋅=
x

ss
sssdropredTimpact

BD
 (6)

since ss<x.

Equation (6) demonstrates the impact on the queuing delay

regardless of the packet size. All packets will experience

increased delay since some small packet that would have

otherwise been dropped from the queue, now contribute to

delay cumulatively. Big flows, that generally use TCP, will

respond to this delay and will decrease the rate with which

they increase their sending windows. Moreover, big packets

increase the risk to be dropped due to the increasing

competition in the queue that might result in an average queue

length more than the maximum threshold. On the other hand,

I9-P0313 6

whereas small packets experience also bigger delays, they have

more chances to survive eventually from proactive dropping.

Concluding, we prove that SDP can achieve Service

Differentiation and that it adjusts its behavior to different

packet sizes.

V. DEVELOPING INDIVIDUAL STRATEGIES

SDP makes the assumption that small packet sizes

correspond only to applications that require special service.

However, users might try to fragment their bulk data into

smaller pieces in order to promote themselves and gain from

decreased dropping. We prove in this section using the basic

principles of game theory that in SDP, the result of such an

action depends on the behavior of the rest of the flows and that

it is uncertain whether fragmentation is a winning or losing

strategy.

We assume a bulk data application that sends packets of a

specific size in a single router network in presence of other

flows. After some time, only the aforementioned application

changes its attitude and fragments its data into smaller packets.

We will use the variables cited in Table 3. When

accentuated, they will refer to variables after fragmentation.

TABLE 3

Analysis variables
NAME DESCRIPTION

x the sdp_thresh variable before fragmentation

x' the sdp_thresh variable after fragmentation

ps the total size of the application’s packet before fragmentation

ps' the total size of the application’s packet after fragmentation

pl the payload of the packet

od the overhead of the packet

k the fragmentation factor of the packet

ABL an “average bytes lost” index which is the packet size of a packet

multiplied by its dropping probability. If 1' >ABLABL , we

lose from fragmentation, otherwise we win

Based on our previous assumptions we examine three main

cases which can be concluded in Table 4. This table presents

the possible cases from a single-user perspective, before and

after fragmentation. For example, case (2) means that the

user’s packet size before fragmentation was bigger than

sdp_thresh, whereas after fragmentation the new packet size is

smaller than the new value of sdp_thresh.

TABLE 4

Possible outcome for a user, before and after fragmentation.
Before fragmentation

 xps > xps <

'' xps > (1) (4) After

fragmentation '' xps < (2) (3)

The fourth case although objects to our assumptions, is

possible in practical conditions and thus it will be examined

separately.

1) xps > , '' xps >

In this first case, even though we fragment, the packet size is

still bigger than sdp_thresh.

() dropredodpldropsdppsABL __ ⋅+=⋅=

() dropredodkpl

dropredod
k

pl
kdropsdppskABL

_

__''

⋅⋅+=

=⋅







+⋅=⋅⋅=

()
() 1

_

_'
>

+
⋅+

=
⋅+
⋅⋅+

=
odpl

odkpl

dropredodpl

dropredodkpl

ABL

ABL
 (7)

In this case, the more we fragment, the more we lose.

2) xps > , '' xps <

() dropredodpldropsdppsABL __ ⋅+=⋅=

dropredod
k

y

x

k
dropred

x

od
k

y

od
k

y
kdropsdppskABL

_
'

_

'
_''

2

⋅







+⋅=

⋅








+

⋅







+⋅=⋅⋅=

We remind that in order to win, we want 1
'
<

ABL

ABL
.

() () ⇔<
+⋅









+⋅

=
⋅+

⋅







+⋅

= 1
'_

_
''

22

odplx

od
k

pl
k

dropredodpl

dropredod
k

pl

x

k

ABL

ABL

()odpl

od
k

pl
k

x
+









+⋅

>

2

' (8)

Fig. 3. x' as a function of the fragmentation factor.

For pl=1000B and od=40B, if x' lies in the blue area in Fig.

3 then we lose, else we win. For relatively small values of k,

the above function is constantly decreasing. In this case, we

increase our probabilities of winning by increasing k (that is

the fragmentation), thus decreasing the packet size. However,

for bigger values of k, the function has a negative peak (Fig.

4).

For given pl and od the lower peak is unique. This lower

peak defines the point where x' has its lower value. At this

I9-P0313 7

point (k=25 in Fig. 4), we have the biggest possibility of

winning from fragmentation. However, since we do not know

the current value of x', x' may have any value. If x' is either in

the blue or the red zone then we lose from fragmentation. The

red zone defines the cases where the packet size is bigger than

x', thus we fall back to the first case.

Fig. 4. x' and packet size as a function of the fragmentation factor.

3) xps < , '' xps <

() ()

() dropredodpl
x

dropred
x

odpl
odpldropsdppsABL

_
1

__

2 ⋅+⋅=

=⋅
+

⋅+=⋅=

dropredod
k

pl

x

k
dropred

x

od
k

pl

od
k

pl
kdropsdppskABL

_
'

_

'
_''

2

⋅







+⋅=

⋅








+

⋅







+⋅=⋅⋅=

() ()2

2

2

2

'
_

1

_
''

odpl

od
k

pl
k

x

x

dropredodpl
x

dropredod
k

pl

x

k

ABL

ABL

+









+⋅

⋅=
⋅+⋅

⋅







+⋅

= (9)

In order to win we must have
()2

2

'

odpl

od
k

pl
k

x

x

+









+⋅

> which is a

similar function as in the second case. For pl=1000B and

od=40B we get the graph in Fig. 5.

Fig. 5. x'/x as a function of the fragmentation factor.

Since we assumed that x' is modified only by one flow, we

expect that x'/x is near 1. Hence in this case we can be sure

that we always win, even though there is a specific packet size

that we have the most benefits.

If we cancel the assumption that only one flow alters its

stance, or in case that more flows enter the network, then the

fourth case is possible.

4) xps < , '' xps >

() ()

() dropredodpl
x

dropred
x

odpl
odpldropsdppsABL

_
1

__

2 ⋅+⋅=

=⋅
+

⋅+=⋅=

() dropredodkpl

dropredod
k

pl
kdropsdppskABL

_

__''

⋅⋅+=

=⋅







+⋅=⋅⋅=

()
()

()
()

⇔<
+

⋅+
⋅=

⋅+⋅

⋅⋅+
= 1

_
1

_'
2

2 odpl

odkpl
x

dropredodpl
x

dropredodkpl

ABL

ABL

()
()odkpl

odpl
x

⋅+

+
<⇔

2

 (10)

which is impossible, since we supposed that odplx +> .

Thus, no matter what we do, we always lose.

We can summarize the previous analysis by saying that if

ps'>x' then we certainly lose, otherwise, we may either win or

lose. The entire problem resembles the ‘prisoner’s dilema’; if

only one user fragments its data he wins, while the other loses,

if they both fragment their data, they both lose. We note that

the loss is not due to the decreased packet size but because of

the increased number of packets the user has to generate to

maintain the same sending rate.

VI. SIMULATION SETUP

A. AQM mechanisms setup

During the experimental evaluation we compare SDP with

three other AQM mechanisms: DropTail, RED and NCQ+.

We use the following sets of RED, NCQ+ and SDP

parameters:

RED: The RED parameters are set according to the

recommendation in [13]. That is, we use the “gentle” mode,

the maximum threshold is set to three times the minimum

threshold, and the minimum threshold is set to 1/8 of the

buffer size. We use RED in byte-mode unless it is stated

otherwise. The difference is that while classic RED drops

randomly packets with the same probability regardless of their

size, RED in byte-mode increases the probability as packet

size increases.

NCQ+: NCQ+ parameters are set according to the

recommendations in [20] and [23]. That is ncqthresh1 is set to

0.05 and α is always equal to 0.1.

SDP: The weight factor α is set to 0.1.

Additionally, we measure the buffer space allocated for the

queue in bytes when we use RED and SDP but we measure it

in packets when we use NCQ+ and DropTail. The difference is

I9-P0313 8

that a queue measured in bytes might accept a small packet

and drop a bigger when there is lack of buffer space, whereas a

queue measured in packets will treat all the incoming packets

equally regardless of their size. The reason for using two

different ways of measuring the queue is that NCQ+ was

originally analyzed and evaluated in [20] in packet mode. We

follow this principle, and in order to ensure fairness during the

evaluation, we compare the average values of the evaluation

metrics (see Section 8).

B. Application setup

We simulate three types of traffic; FTP which consists of

bulk data traffic and usually corresponds to big packet sizes,

VoIP which consists of real-time traffic and small packets and

Sensors which also consist of real-time traffic, however, their

packet sizes are smaller than VoIP. The characteristics of each

type of traffic are as follows:

FTP Traffic: FTP packets are carried by the TCP

NewReno version. Packet size is always mentioned in each

experiment.

VoIP Traffic: VoIP packets are carried by UDP. During a

conversation, speakers alternate between activity and idle

periods. Taking into consideration the ON and OFF periods

[5], as well as the heavy-tailed characteristics and self

similarity of VoIP traffic [10], we used the Pareto distribution

for modeling the call holding times. We configure Pareto with

a mean rate that corresponds to the transmission rate of 64kbps

and the shape parameter is set to 1.5. In accordance with [5],

we distribute the ON and OFF periods with means of 1.0sec

and 1.35sec, respectively. We simulate VoIP streams of

64kbps (following the widely-used ITU-T G.711 [9] coding

standard) and we set packet sizes at 160 bytes (each packet has

40-byte packet header).

Sensor Traffic: We simulate Sensor flows by sending

periodically packets of 40 bytes (20 bytes of sensor data plus a

20-byte packet header) carried by UDP. The interval between

two consecutive sensor transmissions is set to 50ms.

VII. EVALUATION METRICS

Goodput: Goodput is used to measure the overall

performance of the network in terms of effective bandwidth

utilization.

onTimeTransmissi

taOriginalDa
Goodput =

where OriginalData is the number of bytes delivered from a

sender to the corresponding receiver during their connection

(TransmissionTime), excluding the retransmitted data and the

overhead induced by packet headers.

Meangoodput: Meangoodput is the average of the Goodput

values of the individual flows.

n

Goodput

tMeangoodpu

n

i

i∑
== 1

Lossrate: Lossrate is the number of lost packets divided by

the total number of transmitted packets. Packets can be lost

due to buffer overflows or proactive dropping.

acketsansmittedPNumberOfTr

stPacketsNumberOfLo
Lossrate =

Meanlossrate: Meanlossrate is the average of all individual

lossrates in the network.

n

Lossrate

teMeanlossra

n

i

i∑
== 1

Fairness: We use the Chiu’s fairness index [6], which

captures the bandwidth allocation among competing flows.

∑

∑

−

−









=
n

i

i

n

i

i

Throughputn

Throughput

Fairness

1

2

2

1

Application Satisfaction Index: The Application

Satisfaction Index (ASI), which was introduced in [21] by L.

Mamatas and V. Tsaoussidis, captures the delay fair share per

application on the basis of the delay impact of each

application on others. It is defined as:

max

1
max

1
nDelay

Delay
TotalData

Data
Delay

ASI

n

i

i

i∑ =
−

−=

where n is either the number of active nodes or the number of

different traffic classes; Datai the total transmitted data of the

ith node to the receiver; TotalData the total transmitted data of

all nodes; Delayi the average queuing delay of the ith node and

Delaymax the maximum queuing delay of the system.

R-Factor: We characterize the quality of voice

communication using the R-Factor, which is included in the E-

Model ([15], [16]), an ITU-proposed analytic model of voice

quality. R-Factor captures voice quality and ranges from 100

to 0, representing best and worst quality respectively. R-Factor

incorporates several different parameters, such as echo,

background noise, signal loss, codec impairments and others.

In [17], R-Factor is defined as:

() () ()cdHddaR
3213321

1ln γγγββββ −−−−−−−=

where α= 94.2, β1 = 0.024ms
−1

, β2 = 0.11ms
−1

, β3 = 177.3ms,

expresses the mouth-to-ear delay and the packet loss rate. For

the G.711 codec, d2e1γ= 0, γ = 30, 3γ= 15.

VIII. SIMULATION RESULTS

For the experimental evaluation we will use two cross-

traffic topologies (Fig. 6 and 7) which incorporate two

bottlenecks. The difference between these two topologies is

that in the second topology, the VoIP data is transported via

wireless links and we have an additional type of traffic; small

FTP flows. This modification matches better the way VoIP is

transferred over the Internet and allows us to have a more

realistic scenario.

Throughout our experiments, we attempt to address four

specific issues:

1) Prove that SDP succeeds to distinguish and subsequently

I9-P0313 9

classify big from the various degrees of packet sizes and

accomplish Service Differentiation (Scenario 1 - Scalability of

SDP).

2) Evaluate the applicability of SDP for VoIP traffic

(Scenario 2 - Impact on the VoIP load).

3) Show the impact of SDP on sensor-based applications

(Scenario 3 - Impact on the sensor generated traffic).

4) Evaluate SDP in a more complex scenario, where

different types of traffic, such as big FTP flows, small FTP

flows, VoIP and sensor traffic, coexist in the same network.

(Scenario 4 - Impact on various traffic classes).

5) Examine, in a simple topology, if SDP manages to

increase the ASI [21] compared to RED (Scenario 5 - Impact

on ASI).

We discuss each scenario with its corresponding results.

Fig. 6. Cross-traffic topology.

Fig. 7. Cross-traffic topology with wireless VoIP users.

1) Scenario 1 - Scalability of SDP

In this first scenario, we vary the total number of flows from

40 to 240, while maintaining constant percentages for the

different types of flows. Specifically, 5% of the flows involve

VoIP calls, 5% sensor data transmission, and the remaining

90% big FTP flows with 1KB packets. This scenario allows us

to draw conclusions on the scalability of the proposed

mechanisms in low and high contention of the link.

Fig. 8. Meangoodput of big FTP flows.

Fig. 9. Meangoodput of sensor flows.

Fig. 10. Meangoodput of VoIP flows.

Fig. 11. R-factor of VoIP flows.

Fig. 8, 9 and 10 show that SDP succeeds to apply service

differentiation among various flows better than DropTail,

RED and NCQ+. While both RED and NCQ+ are capable of

providing quality guarantees for sensor packets successfully

(Fig. 9), only SDP increases the meangoodput of VoIP (Fig.

10), without affecting big FTP flows (Fig. 8). This increase

signals a corresponding increase in the user-perceived quality,

expressed by R-factor (Fig. 11). The most interesting point is

that SDP has a consistent behavior as the number of

contention increases; Fig. 9 and 10 show that as flows

increase, the meangoodput for small packets remains the

same. In fact, the same applies for R-factor (Fig. 11); the

quality of voice remains the same although more calls are

initiated. Fig. 10 exhibits an interesting illation; as long as the

number of VoIP flows is small, NCQ+ strategy results in

more Goodput than SDP. SDP manages to serve better VoIP

flows when their number increases. We demonstrate that

dropping- and scheduling-oriented LIBS are indeed

complementary and that different network conditions impose

different approaches.

I9-P0313 10

2) Scenario 2 - Impact on the VoIP load

In this scenario we attempt to capture the impact of SDP on

VoIP applications considering different levels of VoIP traffic.

We set the total number of flows to 100. Sensor flows consist

of the 6% of the total number of flows (6 flows) and VoIP

flows vary from 6% to 36% (from 6 to 36 flows).

Fig. 12. Meangoodput of big FTP flows.

Fig. 13. Meangoodput of sensor flows.

Fig. 14. Meangoodput of VoIP flows.

Fig. 15. R-factor of VoIP flows.

The results are similar to the results in the first scenario,

however there are some differences. This time, we decrease

the number of big FTP flows and increase the number of VoIP

flows. Fig. 12 shows how all schemes allocate more bandwidth

for each big flow. Fig. 13, also shows that NCQ+, RED and

SDP provide the same quality guarantees for sensor traffic.

However, Fig. 14 and 15 depict SDP’s superiority over the

other AQM schemes since SDP promotes VoIP packets more

effectively and increases the R-factor. Nevertheless, we do not

experience the same behavior as in the Scenario 1, as the

number of VoIP flows becomes significant and comparable to

the number of big flows. Sdp_thresh is decreased and the

dropping probability for VoIP packets is increased.

3) Scenario 3 - Impact on the sensor-generated traffic

We repeat the previous scenario, only now we vary the

number of sensor flows. Once again we set the total number of

flows to 100, the number of VoIP flows to 6% of the total

number of flows and we vary the sensor flows from 6% to

36%. We study the impact on sensor-generated traffic.

Fig. 16. Meangoodput of big FTP flows.

Fig. 17. Meangoodput of VoIP flows.

Fig. 18. Meangoodput of sensor flows.

Apart from Droptail, all AQM schemes provide almost

equal service to sensor packets (see Fig. 18). However, SDP

also favors VoIP packets as more packets arrive successfully at

the receivers (see Fig. 17). Remarkably, this superiority of

SDP is not at the cost of big FTP flows (see Fig. 16), but it

comes as a result of better packet classification.

I9-P0313 11

4) Scenario 4 - Impact on various traffic classes

In this last scenario we will use the topology of Fig. 18, with

all two types of FTP flows, big FTP (1KB packet sizes) and

small FTP (500B packet sizes). We increase the total number

of flows in the network and study the performance of each

type. 10% of the total number of flows is VoIP traffic, 10% is

sensor traffic, and each of the small and big FTP flows consist

of the 40% of the total traffic. This scenario is more close to

real-life networks where different types of applications

compete for some limited common resources.

Fig. 19. Meangoodput of big FTP flows.

Fig. 20. Meangoodput of small FTP flows.

Fig. 21. Meangoodput of VoIP flows.

Fig. 22. Meangoodput of sensor flows.

This last scenario proves not only that SDP is scalable but

also adaptive. SDP does not allocate blindly buffer space to

small FTP flows; as their number increases sdp_thresh

decreases and they tend to get equal priority to big FTP flows.

The bandwidth allocated for VoIP and sensor traffic is the

same, since their contribution to the total contention remains

trivial all the times. While NCQ+ and RED may have similar

results to SDP in Fig. 22, SDP achieves a better and fairer

distribution of bandwidth, leading to a more effective AQM

approach.

5) Scenario 5 - Impact on ASI

In [21], the ASI depicted NCQ functionality effectively and

reliably, as NCQ aims to minimize the delay of non-congestive

traffic. SDP however, adjusts dropping probability that

generally does not affect queuing delay, thus we do not expect

a significant ASI increase. We conducted an experiment on a

dumbbell topology (Fig. 24). The number of the flows varies

from 100 to 500 and small flows consist the 10% of the total

flows. Small flows consist 100B packets and big flows 1kB.

Fig. 23. ASI of big and small FTP flows.

The results of the simulation are depicted in Fig. 23. Even

though SDP is designed to decrease the queuing delay of

packets, it achieves to increase ASI slightly, compared with

RED, due to the fact that it increases small FTP flows

satisfaction by assigning less dropping probability.

IX. ALTERNATIVE STRATEGIES ON PACKET FRAGMENTATION

Assuming that a LIBS-based mechanism is deployed, an

application may follow alternative strategies in order to have

performance gains. We use a simple dumbbell topology as

shown in Fig. 24 and we experiment with FTP traffics that use

different packet sizes. We consider 100 FTP applications and

two distinct types of classes, one that utilizes big packet sizes

(1KB) and the other that utilizes small packet sizes (100B) or

medium packet sizes (500B). In the first set of our

experiments, we assign the transmission of 5MB data to each

of the flow and calculate the average completion time of tasks.

Next, we implement experiments where FTP flows have

unlimited data to send and study how the available bandwidth

is shared among flows that use different packet sizes. In both

sets of experiments, we adjust the percentage of big and small

flows to study the scalability of the proposed mechanism. We

assume that each packet has 40 bytes overhead.

I9-P0313 12

Fig. 24. A dumbbell topology with FTP flows that generate big and small

packets.

A. Fixed Data Transmission

In this scenario, we compare SDP with RED in byte mode.

They both attempt to distinguish small packets and minimize

their chances to be dropped. However, RED in byte mode has

two functions i) it increases the probability of a big packet to

be dropped ii) it decreases the probability of a small packet to

be dropped. The size is characterized as “small” or “big”

compared to the meanpacketsize parameter which is fixed.

Packets whose size is equal to meanpacketsize are dropped

with the probability calculated by the original RED algorithm

We will study two cases: (1) Small FTP flows that use 100B

packets and (2) small FTP flows that use 500B packets.

1) Small FTP flows that use 100B packets.

Fig. 25. Service Time with RED.

Fig. 26. Service Time with SDP.

As we can see in Fig. 25 and 26 when the percentage of

small flows is less than the percentage of big flows, small

flows benefit more from the RED mechanism than from SDP

and finish their tasks earlier. Similar things apply for big

flows. As more flows change their strategy (70-100%) and

attempt to benefit from the SDP mechanism, SDP seems to

benefit big flows rather than the small ones. This is due to the

dynamic classification of SDP, which takes into consideration

the proportion of big and small packets in the queue and treats

them the same if many small packets populate the queue. On

the contrary, RED keeps dropping big packets with higher

probability than small packets, although small packets’

contribution to congestion is significant.

This trade-off resembles a game theory problem. If all FTP

flows play fair the game and use 1KB packets then they will all

finish their tasks in 298 sec. If a small amount of them try to

cheat they will benefit but as their number is increased, they

will all lose and finish their tasks in more than 298 sec.

Moreover, when the percentage of misbehaving flows exceeds

the one that play the game fairly, not only will they extend the

time to finish their task but, beyond that, will also boost the

performance of fair flows that now finish their tasks in less

than 298 sec.

2) Small FTP flows that use 500B packets

We implement the same set of experiments as before,

however small flows have 500B packet size rather than 100B.

Fig. 27 and 28 show that even with 500B packets, small

flows are “punished”; it takes more time for then to finish their

tasks with SDP rather than with RED. Moreover, as the

number of small flows is increased significantly, SDP treats

better big flows and their service time becomes stable. Fig. 5

shows that in presence of RED, small flows are getting better

service, while the service time of big flows is worse and is

increased as more flows decide to change their strategy.

Fig. 27. Service Time with RED.

Fig. 28. Service Time with SDP.

B. Fixed Time Transmission

Next, we use the same topology as before, however now

flows have always data to send. We attempt to study how the

available bandwidth is allocated among competing flows. We

aim to exploit as well as possible the available resources, as

well as to achieve a fair bandwidth distribution.

At first, we consider big flows that generate 1KB packet

sizes and small flows that generate 100B packet sizes.

I9-P0313 13

Fig. 29. Meangoodput of big FTP flows.

Fig. 30. Meangoodput of small FTP flows.

Fig. 31. Meanlossrate of big FTP flows.

Fig. 32. Meanlossrate of small FTP flows.

Fig. 33. System fairness.

Fig. 29 and 30 show how SDP reallocates bandwidth among

flows in order to achieve a fair distribution. Small flows

increase their transmission, while big flows back off. Fig. 31

and 32 depict that by decreasing dropping on small flows,

meanlossrate is decreased and thus fairness is increased (Fig.

33). While SDP achieves a good reallocation of network

resources, NCQ+ promotes less small packets than necessary

while RED promotes more packets; both increasing

inequalities among different packet sizes. The only exception

when SDP decreases fairness is when we have little number of

small flows. This is the only case that we tolerate unfairness as

we would like to ascertain that when we have few small

packets, they have maximum priority and the best treatment

possible. Next, we consider big flows that generate 1KB

packet sizes but small flows that generate 500B packet sizes.

Fig. 34. Meangoodput of big FTP flows.

Fig. 35. Meangoodput of small FTP flows.

Fig. 36. Meanlossrate of big FTP flows.

Fig. 37. Meanlossrate of small FTP flows.

I9-P0313 14

Fig. 38. System fairness.

X. CONCLUSION AND FUTURE WORK

We proposed a new Service Differentiation scheme, based

on packet dropping, which classifies packets according to their

size. Due to its self-adaptable structure, the proposed

mechanism does not drop packets blindly; instead packet

dropping probability depends on the comparative packet sizes

in the queue. During the experimental evaluation we showed

that SDP: (i) manages to increase Goodput and link utilization,

(ii) achieves a better system Fairness compared to other

proposals and (iii) increases the perceived quality on real-time

applications. Despite SDP efficiency, its algorithm is light-

weight, fast and does not require memory-consuming

procedures or large reference-tables.

Although packet dropping proves to be effective for both

time-sensitive and delay-tolerant applications, there are cases

where a packets need to be promoted through scheduling as

well. Future extension of the algorithm will incorporate a time-

scheduling mechanism, similar to the NCQ+ principle, that

allows special priority for selected packets that require small

delivery times. We plan to study the effects on delay, jitter and

perceived quality.

REFERENCES

[1] BitTorrent, http://www.bittorent.com

[2] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss,

“RFC2475 - An Architecture for Differentiated Services”, December

1998.

[3] U. Bodin, O. Schelen, and S. Pink, “Load-tolerant Differentiation with

Active Queue Management”, ACM SIGCOMM Computer

Communication Review, Volume 30, Issue 3, July 2000.

[4] R. Braden, D. Clark, and S. Shenker, “RFC2475 - Integrated Services in

the Internet Architecture: an Overview”, June 1994.

[5] P. Brady, “A Statistical Analysis of On-Off Patterns in 16

Conversations”, The Bell System Technical Journal, 47 73-91, 1968.

[6] D.-M. Chiu and R. Jain. “Analysis of the increase and decrease

algorithms for congestion avoidance in computer networks”, Computer

Networks, ISDN Syst., 17(1):1-14, 1989.

[7] D. Clark and W. Fang, “Explicit Allocation of Best-Effort Packet

Delivery Service”, IEEE/ACM Transactions on Networking, August

1998.

[8] S. Cnodder, O. Elloumi, and K. Pauwels, “Effect of Different Packet

Sizes on RED Performance”, Proceedings of ISCC 2000, July 2000.

[9] R. Cole and J. Rosenluth, “Voice over IP Performance Monitoring”,

ACM SIGCOMM Computer Communications Review, 31 (2) (2001) 9-

24.

[10] T. Dang, B. Sonkoly, and S. Molnar, “Fractal Analysis and Modelling of

VoIP Traffic”, Proceedings of International Telecommunications

Network Strategy and Planning Symposium 2004, June 2004.

[11] A. Demers, S. Keshav, and S. Shenker, “Analysis and Simulation of a

Fair Queueing Algorithm”, Proceedings of SIGCOMM 1989, September

1989.

[12] S. Dimitriou and V. Tsaoussidis, “A New Service Differentiation

Scheme: Size Based Treatment”, Proceedings of ICT 2008, June 2008.

[13] S. Floyd, “RED: Discussions of Setting Parameters”, November 1997.

[14] S. Floyd and K. Fall, “Promoting the use of end-to-end congestion

control in the Internet”, IEEE/ACM Transactions on Networking, May

1999.

[15] ITU-T Recommendation G.107, “The E-Model, a Computational Model

for Use in Transmission Planning”, December 1998.

[16] ITU-T Recommendation G.113, “General Characteristics of General

Telephone Connections and Telephone Circuits - Transmission

Impairments”, February 1996.

[17] ITU-T Recommendation G.711, “Pulse Code Modulation (PCM) of

Voice Frequencies”, November 1988.

[18] D. Lin, and R. Morris, “Dynamics of Random Early Detection”,

Proceedings of SIGCOMM 1997, September 1997.

[19] R. Mahajan, and S. Floyd, “Controlling High Bandwidth Flows at the

Congested Router”, Proceedings of ICNP 2001, November 2001.

[20] L. Mamatas, and V. Tsaoussidis, “A new approach to Service

Differentiation: Non-Congestive Queueing”, Proceedings of CONWIN

2005, July 2005.

[21] L. Mamatas and V. Tsaoussidis, “Differentiating Services with Non-

Congestive Queuing (NCQ)”, IEEE Transactions on Computers, 2009

[22] R. Pan, B. Prabhakar, and K. Psounis, “CHOKe: a stateless AQM

scheme for approximating fair bandwidth allocation”, Proceedings of

INFOCOM 2000, March 2000.

[23] G. Papastergiou, C. Georgiou, L. Mamatas and V. Tsaoussidis, “On

Short Packets First: A delay-oriented prioritization policy”, Technical

Report TR: DUTH-EE-2008-8

[24] I. Stoica, S. Shenker, and H. Zhang, “Core-Stateless Fair Queueing: A

Scalable Architecture to Approximate Fair Bandwidth Allocations in

High Speed Networks”, IEEE/ACM Transactions on Networking,

February 2003.

[25] V. Tsaoussidis and C. Zhang, “The Dynamics of Responsiveness and

Smoothness in Heterogeneous Networks”, IEEE Journal on Selected

Areas in Communications, June 2005.

Stylianos Dimitriou (M’05) received his Diploma of Electrical and

Computer Engineering from Democritus University of Thrace, Greece in

2006. He is currently a PhD candidate in Electrical and Computer

Engineering in the same institution. His work includes AQM schemes, QoS

and Delay-Tolerant Networking. Up to 2008, he has published 4 papers and

he was awarded for his diploma dissertation with the Ericsson Award of

Excellence in Telecommunications

Ageliki Tsioliaridou received her Diploma of Electrical and Computer

Engineering from Democritus University of Thrace, Greece in 2005. She is

currently a PhD candidate in Electrical and Computer Engineering in the

same institution. Her research interests include congestion control in packet

networks, smooth data transmission algorithms and AQM based algorithms.

She participated in the Organizing Committee of WWIC 2005

Vassilis Tsaoussidis (M’96-SM’03) has a B.Sc in Applied Mathematics from

Aristotle University, Greece and a Ph.D in Computer Networks from

Humboldt University, Berlin, Germany (1995). He held appointments, and a

faculty appointment at the Computer Science Department of SUNY Stony

Brook (until 2000) and at the college of Computer Science of Northeastern

University, Boston (until 2003). He returned to Greece in May 2003 to join

the Faculty of the Department of Electrical and Computer Engineering of

Democritus University, where he is now full Professor. He also held

appointments as Visiting Professor at TU Berlin and MIT Boston

Prof Tsaoussidis was/is editor for IEEE Transactions on Mobile

Computing, the Journal of Computer Networks the Journal of Wireless

Communications and Mobile Computing the Journal of Mobile Multimedia

and the International Journal of Parallel, Emergent and Distributed Systems.

He participates(d) in several Technical Program Committees in his area of

expertise, such as INFOCOM, GLOBECOM, ICCN, ISCC, EWCN, WLN,

and several others.

Vassilis graduated 5 Ph.D students and around 30 Masters.

