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Abstract

We extend the theoretical model of Chiu and Jain described in [2] by
taking into account the role of bottleneck buffer and present a new analysis
that allows system to reach equilibrium fast, based on throughput measure-
ments. In our model, no flow is aware of the number of competitors in the
channel, no flow is aware of the bandwidth and buffer capacity; however, at
the end of each epoch, which is signaled by a congestion event, each flow can
i) estimate whether it has operated above, beyond or around its fair-share
and ii) adjust its window to its fair-share. Within this context, we present
two rules on how to adjust the transmission rate after a congestion event,
namely Fair-Share and Fairness rule. They both promote fairness without
damaging system efficiency and responsiveness. Simulation results confirm
the validity of our analysis and the proposed congestion control schemes.
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1. Introduction

In a shared network, such as the Internet, flows should react to conges-
tion by adapting their transmission rates to avoid congestion collapse in a
manner that the total bandwidth of the network will be expended fairly and
effectively. This responsive behavior entails several challenges. Firstly, there
is no centralized system to control the network traffic. Moreover, network
flows do not have any prior or present knowledge of network characteristics,
such as the number of competing flows, links bandwidth, routers queue size
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etc. Despite these limitations, the varying number of participating flows,
must be adaptive to network changes.

Transmission control of standard TCP [3], [4] is based on the Additive In-
crease/ Multiplicative Decrease (AIMD[2]) window adjustment strategy. AIMD
is a somewhat ”blind” mechanism, in the sense that the congestion window
increases steadily until the actual occurrence of congestion, which, in turn,
necessitates error recovery. Although the linear window adjustment of AIMD
eventually reaches an optimal point, it takes several epochs to reach equilib-
rium. Should realistic, rapid chances occur (e.g. a change in the number of
flows), the system may not even reach equilibrium, due to long duration of
the convergence period. Even when convergence has been achieved, the equi-
librium satisfies only instantly the notion of fairness. That is, although we
managed to bring an unfair system to a state of fairness, we did not manage
to allocate resources fairly throughout the lifetime of our system.

This observation prompts us to establish further criteria for judging fair-
ness. For example, the duration required for a system to reach equilibrium
reflects the duration the system was unfair and, in this context, reflects the
level of system unfairness. Additionally, our observation calls for measures
to adjust fairness from an instance of time to a timescale that corresponds to
the lifetime of the system in turn, it calls for establishment rules and mecha-
nisms to allow flows to either pay back or earn further credit along the lines
of their previous behavior.

In this context, first we extend the model described in[2], by taking into
account the role of the routers’ buffer and present a mechanism that allows
each flow independently to estimate its deviation of its fair-share. More par-
ticularly, each flow becomes aware of whether it has operated beyond, below
or around its fair-share, which allows them to determine the next conges-
tion control strategy for fast convergence to fairness. We then introduce the
necessary window adjustment rules. According to the Fair-Share rule each
flow can estimate and instantly operate at its fair-share without damaging
the network efficiency. Simulation results confirm that, in the presence of
the Fair-Share rule, system converges in one congestion cycle (one epoch) to
equilibrium. However, system resources have not necessarily been allocated
fairly among flows, since during the period of measurements some flows may
have consumed more resources than others. Therefore, we introduce the Fair-
ness rule, which acts as an add-on and guarantees that each flow operates in
association to the amount of resources that has consumed.

In the next Section, we present our system model for the theoretical
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throughput analysis. In Section 3, we present our analysis on throughput
and, in Section 4, we discuss the deficiencies of AIMD algorithm on system
convergence to equilibrium. The proposed window adjustment rules are de-
tailed in Section 5 and evaluated through simulations in section 6. Finally,
in Section 7, we conclude our work and suggest directions for future work.

2. System Model

Our model is initially characterized by a synchronous generation of re-
sponses, in congruity with [2]. Similarly, we assume a centralized feedback
model, where all flows become aware of congestion events synchronously. In
the current study, however, we extend the model described in [2] by taking
into account the role of the router’s buffer at the bottleneck point. Note
that although we allow for the possibility of queueing delays, we consider
that flows experience the congestion events almost simultaneously. Thus the
duration of an epoch is almost equal for all flows. The synchronous flows’
notifications is possible in real networks, e.g. by through multiple packet
dropping at the end of an epoch, when the capacity of the queueing buffer
has been exhausted.

The proposed model takes into account realistic network characteristics,
namely the router’s uplink capacity C and buffer size BS; Each flow is not
aware of the throughput rates (window sizes) of other flows; Each flow is not
aware of the number of competitors in the channel; No flow is aware of the
bandwidth B and buffer capacity BS.

Finally, the network topology used in the context of this paper is the
typical dumbbell and is illustrated in Fig. 1. Table 1 summarizes the terms
used throughout this paper.

3. Throughput Analysis

In this section, we study the dynamics of throughput from the flow per-
spective. We provide an analytical and intuitive explanation for these dy-
namics by concentrating on the window-based transmission control of TCP

and by incorporating the role of the bottleneck queue. Based on throughput
measurements, we show that at the end of an epoch, each flow can estimate
whether it has operated beyond, below or close to its fair-share.

Flows are assumed to initially follow the Additive Increase / Multiplica-
tive Decrease rule. Figure 2 shows the throughput of a system during an
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Figure 1: Simple network topology

Symbol Meaning
cwnd Current congestion window

t Time of sampling
epoch The interval between two cwnd multiplicative decreases

i Round number
B The Bandwidth of the Uplink
C The Capacity of the Uplink
BS Router’s Buffer size

ACK Acknowledgement Packet
RTT Round Trip Time

Table 1: Algorithm symbols

Figure 2: System Throughput

epoch. As the number of packets inserted into the link increases, through-
put increases. After the capacity of the link is fully utilized, a queue starts to
build up at the bottleneck point (router) while throughput stops increasing.
Further increase of incoming rate of packets potentially results in packet
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drops and the network state changes from available to ”congested”. The
point at which queue starts to build up is called knee. Since flows adjust
their window simultaneously, the knee point may be detected by all flows
from RTT measurements. It is precisely the point where the RTT value is
greater than the RTTmin, which corresponds to the Round Trip propagation
delay.

Throughput Analysis. Consider a system described in Section 2, where
n users share a bottleneck link with capacity C and round trip delay RTTo.
The flows’ data rates are gradually increasing (additive increase) and the net-
work eventually becomes congested. The network signals the senders about
the change of the state (from available to ”congested”) and the senders re-
duce their sending rate. Throughput for the ith flow at time t is defined
as:

Throughput =
cwndi(t)

RTT (t)
=

cwndi(t)

RTTo + qdelayi(t)
(1)

where cwndi(t) is the congestion window of the ith flow at time t and
qdelayi(t) is the corresponding queueing delay at the bottleneck router at
time t. Note that Throughput is not only a function of the congestion
window, but also a function of the dynamic queueing delay, which is not
incorporated into the analysis of [2], [5].

Assume that all flows are in the additive increase stage. If the system
operates below the knee point, then there is no steady queue buildup 1 at
the router, and according to Equation (15), throughput of each flow grows in
proportion to its cwnd, since the bottleneck capacity is not fully utilized. If
the system load increases further beyond bw, flows display different dynamics:
the bottleneck queue starts to build up and flows experience queueing delay,
until the queue length reaches the maximum buffer size (system reaches the
cliff point of Figure 15).

Consider two measurement sample points: point A at time t1 and point
B at time t2 between the knee and the cliff. Throughput of the ith flow
at time t1 and t2 are throughputi(t1) and throughputi(t2), respectively and
∆Throughputi(t2) is:

∆throughputi(t2) = throughputi(t2)− throughputi(t1) =

1There could be temporary queue buildup due to traffic burstiness. However, this is
neglected to simplify our analysis
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=
cwndi(t1) + ∆cwndi(t2)

RTT (t2)
− cwndi(t1)

RTT (t1)
=

∆cwndi(t2)RTT (t1)− cwndi(t1)∆qdelay

[RTTo + qdelay(t2)][RTTo + qdelay(t1)]
(2)

∆qdelay is defined as:

∆qdelay = qdelay(t2) − qdelay(t1) =

=

n∑
k=1

cwndk(t2)−
n∑

k=1

cwndk(t1)

bw
=

=

∆

(
n∑

k=1

cwndk(t2)

)

bw
(3)

Consequently from (2) and (3) ⇒:

∆throughputi(t2) =
∆cwndi(t2)RTT (t1)− cwndi(t1)

∆

(
n∑

k=1
cwndk(t2)

)

bw

[RTTo + qdelay(t2)][RTTo + qdelay(t1)]
=

=

∆cwndi(t2)RTT (t1)bw − cwndi(t1)∆

(
n∑

k=1

cwndk(t2)

)

[RTTo + qdelay(t2)][RTTo + qdelay(t1)]bw
(4)

At this point we make the following assumption:
If network resources were allocated equally among competing flows, they

would all experience the same increase of their congestion window, and equal
to ∆cwndi(t2) during the time period from time t1 to t2, defined as:

∆

(
n∑

k=1

cwndk(t2)

)
= n∆cwndi(t2) (5)

Consequently, equation (4) becomes:
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∆throughputi(t2) =
∆cwndi(t2)RTT (t1)bw − cwndi(t1) · n ·∆cwndi(t2)

[RTTo + qdelay(t2)][RTTo + qdelay(t1)]bw
=

=
∆cwndi(t2)

[RTTo + qdelay(t2)]
[1− n · cwndi(t1)

RTT (t1) · bw ] ⇔

∆throughputi(t2) =
∆cwndi(t2)

[RTTo + qdelay(t2)]
[1− n · cwndi(t1)

n∑
k=1

cwndk(t1)
] (6)

Note that the term ∆cwndi(t2)
[RTTo+qdelay(t2)]

in equation (6) is always positive while

the term [1 − n·cwndi(t1)
n∑

k=1
cwndk(t1)

] term might be either positive or negative. It is

obvious that equation (6) allows ith flow to determine whether it operates
below, beyond or adjacent its fair-share. Specifically:

• If ∆Throughput(t2) > 0, the rate of ith flow at time t1 is below its

fair-share, since
n∑

k=1

cwndk(t1) > n · cwndi(t1)

• If ∆Throughput(t2) < 0, ith flow at time t1 has reached a rate above

its fair-share, since
n∑

k=1

cwndk(t1) < n · cwndi(t1)

• If ∆Throughput(t2) = 0, ith flow has reached its fair-share, since
n∑

k=1

cwndk(t1) = n · cwndi(t1)

Therefore, equation (6) establishes a criterion, based on which each flow
independently can review its transmission rate and deduce whether it oper-
ates greedily, fairly or suffering mistreatment.
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4. Observations on the dynamics of AIMD

In this section, we investigate the operational properties of AIMD and
extend the initial study in [2] by taking into consideration the role of the
bottleneck buffer.

Figure 3: Vector representation of two-flow convergence to fairness

Consider the system presented in Section 2. The convergence behavior of
two flows is depicted by vectors in a 2-dimensional space oscillating around
the efficiency line as in Figure 3. Two flows, f1 and f2, have x and y initial
windows, where x < y , x + y < C + BS. The horizontal axis represents the
congestion window of flow f1, while the vertical axis the congestion window
of flow f2. The values of congestion windows for which x + y = C, are
represented by a straight line marked as ”Efficiency Line”. The values of
congestion for which x+y = C+BS, form a straight line marked as ”Network
Capacity Line”. Finally, the ”Fairness Line” consists of all points for which
x = y.

Both users follow the Additive Increase / Multiplicative Decrease control
policy to reach the equilibrium area. When flows are in the additive increase
phase they move parallel to the 45o axis (Additive Increase parameter aI=1)
and flows converge the line of efficiency. Once flows exceed the Network
line, they decrease their current window using the Multiplicative Decrease
parameter bD=1/2 and move closer to the Fairness line.

Based on the above description, we highlight three observations and arrive
at conclusions that constitute the foundation of the present work:

1. When flows f1 and f2 are in additive increase phase, equal amount of
system resources is being allocated to the flows.
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2. The Multiplicative Decrease rule aims to minimize the initial windows
of the two flows (x and y); at this point both flows have the same con-
gestion window at the beginning of the next phase of Additive Increase.

3. The initial windows’ values are responsible for the system’s slow con-
vergence to fairness.

4. The ”distance” between the Network Capacity Capacity Line and the
Efficiency Line depends only on the multiplicative decrease factor.

Practically, both fairness and efficiency can be achieved with the ”appro-
priate” decrease of the current window. During the additive increase phase
the flows increase their resource consumption uniformly, and therefore the ad-
ditive increase factor should not be affected. The efficiency is associated with
the utilized bandwidth and can be ensured as long as the aggregate window
of flows operates between the Efficiency and Network Capacity lines. Thus
window reduction should keep the load above efficiency line and close to
fairness line to ensure fair allocation of network resources. This objective
can be achieved only when flows operate around their fair-share. Therefore,
the real issue for protocol design remains the specification of the adjustment
rules for the congestion window.

5. The Congestion Window Adjustment Rules

In this section, we present two window adjustment rules to regulate the
amount of data that a flow inserts into the network. Both rules rely on
throughput measurements and act at the end of each epoch, which is de-
termined by packet loss or the arrival of a congestion marked packet. The
estimated rate adjustment applies to the next epoch (the one that is about
to begin).

The first decrease rate scheme, namely the ”Fair-Share rule”, gives the
appropriate window adjustment that ensures operation at its fair-share; while
the second rule, the ”Fairness rule”, guarantees the equal sharing of resources
among flows during the ith and (i + 1)th epoches.

5.1. The Fair-Share Rule

The Fair-Share Rule. In order to operate at its fair-share, the flow
should adjust its congestion window, according to equation:

cwndfair−share =
cwndB + x

RTTB

·RTTmin (7)
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where

x =
RTTAcwndB −RTTBcwndA

RTTB −RTTA

Notations A and B represent two measurement samples during the ith

epoch at timeA and timeB, respectively, where timeA < timeB and RTTA, RTTB >
RTTmin.

Justification. Flows start sending packets according to the Additive
Increase Rule(aI = 1). When the capacity of the link is fully utilized and
buffer capacity at the bottleneck link is exhausted, the system notifies all
flows to decrease their windows. Based on Eq. 6, each flow can estimate
whether or not it has reached its fair-share during the ith epoch and reach
one of the following conclusions:

• The flow has operated above its fair-share.

• The flow has operated beyond its fair-share.

• The flow has operated around its fair-share.

Next, we study each one of the above cases and calculate the appropriate
value of the current window, which guarantees operation at the flow’s fair-
share.

1st case. The flow has operated above its fair-share.
The throughput measurements and cwnd values of a flow f1, during the

ith-epoch, are shown in Figure 4. Since flow f1 has exceeded its fair-share
i) throughput between the knee and the cliff points decreases and ii) the
optimal line of cwnd, which guarantees operation at its fair-share, is lower
than the current line of operation.

Consider two points, point A at time tA and point B at time tB between
knee and cliff, at which flow f1 received feedback (ACKs) from the receiver.
Flow f1 records the cwnd values, cwndA and cwndB, measures the round trip
time of packets, RTTA and RTTB, and calculates the corresponding values
of throughput, throughputA and throughputB.

Next, consider that the optimal values of cwnd, that guarantee operation
at its fair-share at times tA and tB, are cwndC and cwndD respectively.
Consequently, the line between the point C and D is the fair-share line.
According to Eq.(6):
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Figure 4: Flow operation above its fair-share.

ThroughputC = ThroughputD

and therefore,

cwndC

RTTC

=
cwndD

RTTD

(8)

Since the additive increase factor is the same in both cases (aI = 1),

vector
→

CD is parallel to vector
→

AB (
→

CD //
→

AB), and thus it holds that
cwndC = cwndA + x and cwndD = cwndB + x. Consequently:

Eq.(8) ⇔ cwndA + x

RTTA

=
cwndB + x

RTTB

(9)

Note that due to different rate of incoming packets at the router during
the (i + 1)th epoch, the flow f1 might not have measurement samples for
which RTTC = RTTA and RTTD = RTTB. However the fair-share line of
the congestion window does not depend on these values, since the additive
increase factor is static. Hence, from eq.(9) we derive

x =
RTTAcwndB −RTTBcwndA

RTTB −RTTA

(10)
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The decrease of cwnd at the end of the ithepoch, should also guarantee
that system efficiency is beyond the efficiency line. So the optimal point is
the knee’ point for which RTTknee = RTTmin. We seek to satisfy:

Throughputknee′ = ThroughputD

⇔ cwndknee′

RTTmin

=
cwndD

RTTB

(11)

From equations (10) and (11) we conclude:

cwndfair−share = cwndknee′ =
cwndB + x

RTTB

·RTTmin

2nd case. The flow has operated below its fair-share.
The throughput and cwnd samples of flow f1 are depicted in Figure 5.

Since flow f1 has consumed less resources than its fair-share, the throughput
line is increasing and the optimal cwnd line is greater than the measured one.
Similarly to before we conclude that:

cwndfair−share = cwndknee′ =
cwndB + x

RTTB

·RTTmin

where x = RTTAcwndB−RTTBcwndA

RTTB−RTTA

3rd case. The flow has reached its fair-share. In this case equation (7) is
verified as follows: According to Equation (6):

ThroughputA = ThroughputB

⇔ cwndA

RTTA

=
cwndB

RTTB

(12)

Consequently:

Eq.(10) ⇔ x = 0

and

Eq.(7) ⇔ cwndfair−share =
cwndB

RTTB

·RTTmin = cwndknee

which is true, since flow operates at its fair-share line, during the ith epoch.
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Figure 5: Flow operation below its fair-share.

5.2. The Fairness Rule

According to the Fair-Share rule, a flow can estimate its fair-share and
adjust to it at the end of each epoch. However greedy flows that have con-
sumed more bandwidth than others should pay back their credit, while flows
that operated below their fair-share, should get more resources before final
convergence to equilibrium. Therefore, we introduce the Fairness rule, to
complement the Fair-Share rule. The Fairness rule compensates for any in-
justice for one epoch, before handing over the control to the Fair-share rule.
More specifically, the Fairness rule is adopted when the fair-share of the flows
has changed due to flow contention changes, or on the initialization of a flow.

The Fairness Rule. In order to achieve system equilibrium, the con-
gestion window should be adjust according to:

cwndfairness = cwndfair−share ± x (13)

where

x =
RTTAcwndB −RTTBcwndA

RTTB −RTTA

x is added in Equation(13) when the flow has operated below its fair-
share, and subtracted in the opposite case.
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A and B depict two measurement samples during the ith epoch at timeA

and timeB, respectively, where timeA < timeB and RTTA, RTTB > RTTmin.
Justification.
In the same context, during the ith epoch, flow fi might have operated

below, above or around its fair-share.
1st case. The flow exceeded its fair-share.
The flow has consumed more resources during the ith epoch, equally to

x packets 2 [see (10)]. Upon the reception of the congestion signal, the flow
should adjust its window to x packets less than its fair-share (see Figure 6),
in order for it to pay back its credit. That is:

cwndfairness = cwnd′fair−share − x

Figure 6: fair cwnd decrease

2nd case. The flow has operated below its fair-share.
The flow has consumed less resources during the ithepoch, equally to x

packets, see Equation (10). Upon the reception of the congestion signal, the
flow should adjust its window to x packets more than its fair-share(see Figure
7). That is:

cwndfairness = cwnd′fair−share + x

3rd case. The flow has operated adjacent to its fair-share.
During the ithepoch, the flow has consumed resources that correspond to

its fair-share. Upon the reception of the congestion signal, it should decrease
its window according to the Fair-Share Rule.

2In reality this quantity is measured in bytes in TCP
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Figure 7: fair cwnd increase

cwndfairness = cwndfair−share

6. From Theory to Practice

In this section, we evaluate experimentally the throughput analysis pre-
sented in Section 3 and the validity of the window adjustment rules proposed
in Section 4 on ns-2 network simulator [1]. For this reason, we incorporate
the algorithms into TCP [6] and study the system’s performance. The TCP

version of choice in our experiments is TCP-Reno. TCP-Reno considers the
network as a black box that has the capability to produce congestion sig-
nals; consequently TCP-Reno can adjust its sending rate accordingly. This
functionality allows us to evaluate the proposed algorithms with precision,
since the results are affected solely by the algorithms themselves and not by
potentially dubious measurements (e.g. RTT).

Inline with the theoretical analysis, our TCP implementation deploys a
window increase by one, as long as resource supply has not been exceeded.
Each time a packet is sent, the sender records the system clock and the
value of the congestion windows. Each time a corresponding ACK is returned,
the sender re-reads the clock and the value of the congestion window, and
computes the RTT and Throughput (Equation (2)). The RTTmin value is
then updated and the flow adjusts its congestion window to the knee point,
as described in Section 3.

At the end of each epoch, which is signaled by the reception of a conges-
tion notification followed by load reduction in the network, each flow selects
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two points, A and B (see Figures 5, 4). As mentioned, each time a flow re-
ceives an ACK, it measures the corresponding RTT, Throughput and cwnd. In
our evaluation, point A is the middle sample of all its measurements, and B

is the penultimate sample during that epoch. We then estimate:

• How close the flow operates to its fair-share, according to the through-
put analysis presented in section 3.

• The congestion window value that allows it to work at its fair-share,
according to the Fair-Share rule (see section 4).

• The congestion window value that guarantees fair allocation of re-
sources among the competing flows, according to the Fairness rule (see
Section 4).

Note that at the evaluation for the Fairness rule, each flow uses the
Fairness rule as an enhancement of the Fair-Share rule; each flow implements
the Fairness rule at the reception of a congestion signal and the change of the
fair-share, or the start of transmission. More particularly, each flow at the
end of the ith epoch compares the estimated fair-share with the fair-share at
(i − 1)th epoch. If the value of fair-share has changed, the flow adjusts its
cwnd according to the Fairness rule, otherwise it follows the Fair-Share rule.

To study how system converges to equilibrium and how it reacts to sudden
changes of traffic, we implement a contention increase scenario where we
study each algorithm under the same dynamic network conditions. More
particularly, we use a single bottleneck link (see Fig.8) with a bandwidth of
10Mbps where 2 flows enter the system a time difference of 0.1secs, while two
more flows enter at the 10th and 20th sec of the experiment, respectively.

We measure system behavior in the presence of the proposed algorithms
by monitoring measurements and cwnd values. We also use the short-term
fairness index to capture potential bandwidth tradeoff among flows. More
particularly, the ShortTermFairness index shows how resources are allocated
among flows within short time slots:

ShortTermFairness = Et{

(
n∑

i=1

Throughputi

)2

n
n∑

i=1

(Throughputi)2

} (14)

where, Throughputi is the throughput of the ith flow, defined as:
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Throughputi =
TotalDataSent

TransmissionT ime
(15)

where TotalDataSent is equal to the sum of original data, retransmitted
data and packets’ header size (in Bytes), during its connection (TransmissionTime).

ShortTermFairness index is sampled in short time scales and provides a
measure of fairness with better granularity.

6.1. Simulation Setup

In our evaluation scenarios, we needed a mechanism at the router that
would notify all competing flows simultaneously about the congestion. This
is of crucial importantance, since our system model described in section 2 is
characterized by a centralized feedback model, where all flows become aware
of congestion events synchronously.

DropTail is a well-known mechanism that results in simultaneous noti-
fication of flows, due to multiple packet losses when the buffer capacity is
exhausted. However, as the number of flows increases only some of the flows
are notified. Consequently DropTail is not the appropriate mechanism for
our evaluation scenarios.

EGCN, which is described in detail in [9] is an active queue management,
which results in system-wide synchronous notification when congestion is
about to occur. EGCN detects the condition of the link, based on: (i) the
absolute value of the current average queue size and (ii) the variation of
the average queue size. When the load in the network increases and buffer
overflow is expected, EGCN marks the ECN bit [7], [8] in the IP header of
the incoming packets. For these reason, we chose and implemented EGCN

algorithm at the routers.
In our simulations, the parameters of EGCN were set according to [9]. That

is, minth and maxth are set to 1/4 and 5/16 of the buffer size, respectively.
The queue buffer size is set based on the Bandwidth Delay product.

6.2. Throughput analysis

We implement the contention increase experiment discussed above. Each
flow implements TCP-Reno and records its Throughput and cwnd samples.
The relevant measurements of each competing flow are illustrated in Figures
9, 10, 11 and confirm the validity of the Throughput analysis, which we pre-
sented in Section 3. When a flow operates below its fair-share, for instance
flow2 during the 2nd and the 4rth sec (see Figure 9(a)), throughputB −
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Figure 8: Simulation Topology

throughputA > 0 and consequently the throughput slope is increasing ( Fig-
ure 9(b)). In contrast, when a flow consumes more resources than its fair-
share (flow1 during the 2nd and the 4rth sec), throughputB−throughputA <
0 and the throughput slope is decreasing. Finally, when a flow operates at its
fair-share, (see Figure 11(a)) during the 13th and 15th secs, throughputB −
throughputA = 0 and the throughput slope is zero (see Figure 11(b)).
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6.3. Fair-share rule

We repeat the same experiment, albeit, this time each flow implements
the Fair-Share rule upon the reception of a congestion signal. Figures 12, 13
and 14 show that at the end of an epoch, where all co-existing flows measure
their Throughput samples, the flows succeed in adjusting their window to
their fair-share. This is confirmed by the corresponding Throughput slope
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Figure 10: System samples during the 10-20sec (AIMD)
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Figure 11: System samples during the 20-30sec (AIMD)

in Fig.12(b), 13(b) and 14(b), which is zero. Even when new flows enter the
system, all flows, after a sequence of epoch-long measurements, adjust their
rates to the new fair-share (see Figures13(a) and 14(a)).

Finally, Figure 15 confirms that the fair allocation of resources is achieved
in conjunction with maintaining high levels of link utilization; system oper-
ates between the knee and cliff points, and utilization is affected momentarily
(no more than an epoch), which is the time required for all flows to evaluate
their new fair-share. However, although the system converges to the equilib-
rium state, system fairness is not achieved, since flows do not consume equal
amounts of resources during their co-existing time. This is depicted by the
ShortTermFairness index, which is sampled every 10 seconds and has the
values: 0.969, 0.962 and 0.992 for the time periods 0-10secs, 10-20secs and
20-30secs, respectively.
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Figure 12: System samples during the 0-10sec (Fair-share rule)
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Figure 13: System samples during the 10-20sec (Fair-share rule)
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Figure 14: System samples during the 20-30sec (Fair-share rule)

6.4. Fairness rule

We repeat the same experiment, to evaluate the Fairness rule. Figures
16, 13 and 14 show how Fairness rule improves system fairness. For instance,
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Figure 15: Queue length (Fair-share rule)

Flow 1, 2, 3 and 4 during the 22.5 and 23.8 seconds of the experiment (see
Figure 18), estimate their fair-share and compare it with the fair-share value
estimated during the previous epoch (during 20.5 and 22.5 seconds). Since
their fair-share has changed, they apply the Fairness rule. The cwnd of flows
1, 3 and 4 is adjusted below their fair-share at the 22.5th sec, since they have
consumed more resources during the 20.5 and 22.5 seconds (see Fig 18(b)),
while flow4 increases its cwnd beyond its fair-share at the 22.5th sec, since it
was treated unfairly during the 20.5 and 22.5 seconds. At the 23.8th sec of
the experiment, when the end of an epoch is signaled again, each flow applies
the Fair-Share rule and operate at its fair-share.

The ShortTermFairness values for the time periods 0-10secs, 10-20secs
and 20-30secs, are 0.994, 0.998 and 0.999, respectively. Consequently, fair
allocation of resources among flows is achieved, maintaining the high utiliza-
tion at the link( see Fig. 15).
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Figure 16: System samples during the 0-10sec (Fairness rule)
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Figure 17: System samples during the 10-20sec (Fairness rule)
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Figure 18: System samples during the 20-30sec (Fairness rule)
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Figure 19: Queue length (Fairness rule)

7. Conclusion

In the context of the present work, we presented and evaluated a new
throughput analysis that allows each flow independently to estimate effi-
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ciently its deviation from the fair-share. Based on the proposed throughput
analysis, we designed new rules for congestion window adjustment. More
particularly, we first showed analytically that the competing flows can ad-
just their operation to a dynamically-changing fair-share, based on the ”Fair-
Share rule and adjust further to a ”lifetime” fairness by calculating resource
credit, based on the ”Fairness” rule. We evaluated the proposed algorithms
experimentally as well, and found that our design principles match well our
simulation results.

Our next research step is to incorporate the analysis and algorithms into
a new end-to-end protocol specifically designed to regulate congestion based
on the result of this study.
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