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Abstract—The continuous increase of Internet users 

worldwide, as well as the extensive need to support real-time 

traffic and bulk data transfers simultaneously, has directed 

research towards Service Differentiation schemes. These schemes 

either propose techniques that provide users with the necessary 

quality guarantees or follow a “better-than-best-effort” approach 

to satisfy broadly the varying needs of different applications. We 

depart from our new service principle called Less Impact Better 

Service (LIBS) and propose a novel Service Differentiation 

method, namely Size-oriented Dropping Policies, which uses 

packet size to categorize time-sensitive from delay-tolerant flows 

and prioritize packet dropping probability, accordingly. Unlike 

existing proposals, the distinction of flows is dynamic and the 

notion of packet size is abstract and comparative; a packet size is 

judged as a unit within a dynamic sample space, that is, current 

queue occupancy. We evaluate Size-oriented Dropping Policies 

both analytically and experimentally; we observe a significant 

increase on the perceived quality of real-time applications. Delay-

sensitive flows increase their bandwidth share, to reach a state of 

system fairness, regulating the dominant behavior of bulk-data 

flows. 

 

Index Terms—Active Queue Management, Fairness, Service 

Differentiation 

I. INTRODUCTION 

HE diversity of Internet applications along with the 

increased service expectations of modern Internet users 

call for networks with diverse service capacity. Due to the 

limited management capability of Internet flows on a user- or 

application-oriented basis, services and requirements cannot 

form a one-to-one corresponding relation; instead, they can 

provide the distinctive input to a broader and abstract Service 

Differentiation scheme. This allows for preserving the 

distributed management structure of the Internet and satisfies 

broadly user requirements as well. Hence, the real issue in 

Quality of Service supportive schemes is their capability to 

provide better service without increasing the management 

complexity of the Internet and without damaging its main 
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properties, which is resource sharing, utilization efficiency and 

system fairness. 

The Size-oriented Dropping Policies (SDP) [12] scheme 

that we propose, analyze and evaluate here promotes further a 

class of services that we defined in [21] as Less Impact Better 

Service (LIBS). The LIBS discipline imposes that traffic that 

causes only minor delays should enjoy increased privileges 

over the rest of the traffic and in this context, it defines a 

delay-oriented (instead of throughput) metric of fairness. This 

is a rather logical expectation in many aspects: one that feeds a 

network with a few bytes cannot tolerate huge delays; a user 

that transfers huge files is prepared to tolerate more delays; the 

impact of network delay is crucial for real-time applications; 

the impact of small delays on long-lasting applications may 

even not be recognized by the user. LIBS relies on that last 

idea, precisely: it exploits the time that is statistically 

insignificant for delay tolerant applications to promote the 

service of delay-intolerant application. Deploying LIBS 

practically means that the transmission of a SYN message 

should be favored at the expense of an FTP transmission. 

LIBS philosophy can be implemented either by scheduling or 

by dropping. One way to apply LIBS by scheduling is to favor 

high priority packets and forward them to their destination, 

immediately upon their arrival. The NCQ [20] algorithm, 

which incorporated the LIBS discipline into packet scheduling, 

promotes small packets in the queue and increases their 

chances of successful arrival. NCQ and its ancestor, NCQ+ 

[23], distinguish traffic into non-congestive (small and tiny 

packets) and congestive (big packets). Non-congestive data, 

which includes VoIP and sensor traffic, is considered to have 

small impact on contention and receives special service. 

While LIBS was realized using scheduling disciplines, here 

we exploit the possibility of realizing LIBS by differentiating 

dropping policies. Furthermore, we also highlight the 

possibility of combining both techniques, which are 

complementary indeed. 

SDP is implemented using the experience gained by the 

RED scheme. Minimum and maximum thresholds define the 

regions where unforced and forced dropping occurs. In 

addition, SDP records the size of each incoming packet to 

calculate an average packet size which serves temporarily as a 

rough guide to differentiate small and big packets 

comparatively and dynamically. Clearly, a comparative 

distinction is vital for the efficiency of the proposed scheme: 
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whether or not the next arriving packet will be dropped will 

depend on this average size. If the next packet exceeds the 

average size, it will be dropped with the same probability as 

imposed by RED. If, however, the next packet is smaller than 

the average size, then its dropping probability will be smaller 

and proportional to the packet size. This adaptive behavior of 

SDP allows it to define traffic classes dynamically, depending 

on the circumstances. We cannot characterize a given packet 

as small or big in advance; SDP will decide how to classify it 

based on recent arrival history. 

So, does packet size suffice as a criterion to differentiate 

application services? Small packets usually correspond to real-

time applications, such as VoIP or video streaming, whose 

successful and timely delivery affects significantly the user-

perceived quality. Real-time data is sent over UDP or TCP-

friendly protocols; these are typically non-, or less-responsive 

and may fail to satisfy the efficiency objective, let alone the 

fairness objective [25]. On the other side, bulk-data 

applications, such as FTP or BitTorrent [1], use big packets 

and TCP. They are characterized by loss and delay tolerance 

and their behavior is responsive; losses determine their 

sending rate. A network that consists of both real-time and 

bulk-data traffic exhibits inevitably service bias when 

resources are exhausted: responsive flows can and will exploit 

any available bandwidth, compelling unresponsive flows to a 

small link share. In SDP gateways, small packets experience 

less dropping than in RED, enforcing intentionally dynamic 

reallocation of resources. Real-time applications are therefore 

allowed to increase their sending rates up to some threshold 

that guards prioritized operations within the confines of 

fairness. How much priority should we grant to small flows? 

As long as bulk-data transmissions dominate network 

contention, we should promote time-sensitive applications; 

when more real-time flows populate the network and their 

service impact becomes significant on other flows, LIBS 

services should be canceled. 

SDP exhibits three main characteristics: 

1. Dynamic Management. Packet classification is performed 

on-the-fly and the network dynamics are reflected into the 

classification per se. Static quantitative thresholds (e.g. fixed 

packet sizes), or dubious qualitative criteria, such as the 

underlying transport protocol, limit system flexibility, 

including service requirements of future applications. 

2. Cost-effective administration. SDP has trivial memory 

and processor requirements. It is semi-stateless since it uses 

only a single variable and the information needed from the 

packet (i.e. size) is easily extractable. 

3. Ease to deploy. Its simple design makes SDP easily 

deployable. It does not require end-user modifications and its 

algorithm can be easily integrated in routers functionality as a 

policy furnishing. 

During the experimental evaluation of our method, we 

tested SDP in a wide spectrum of network topologies, using 

various metrics; we compared it with Droptail, RED and 

NCQ+. We show that SDP outperforms current 

implementations without giving critical flows more resources 

than their fair share. SDP not only increases system Fairness 

but also Goodput and channel utilization. 

The structure of the paper is as follows: In section 2 we 

discuss the related work. In section 3, we present our 

algorithm analytically and discuss its advantages over other 

proposals. In section 4 we analyze the impact of SDP on 

packet loss rate and queuing delay and in section 5 we 

examine how SDP deters users from misbehaving with packet 

fragmentation. In section 6, we describe our evaluation 

methodology including the simulation setup and, in section 7, 

the evaluation metrics. Sections 8 and 9 outline and analyze 

the experimental evaluation of SDP. Finally section 10 

outlines our conclusive remarks and future work. 

II. RELATED WORK 

Service differentiation has been developed on the basis of 

resource reallocation in line with the corresponding service 

requirements of diverse applications. Relevant applications are 

those with strict delay, jitter or loss constraints, which can be 

satisfied, typically, by prioritizing real-time data over bulk 

data transfers. The DiffServ [2] approach enables prioritization 

by relying on marking with corresponding service identifiers, 

whereas the IntServ [4] approach reengineers the architecture 

itself to allow for guarantees through signalling and 

reservation. However, a significant number of proposals have 

emerged on the basis of router enhancements in order to 

support service differentiation without affecting the end-nodes. 

Among those, the LIBS principle shares a common objective 

and relies on common packet-oriented policies; however, 

LIBS redefines fairness in terms of delay and the fair-share in 

reverse terms of contribution to delay. The NCQ mechanism 

[20], which deployed LIBS using a scheduling-oriented 

approach, distinguishes packets into big packets that cause 

significant delays and eventually inflict congestions 

(congestive) and small packets that cause minor delays (non-

congestive). Non-congestive packets are prioritized in the 

queue as long as their number does not exceed a threshold. In 

turn, this threshold is adjusted in accord with the fairness 

performance of participating flows. Although the concept is 

generally known to networking and operating system 

communities, the dynamic resource management techniques 

within the framework of delay-oriented fairness has not been 

previously analysed. NCQ, as a product of LIBS philosophy, 

manages to increase fairness among congestive and non-

congestive applications. 

Several dropping-oriented approaches exist that either 

provide some service differentiation or manage resources 

fairly and, occasionally, in an application-oriented manner. 

Although they do not exhibit the same level of service 

sophistication as NCQ and SDP, along with their primary 

objectives, they also achieve some fundamental service 

differentiation. In [14], Floyd and Fall introduced mechanisms 

based on the identification of high bandwidth flows from the 

drop-history of RED. In [7] the authors propose an explicit 
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allocation of bandwidth to various flows based on their 

respective needs and determine this allocation by modifying 

accordingly the dropping probability. Unfortunately, both 

these methods demand costly memory structures. Weighted 

RED with Thresholds (WRT) [3] calculates a separate average 

length for the higher-priority packets, preventing starvation for 

the lower-priority traffic. Flow RED (FRED) [18] uses per-

active-flow accounting to impose on each flow a loss rate that 

depends on the flow’s buffer use. Certainly, extended memory 

and processor power is required for a large number of flows. 

On the other hand, RED-PD (Preferential Dropping) [19] 

maintains a state only for the high-bandwidth flows and drops 

their packets more frequently than packets from low-

bandwidth flows. Still, increased number of flows require 

memory-demanding approaches. Note that, unlike LIBS, in all 

the above approaches, bandwidth is considered the scarce 

resource and mechanisms are designed to manage bandwidth 

allocation. 

Fair Queuing [11] maintains equal queues for each flow and 

in Weighted Fair Queuing the queues can have different 

length. Core-Stateless Fair Queuing [24] uses two types of 

routers; edge and core. Edge routers compute per-flow rate 

estimates and label the packets with these estimates, whereas 

core routers drop the packets probabilistically based on these 

labels. Nevertheless, such techniques involve radical 

modifications on the network’s structure. Finally, the CHOKe 

mechanism [22] attempts to identify flows that heavily occupy 

the bottleneck queue by matching every incoming packet 

against a random packet in the queue and either drop both, if 

they belong to the same flow, or accept them with a certain 

probability. The accuracy, however, of this method remains an 

open issue as it does not take account of real-time traffic. 

III. SIZE-ORIENTED DROPPING POLICIES 

A. Justification 

Application layer protocols define the structure of a packet 

as well as specific transport details of the traffic pattern that 

will be followed by the respective flow. Probably, packet size 

is the most typical and easy-to-extract indicator of the type of 

the application that created the packet. The transmission delay 

of a packet is proportional to its size and determines its 

probability of being accepted successfully by the router. Small 

packets are utilized by applications that require fast delivery 

times, constant inter-arrival times, limited packet losses or by 

applications that do not generate periodically great volumes of 

data. This is not a product of coincidence or some negotiation; 

real-time applications rely on sampling techniques for voice or 

images and hence, packet generation and content is not really 

an administrative issue. Beyond that, these applications 

include real-time applications such as audio and, less often, 

low bit-rate video streaming (VoIP and IPTV) or critical 

applications, such as DNS and sensor monitoring. Due to the 

demands of such applications, continuous packet losses usually 

degrade severely their performance, distort the user-perceived 

result or cause unnecessary retransmissions that limit the 

lifetime of battery-powered devices. 

On the other hand, big packets are preferred for bulk data 

transfers as they are characterized by small overhead to 

payload ratios. In such cases, we can tolerate small delays, as 

long as the throughput remains greater than an acceptable 

limit, which certainly may vary from application to application 

or from user to user but also may vary depending on network 

contention, time of the day, and end-to-end distance. Big 

packets are mainly used by file sharing protocols such as FTP 

or BitTorrent [1]. Dropping such packets affects the 

application’s throughput, since the underlying transport 

protocol (TCP) will detect the loss and respond; yet data 

integrity will not be damaged as the packet will be recovered. 

It is apparent that a protocol capable of categorizing flows 

by the size of their packets will potentially provide Service 

Differentiation. Yet, the characterization of the packet size is 

(and should remain) flexible. In common networks, real-time 

applications typically utilize packet sizes bellow 200B (for 

example VoIP uses 140B packets) and bulk data applications 

utilize 1KB packets. However, in the next few years as high-

speed networks will be further spread and new types of traffic 

will emerge, it is difficult to predict how the correlation of 

packet sizes will evolve. Thus, utilizing static thresholds for a 

packet classification system, would impawn the algorithms 

adaptability to future applications. 

Other packet properties could serve as indicators to identify 

packets as well, such as Type of Service, Source and 

Destination Ports (determine the type of application), and 

Time to Live. However, extracting these properties requires 

costly packet inspection and large reference tables (for Ports), 

which should be updated regularly and doesn't necessarily 

guarantee better results. 

B. The algorithm 

Based on the previous reasoning, SDP uses packet size to 

classify flows. However, this is not a fixed classification: SDP 

keeps track of one variable, sdp_thresh, which is the moving 

average of the incoming packets in the queue and which is 

used to dynamically and comparatively classify big or small 

packets
1
. If the size of the next arriving packet is greater than 

sdp_thresh, then the packet is classified as big and will be 

dropped with the same probability as imposed by the RED 

algorithm. On the other hand, if the size is less than 

sdp_thresh, then the packet is classified as small and the 

dropping probability will be less than the RED probability and 

is calculated based on sdp_thresh and the packet size (Fig. 1). 

In Fig. 1, sdp_drop and red_drop are the dropping 

probabilities of SDP and RED respectively, while pkt_size is 

the size of the last packet entered the router. Fig. 1 depicts 

graphically the following: 

in case pkt_size<sdp_thresh: 

threshsdp

sizepkt
dropreddropsdp

_

_
__ =  (1) 

 
1 Note that our work does not require two classes of service necessarily; 

instead, packet classification may integrate more application categories. 
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in case pkt_size≥sdp_thresh: 

dropreddropsdp __ =  (2) 

finally sdp_thresh is calculated as follows: 

( ) sizepktathreshsdpathreshsdp __1_ ⋅+⋅−=  (3), 

where the weight factor α can take small values, below 0.1, 

that can capture router's state. During the initialization, 

sdp_thresh is equal to the size of the first arriving packet. 

 

 
Fig. 1.  SDP dropping probability. 

 

We demonstrate the pseudo-code for the SDP algorithm. 

We consider a router that accepts packets noted as pkt. We use 

the following variables and functions (Table 1); 

 
TABLE 1 

Pseudo-code variables and functions 
NAME DESCRIPTION 

size(pkt) returns the size of the packet pkt in bytes 

red_drop the dropping probability of RED; computed elsewhere in the 

code 

rand(x,y) returns a random number between x and y 

enqueue(pkt) enqueues the packet pkt in the queue 

drop(pkt) drops the packet pkt from the queue 

 
pkt_size=size(pkt) 

sdp_thresh=0.9*sdp_thresh+0.1*pkt_size 

if (sdp_thresh<pkt_size) 

  then sdp_drop=red_drop*(pkt_size/sdp_thresh) 

  else sdp_drop=red_drop 

prop=rand(0,1) 

if (prop<sdp_drop) 

  then drop(pkt) 

  else enqueue(pkt) 

 

As we see, sdp_thresh depends more on the sizes of recently 

arrived packets and less on the packets that have recently 

departed - this renders sdp_thresh an implicit measure of the 

network’s activity. Moreover, by giving equal priority to all 

packet sizes above sdp_thresh, we manage to serve smaller 

packets more effectively but still confine their service with the 

bandwidth restriction of the fair share. We elaborate on SDP 

functionality below, based on some selected scenarios. 

C. Case studies 

Managing effectively small packets 

First consider a router mainly occupied by 1kB-packets 

when a 100B packet arrives. Since sdp_thresh is near 1kB, the 

probability of rejecting the last small packet is almost 90% less 

than dropping any other big packet (see (1), (2)), thus we can 

almost guarantee that this packet will be forwarded. After 

some time, small packets start gradually populating the queue. 

Sdp_thresh is decreased (see (3)) until small packets do not 

enjoy the same privilege, since they now contribute to the 

router contention. 

Fair treatment for big packets 

Next assume that the router serves mainly 100B-packets and 

a 1kB packet arrives. According to (2), this last big packet will 

have the same priority as the smaller ones, since sdp_thresh is 

near 100B. Although this might seem absurd, due to the 

predominance of small flows, the buffer space occupied by a 

sole big packet will cause only a small additional queuing 

delay, compared to the total. Dropping this packet will have a 

significant negative impact on its generating flow, but only a 

minor positive impact on the rest of the flows. We remind that 

a RED gateway operating in byte-mode (see [8]) would have 

probably blindly dropped this packet. 

Adaptive behavior 

Consider now a router that serves only 100B-packets until 

1kB-packet flows begin their transmission. Sdp_thresh starts 

increasing and small packets enjoy comparatively less 

proactive dropping. As 1kB packet flows end their 

transmission, sdp_thresh, will again decrease, restoring the 

dropping probability at the previous levels. Throughout the 

entire time, SDP will eventually manage to maintain the same 

service quality for small packets. 

Serving effectively multiple traffic classes 

Finally, assume a queue of 1kB packets, where one 100B 

and one 500B packet arrive. Although they are both below 

sdp_thresh, they will not be dropped with the same 

probability. The 500B packet will be assigned bigger dropping 

probability than the 100B packet, but smaller than the 1kB 

packets. 

D. The significance of the weight factor α 

An important component of SDP that we analyze last is the 

α variable. We explained earlier why sdp_thresh should reflect 

the router's current state. As packets of different size populate 

the queue, sdp_thresh should be able to adjust fast enough to 

reflect the new state. 

 
Fig. 2.  Convergence of sdp_thresh with different values of α. 

 

We assume that sdp_thresh=1040B and 140B packets arrive 

at the router. By setting a=0.1, sdp_thresh's value will be 

below 150B in 43 steps, or 43 packets. If the buffer's capacity 

is near 140·43≈6kB then sdp_thresh will reflect only the 
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packets currently in the queue, otherwise a bigger or smaller α 

value might be more appropriate (this is not exactly accurate 

however, since sdp_thresh takes account also the sizes of the 

packets that have been dropped). Different α values result in 

different convergence times (Fig. 2). For now we consider a 

static and equal to 0.1. 

IV. IMPACT ANALYSIS 

We will now examine the impact of SDP on packets. Being 

SDP a dropping-oriented protocol, it affects both the Packet 

Loss Rate and the Queuing Delay. The aim of our analysis is 

to confirm that SDP achieves successfully Service 

Differentiation and whether there are cases that lead to 

unfairness or underutilization. Since RED and SDP are based 

on the same core-algorithm, we will study the impact of SDP 

on packets, in contrast to the behavior of packets served by 

RED gateways. For the readers’ convenience, we will refer to 

flows that generate big packet sizes as big flows and to flows 

that generate small packet sizes as small flows. 

During our analysis we use some variables (Table 2). When 

these variables have the letter R subscripted, they refer to 

RED, whereas when they have the letter S subscribed, they 

refer to SDP. 
TABLE 2 

Analysis variables 
NAME DESCRIPTION 

Db, Ds the dropping probability of big and small packets, respectively 

x the sdp_thresh variable 

sb, ss the size, in bytes, of big and small packets, respectively. Unless 

stated otherwise, we assume that all big and all small packets 

have the same size 

TD1B the transmission delay of 1 byte in the given link conditions, used 

as delay unit 

Qd the queuing delay of a packet 

A. Packet Loss Rate 

SDP aims at minimizing the loss of small packets. Since 

small packets usually characterize real-time traffic that is not 

typically governed by the AIMD principle, the effect on 

decreased dropping is related directly to the lost data. 

Moreover, since SDP does not penalize big packets more than 

RED, its impact on loss rate due to dropping is zero
2
. To 

estimate the packet loss rate, we first calculate the dropping 

probability. 

 

Big packets: 

dropredDb
R

_=  

dropreddropsdpDb
S

__ ==  

0=−=
RS

DbDbimpact  (4) 

 

Small packets: 

dropredDs
R

_=  

dropred
x

ss
dropsdpDs

S
__ ⋅==  

 
2 In fact, we have increased loss due to the increased queue length which 

we consider trivial 

01_ <






 −⋅=−=
x

ss
dropredDbDbimpact

RS
 (5) 

Equation (4) shows that SDP does not increase loss rate of 

big packets more than RED. Equation (5), on the other hand, 

shows that SDP decreases the PLR of small packets providing 

them with increased privileges. For small packets, the loss rate 

is a function of ss and x. Smaller values of ss and/or bigger x 

signify less proactive drops. The packet size is determined by 

the corresponding application, while sdp_thresh is calculated 

by the packet sizes that populate the queue. In general, the 

packet size is predefined; there are, however, cases that we 

may wish to adjust it dynamically for better service. As this is 

not uncommon, we demonstrate later how SDP can overcome 

such actions. 

B. Queuing delay 

We consider a router where big and small packets (noted as 

‘b’ and ‘s’, respectively) have arrived. Some of them have 

been accepted and some others have been dropped. A packet 

arrives. Regardless of its size, this packet will experience some 

queuing delay. This queuing delay will depend on the 

dropping probabilities of the packets that arrived previously in 

the queue. For simplicity, we assume that the dropping 

probability is independent of the packet’s position in the 

queue. 

 

( ) ( )
( )( )sssbsbdropredsssbsbT

dropredTsssdropredTbsbQd

BD

BDBDR

⋅+⋅⋅−⋅+⋅⋅=

=−⋅⋅⋅+−⋅⋅⋅=

_

_1_1

1

11

( ) ( )

( )

















⋅⋅+⋅⋅−⋅+⋅⋅=

=














 ⋅−⋅⋅+−⋅⋅⋅=

=−⋅⋅⋅+−⋅⋅⋅=

2

1

1

11

1
_

_1_1

_1_1

sss
x

bsbdropredsssbsbT

dropred
x

s
sssdropredbsbT

dropsdpTsssdropsdpTbsbQd

BD

BD

BDBDS

 

( )( )⇔⋅+⋅⋅−⋅+⋅⋅−

















⋅⋅+⋅⋅−⋅+⋅

⋅=−=

sssbsbdropredsssbsbT

sss
x

bsbdropredsssbsb

TQdQdimpact

BD

BDRS

_

1
_

1

2

1

 

01_
1

>






 −⋅⋅⋅⋅=
x

ss
sssdropredTimpact

BD
 (6) 

since ss<x. 

 

Equation (6) demonstrates the impact on the queuing delay 

regardless of the packet size. All packets will experience 

increased delay since some small packet that would have 

otherwise been dropped from the queue, now contribute to 

delay cumulatively. Big flows, that generally use TCP, will 

respond to this delay and will decrease the rate with which 

they increase their sending windows. Moreover, big packets 

increase the risk to be dropped due to the increasing 

competition in the queue that might result in an average queue 

length more than the maximum threshold. On the other hand, 
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whereas small packets experience also bigger delays, they have 

more chances to survive eventually from proactive dropping. 

Concluding, we prove that SDP can achieve Service 

Differentiation and that it adjusts its behavior to different 

packet sizes. 

V. DEVELOPING INDIVIDUAL STRATEGIES 

SDP makes the assumption that small packet sizes 

correspond only to applications that require special service. 

However, users might try to fragment their bulk data into 

smaller pieces in order to promote themselves and gain from 

decreased dropping. We prove in this section using the basic 

principles of game theory that in SDP, the result of such an 

action depends on the behavior of the rest of the flows and that 

it is uncertain whether fragmentation is a winning or losing 

strategy. 

We assume a bulk data application that sends packets of a 

specific size in a single router network in presence of other 

flows. After some time, only the aforementioned application 

changes its attitude and fragments its data into smaller packets.  

We will use the variables cited in Table 3. When 

accentuated, they will refer to variables after fragmentation. 

 
TABLE 3 

Analysis variables 
NAME DESCRIPTION 

x the sdp_thresh variable before fragmentation 

x' the sdp_thresh variable after fragmentation 

ps the total size of the application’s packet before fragmentation 

ps' the total size of the application’s packet after fragmentation 

pl the payload of the packet 

od the overhead of the packet 

k the fragmentation factor of the packet 

ABL an “average bytes lost” index which is the packet size of a packet 

multiplied by its dropping probability. If 1' >ABLABL , we 

lose from fragmentation, otherwise we win 

 
Based on our previous assumptions we examine three main 

cases which can be concluded in Table 4. This table presents 

the possible cases from a single-user perspective, before and 

after fragmentation. For example, case (2) means that the 

user’s packet size before fragmentation was bigger than 

sdp_thresh, whereas after fragmentation the new packet size is 

smaller than the new value of sdp_thresh. 

 
TABLE 4 

Possible outcome for a user, before and after fragmentation. 
Before fragmentation 

 xps >  xps <  

'' xps >  (1) (4) After 

fragmentation '' xps <  (2) (3) 

 
The fourth case although objects to our assumptions, is 

possible in practical conditions and thus it will be examined 

separately. 

 

 

1) xps > , '' xps >  

In this first case, even though we fragment, the packet size is 

still bigger than sdp_thresh. 

 

( ) dropredodpldropsdppsABL __ ⋅+=⋅=  

( ) dropredodkpl

dropredod
k

pl
kdropsdppskABL

_

__''

⋅⋅+=

=⋅







+⋅=⋅⋅=

 

( )
( ) 1

_

_'
>

+
⋅+

=
⋅+
⋅⋅+

=
odpl

odkpl

dropredodpl

dropredodkpl

ABL

ABL
 (7) 

In this case, the more we fragment, the more we lose. 
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Fig. 3.  x' as a function of the fragmentation factor. 

 
For pl=1000B and od=40B, if x' lies in the blue area in Fig. 

3 then we lose, else we win. For relatively small values of k, 

the above function is constantly decreasing. In this case, we 

increase our probabilities of winning by increasing k (that is 

the fragmentation), thus decreasing the packet size. However, 

for bigger values of k, the function has a negative peak (Fig. 

4). 

For given pl and od the lower peak is unique. This lower 

peak defines the point where x' has its lower value. At this 
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point (k=25 in Fig. 4), we have the biggest possibility of 

winning from fragmentation. However, since we do not know 

the current value of x', x' may have any value. If x' is either in 

the blue or the red zone then we lose from fragmentation. The 

red zone defines the cases where the packet size is bigger than 

x', thus we fall back to the first case. 

 
Fig. 4.  x' and packet size as a function of the fragmentation factor. 
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similar function as in the second case. For pl=1000B and 

od=40B we get the graph in Fig. 5. 

 
Fig. 5.  x'/x as a function of the fragmentation factor. 

 

Since we assumed that x' is modified only by one flow, we 

expect that x'/x is near 1. Hence in this case we can be sure 

that we always win, even though there is a specific packet size 

that we have the most benefits. 

If we cancel the assumption that only one flow alters its 

stance, or in case that more flows enter the network, then the 

fourth case is possible. 
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which is impossible, since we supposed that odplx +> . 

Thus, no matter what we do, we always lose. 

We can summarize the previous analysis by saying that if 

ps'>x' then we certainly lose, otherwise, we may either win or 

lose. The entire problem resembles the ‘prisoner’s dilema’; if 

only one user fragments its data he wins, while the other loses, 

if they both fragment their data, they both lose. We note that 

the loss is not due to the decreased packet size but because of 

the increased number of packets the user has to generate to 

maintain the same sending rate. 

VI. SIMULATION SETUP 

A. AQM mechanisms setup 

During the experimental evaluation we compare SDP with 

three other AQM mechanisms: DropTail, RED and NCQ+. 

We use the following sets of RED, NCQ+ and SDP 

parameters: 

RED: The RED parameters are set according to the 

recommendation in [13]. That is, we use the “gentle” mode, 

the maximum threshold is set to three times the minimum 

threshold, and the minimum threshold is set to 1/8 of the 

buffer size. We use RED in byte-mode unless it is stated 

otherwise. The difference is that while classic RED drops 

randomly packets with the same probability regardless of their 

size, RED in byte-mode increases the probability as packet 

size increases. 

NCQ+: NCQ+ parameters are set according to the 

recommendations in [20] and [23]. That is ncqthresh1 is set to 

0.05 and α is always equal to 0.1. 

SDP: The weight factor α is set to 0.1. 

 

Additionally, we measure the buffer space allocated for the 

queue in bytes when we use RED and SDP but we measure it 

in packets when we use NCQ+ and DropTail. The difference is 
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that a queue measured in bytes might accept a small packet 

and drop a bigger when there is lack of buffer space, whereas a 

queue measured in packets will treat all the incoming packets 

equally regardless of their size. The reason for using two 

different ways of measuring the queue is that NCQ+ was 

originally analyzed and evaluated in [20] in packet mode. We 

follow this principle, and in order to ensure fairness during the 

evaluation, we compare the average values of the evaluation 

metrics (see Section 8). 

B. Application setup 

We simulate three types of traffic; FTP which consists of 

bulk data traffic and usually corresponds to big packet sizes, 

VoIP which consists of real-time traffic and small packets and 

Sensors which also consist of real-time traffic, however, their 

packet sizes are smaller than VoIP. The characteristics of each 

type of traffic are as follows: 

FTP Traffic: FTP packets are carried by the TCP 

NewReno version. Packet size is always mentioned in each 

experiment. 

VoIP Traffic: VoIP packets are carried by UDP. During a 

conversation, speakers alternate between activity and idle 

periods. Taking into consideration the ON and OFF periods 

[5], as well as the heavy-tailed characteristics and self 

similarity of VoIP traffic [10], we used the Pareto distribution 

for modeling the call holding times. We configure Pareto with 

a mean rate that corresponds to the transmission rate of 64kbps 

and the shape parameter is set to 1.5. In accordance with [5], 

we distribute the ON and OFF periods with means of 1.0sec 

and 1.35sec, respectively. We simulate VoIP streams of 

64kbps (following the widely-used ITU-T G.711 [9] coding 

standard) and we set packet sizes at 160 bytes (each packet has 

40-byte packet header). 

Sensor Traffic: We simulate Sensor flows by sending 

periodically packets of 40 bytes (20 bytes of sensor data plus a 

20-byte packet header) carried by UDP. The interval between 

two consecutive sensor transmissions is set to 50ms. 

VII. EVALUATION METRICS 

Goodput: Goodput is used to measure the overall 

performance of the network in terms of effective bandwidth 

utilization. 

onTimeTransmissi

taOriginalDa
Goodput =

 
where OriginalData is the number of bytes delivered from a 

sender to the corresponding receiver during their connection 

(TransmissionTime), excluding the retransmitted data and the 

overhead induced by packet headers. 

Meangoodput: Meangoodput is the average of the Goodput 

values of the individual flows. 

n

Goodput

tMeangoodpu

n

i

i∑
== 1

 
Lossrate: Lossrate is the number of lost packets divided by 

the total number of transmitted packets. Packets can be lost 

due to buffer overflows or proactive dropping. 

acketsansmittedPNumberOfTr

stPacketsNumberOfLo
Lossrate =

 
Meanlossrate: Meanlossrate is the average of all individual 

lossrates in the network. 

n

Lossrate

teMeanlossra

n

i

i∑
== 1  

Fairness: We use the Chiu’s fairness index [6], which 

captures the bandwidth allocation among competing flows. 

∑

∑

−

−








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n
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i
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i

i

Throughputn

Throughput
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Application Satisfaction Index: The Application 

Satisfaction Index (ASI), which was introduced in [21] by L. 

Mamatas and V. Tsaoussidis, captures the delay fair share per 

application on the basis of the delay impact of each 

application on others. It is defined as: 

max

1
max

1
nDelay

Delay
TotalData

Data
Delay

ASI

n

i

i

i∑ =
−

−=  

where n is either the number of active nodes or the number of 

different traffic classes; Datai the total transmitted data of the 

ith node to the receiver; TotalData the total transmitted data of 

all nodes; Delayi the average queuing delay of the ith node and 

Delaymax the maximum queuing delay of the system. 

R-Factor: We characterize the quality of voice 

communication using the R-Factor, which is included in the E-

Model ([15], [16]), an ITU-proposed analytic model of voice 

quality. R-Factor captures voice quality and ranges from 100 

to 0, representing best and worst quality respectively. R-Factor 

incorporates several different parameters, such as echo, 

background noise, signal loss, codec impairments and others. 

In [17], R-Factor is defined as: 

( ) ( ) ( )cdHddaR
3213321

1ln γγγββββ −−−−−−−=
 

where α= 94.2, β1 = 0.024ms
−1

, β2 = 0.11ms
−1

, β3 = 177.3ms, 

expresses the mouth-to-ear delay and the packet loss rate. For 

the G.711 codec, d2e1γ= 0, γ = 30, 3γ= 15. 

VIII. SIMULATION RESULTS 

For the experimental evaluation we will use two cross-

traffic topologies (Fig. 6 and 7) which incorporate two 

bottlenecks. The difference between these two topologies is 

that in the second topology, the VoIP data is transported via 

wireless links and we have an additional type of traffic; small 

FTP flows. This modification matches better the way VoIP is 

transferred over the Internet and allows us to have a more 

realistic scenario. 

Throughout our experiments, we attempt to address four 

specific issues: 

1) Prove that SDP succeeds to distinguish and subsequently 
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classify big from the various degrees of packet sizes and 

accomplish Service Differentiation (Scenario 1 - Scalability of 

SDP). 

2) Evaluate the applicability of SDP for VoIP traffic 

(Scenario 2 - Impact on the VoIP load). 

3) Show the impact of SDP on sensor-based applications 

(Scenario 3 - Impact on the sensor generated traffic). 

4) Evaluate SDP in a more complex scenario, where 

different types of traffic, such as big FTP flows, small FTP 

flows, VoIP and sensor traffic, coexist in the same network. 

(Scenario 4 - Impact on various traffic classes). 

5) Examine, in a simple topology, if SDP manages to 

increase the ASI [21] compared to RED (Scenario 5 - Impact 

on ASI). 

We discuss each scenario with its corresponding results. 

 
Fig. 6.  Cross-traffic topology. 

 

 
Fig. 7.  Cross-traffic topology with wireless VoIP users. 

 

1) Scenario 1 - Scalability of SDP 

In this first scenario, we vary the total number of flows from 

40 to 240, while maintaining constant percentages for the 

different types of flows. Specifically, 5% of the flows involve 

VoIP calls, 5% sensor data transmission, and the remaining 

90% big FTP flows with 1KB packets. This scenario allows us 

to draw conclusions on the scalability of the proposed 

mechanisms in low and high contention of the link. 

 
Fig. 8.  Meangoodput of big FTP flows. 

 

 
Fig. 9.  Meangoodput of sensor flows. 

 

 
Fig. 10.  Meangoodput of VoIP flows. 

 

 
Fig. 11.  R-factor of VoIP flows. 

 

Fig. 8, 9 and 10 show that SDP succeeds to apply service 

differentiation among various flows better than DropTail, 

RED and NCQ+. While both RED and NCQ+ are capable of 

providing quality guarantees for sensor packets successfully 

(Fig. 9), only SDP increases the meangoodput of VoIP (Fig. 

10), without affecting big FTP flows (Fig. 8). This increase 

signals a corresponding increase in the user-perceived quality, 

expressed by R-factor (Fig. 11). The most interesting point is 

that SDP has a consistent behavior as the number of 

contention increases; Fig. 9 and 10 show that as flows 

increase, the meangoodput for small packets remains the 

same. In fact, the same applies for R-factor (Fig. 11); the 

quality of voice remains the same although more calls are 

initiated. Fig. 10 exhibits an interesting illation; as long as the 

number of VoIP flows is small, NCQ+ strategy results in 

more Goodput than SDP. SDP manages to serve better VoIP 

flows when their number increases. We demonstrate that 

dropping- and scheduling-oriented LIBS are indeed 

complementary and that different network conditions impose 

different approaches. 
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2) Scenario 2 - Impact on the VoIP load 

In this scenario we attempt to capture the impact of SDP on 

VoIP applications considering different levels of VoIP traffic. 

We set the total number of flows to 100. Sensor flows consist 

of the 6% of the total number of flows (6 flows) and VoIP 

flows vary from 6% to 36% (from 6 to 36 flows). 

 

 
Fig. 12.  Meangoodput of big FTP flows. 

 

 
Fig. 13.  Meangoodput of sensor flows. 

 

 
Fig. 14.  Meangoodput of VoIP flows. 

 

 
Fig. 15.  R-factor of VoIP flows. 

 

The results are similar to the results in the first scenario, 

however there are some differences. This time, we decrease 

the number of big FTP flows and increase the number of VoIP 

flows. Fig. 12 shows how all schemes allocate more bandwidth 

for each big flow. Fig. 13, also shows that NCQ+, RED and 

SDP provide the same quality guarantees for sensor traffic. 

However, Fig. 14 and 15 depict SDP’s superiority over the 

other AQM schemes since SDP promotes VoIP packets more 

effectively and increases the R-factor. Nevertheless, we do not 

experience the same behavior as in the Scenario 1, as the 

number of VoIP flows becomes significant and comparable to 

the number of big flows. Sdp_thresh is decreased and the 

dropping probability for VoIP packets is increased. 

 

3) Scenario 3 - Impact on the sensor-generated traffic 

We repeat the previous scenario, only now we vary the 

number of sensor flows. Once again we set the total number of 

flows to 100, the number of VoIP flows to 6% of the total 

number of flows and we vary the sensor flows from 6% to 

36%. We study the impact on sensor-generated traffic. 

 

 
Fig. 16.  Meangoodput of big FTP flows. 

 

 
Fig. 17.  Meangoodput of VoIP flows. 

 

 
Fig. 18.  Meangoodput of sensor flows. 

 

Apart from Droptail, all AQM schemes provide almost 

equal service to sensor packets (see Fig. 18). However, SDP 

also favors VoIP packets as more packets arrive successfully at 

the receivers (see Fig. 17). Remarkably, this superiority of 

SDP is not at the cost of big FTP flows (see Fig. 16), but it 

comes as a result of better packet classification. 
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4) Scenario 4 - Impact on various traffic classes 

In this last scenario we will use the topology of Fig. 18, with 

all two types of FTP flows, big FTP (1KB packet sizes) and 

small FTP (500B packet sizes). We increase the total number 

of flows in the network and study the performance of each 

type. 10% of the total number of flows is VoIP traffic, 10% is 

sensor traffic, and each of the small and big FTP flows consist 

of the 40% of the total traffic. This scenario is more close to 

real-life networks where different types of applications 

compete for some limited common resources. 

 

 
Fig. 19.  Meangoodput of big FTP flows. 

 

 
Fig. 20.  Meangoodput of small FTP flows. 

 

 
Fig. 21.  Meangoodput of VoIP flows. 

 

 
Fig. 22.  Meangoodput of sensor flows. 

 

 

This last scenario proves not only that SDP is scalable but 

also adaptive. SDP does not allocate blindly buffer space to 

small FTP flows; as their number increases sdp_thresh 

decreases and they tend to get equal priority to big FTP flows. 

The bandwidth allocated for VoIP and sensor traffic is the 

same, since their contribution to the total contention remains 

trivial all the times. While NCQ+ and RED may have similar 

results to SDP in Fig. 22, SDP achieves a better and fairer 

distribution of bandwidth, leading to a more effective AQM 

approach. 

 

5) Scenario 5 - Impact on ASI 

In [21], the ASI depicted NCQ functionality effectively and 

reliably, as NCQ aims to minimize the delay of non-congestive 

traffic. SDP however, adjusts dropping probability that 

generally does not affect queuing delay, thus we do not expect 

a significant ASI increase. We conducted an experiment on a 

dumbbell topology (Fig. 24). The number of the flows varies 

from 100 to 500 and small flows consist the 10% of the total 

flows. Small flows consist 100B packets and big flows 1kB. 

 

 
Fig. 23.  ASI of big and small FTP flows. 

 

The results of the simulation are depicted in Fig. 23. Even 

though SDP is designed to decrease the queuing delay of 

packets, it achieves to increase ASI slightly, compared with 

RED, due to the fact that it increases small FTP flows 

satisfaction by assigning less dropping probability. 

IX. ALTERNATIVE STRATEGIES ON PACKET FRAGMENTATION 

Assuming that a LIBS-based mechanism is deployed, an 

application may follow alternative strategies in order to have 

performance gains. We use a simple dumbbell topology as 

shown in Fig. 24 and we experiment with FTP traffics that use 

different packet sizes. We consider 100 FTP applications and 

two distinct types of classes, one that utilizes big packet sizes 

(1KB) and the other that utilizes small packet sizes (100B) or 

medium packet sizes (500B). In the first set of our 

experiments, we assign the transmission of 5MB data to each 

of the flow and calculate the average completion time of tasks. 

Next, we implement experiments where FTP flows have 

unlimited data to send and study how the available bandwidth 

is shared among flows that use different packet sizes. In both 

sets of experiments, we adjust the percentage of big and small 

flows to study the scalability of the proposed mechanism. We 

assume that each packet has 40 bytes overhead. 
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Fig. 24.  A dumbbell topology with FTP flows that generate big and small 

packets. 

A. Fixed Data Transmission 

In this scenario, we compare SDP with RED in byte mode. 

They both attempt to distinguish small packets and minimize 

their chances to be dropped. However, RED in byte mode has 

two functions i) it increases the probability of a big packet to 

be dropped ii) it decreases the probability of a small packet to 

be dropped. The size is characterized as “small” or “big” 

compared to the meanpacketsize parameter which is fixed. 

Packets whose size is equal to meanpacketsize are dropped 

with the probability calculated by the original RED algorithm 

We will study two cases: (1) Small FTP flows that use 100B 

packets and (2) small FTP flows that use 500B packets. 

 

1) Small FTP flows that use 100B packets. 

 
Fig. 25.  Service Time with RED. 

 
Fig. 26.  Service Time with SDP. 

 

As we can see in Fig. 25 and 26 when the percentage of 

small flows is less than the percentage of big flows, small 

flows benefit more from the RED mechanism than from SDP 

and finish their tasks earlier. Similar things apply for big 

flows. As more flows change their strategy (70-100%) and 

attempt to benefit from the SDP mechanism, SDP seems to 

benefit big flows rather than the small ones. This is due to the 

dynamic classification of SDP, which takes into consideration 

the proportion of big and small packets in the queue and treats 

them the same if many small packets populate the queue. On 

the contrary, RED keeps dropping big packets with higher 

probability than small packets, although small packets’ 

contribution to congestion is significant. 

This trade-off resembles a game theory problem. If all FTP 

flows play fair the game and use 1KB packets then they will all 

finish their tasks in 298 sec. If a small amount of them try to 

cheat they will benefit but as their number is increased, they 

will all lose and finish their tasks in more than 298 sec. 

Moreover, when the percentage of misbehaving flows exceeds 

the one that play the game fairly, not only will they extend the 

time to finish their task but, beyond that, will also boost the 

performance of fair flows that now finish their tasks in less 

than 298 sec. 
 

2) Small FTP flows that use 500B packets 

We implement the same set of experiments as before, 

however small flows have 500B packet size rather than 100B. 

Fig. 27 and 28 show that even with 500B packets, small 

flows are “punished”; it takes more time for then to finish their 

tasks with SDP rather than with RED. Moreover, as the 

number of small flows is increased significantly, SDP treats 

better big flows and their service time becomes stable. Fig. 5 

shows that in presence of RED, small flows are getting better 

service, while the service time of big flows is worse and is 

increased as more flows decide to change their strategy. 

 
Fig. 27.  Service Time with RED. 

 

 
Fig. 28.  Service Time with SDP. 

 

B. Fixed Time Transmission 

Next, we use the same topology as before, however now 

flows have always data to send. We attempt to study how the 

available bandwidth is allocated among competing flows. We 

aim to exploit as well as possible the available resources, as 

well as to achieve a fair bandwidth distribution.  

At first, we consider big flows that generate 1KB packet 

sizes and small flows that generate 100B packet sizes. 
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Fig. 29.  Meangoodput of big FTP flows. 

 

 
Fig. 30.  Meangoodput of small FTP flows. 

 

 
Fig. 31.  Meanlossrate of big FTP flows. 

 

 
Fig. 32.  Meanlossrate of small FTP flows. 

 

 
Fig. 33.  System fairness. 

 

Fig. 29 and 30 show how SDP reallocates bandwidth among 

flows in order to achieve a fair distribution. Small flows 

increase their transmission, while big flows back off. Fig. 31 

and 32 depict that by decreasing dropping on small flows, 

meanlossrate is decreased and thus fairness is increased (Fig. 

33). While SDP achieves a good reallocation of network 

resources, NCQ+ promotes less small packets than necessary 

while RED promotes more packets; both increasing 

inequalities among different packet sizes. The only exception 

when SDP decreases fairness is when we have little number of 

small flows. This is the only case that we tolerate unfairness as 

we would like to ascertain that when we have few small 

packets, they have maximum priority and the best treatment 

possible. Next, we consider big flows that generate 1KB 

packet sizes but small flows that generate 500B packet sizes. 

 
Fig. 34.  Meangoodput of big FTP flows. 

 

 
Fig. 35.  Meangoodput of small FTP flows. 

 

 
Fig. 36.  Meanlossrate of big FTP flows. 

 

 
Fig. 37.  Meanlossrate of small FTP flows. 
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Fig. 38.  System fairness. 

X. CONCLUSION AND FUTURE WORK 

We proposed a new Service Differentiation scheme, based 

on packet dropping, which classifies packets according to their 

size. Due to its self-adaptable structure, the proposed 

mechanism does not drop packets blindly; instead packet 

dropping probability depends on the comparative packet sizes 

in the queue. During the experimental evaluation we showed 

that SDP: (i) manages to increase Goodput and link utilization, 

(ii) achieves a better system Fairness compared to other 

proposals and (iii) increases the perceived quality on real-time 

applications. Despite SDP efficiency, its algorithm is light-

weight, fast and does not require memory-consuming 

procedures or large reference-tables. 

Although packet dropping proves to be effective for both 

time-sensitive and delay-tolerant applications, there are cases 

where a packets need to be promoted through scheduling as 

well. Future extension of the algorithm will incorporate a time-

scheduling mechanism, similar to the NCQ+ principle, that 

allows special priority for selected packets that require small 

delivery times. We plan to study the effects on delay, jitter and 

perceived quality. 
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