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Abstract Video delivery in heterogeneous wired/wireless
networks is challenging, since link errors commonly de-
grade throughput performance, smoothness, and eventu-
ally impair the playback quality. We present an end-to-
end Loss Differentiation Mechanism (LDA) which effec-
tively decouples congestion from wireless loss in order to
abolish the damage of error-induced multiplicative decrease
on flow throughput and smoothness. The proposed LDA
relies on Round Trip Time measurements to estimate the
queuing delay and determine the appropriate error-recovery
strategy. This mechanism can be easily adapted and incor-
porated into existing Additive Increase Multiplicative De-
crease (AIMD) protocols, enabling them to utilize the avail-
able resources more efficiently. In this context, we incor-
porate the LDA into AIMD-based Scalable Streaming Video
Protocol (SSVP), an end-to-end TCP-friendly protocol opti-
mized for video streaming applications. Based on simulation
results, we show that the combined approach provides the
desired functionality to bind operationally wired and wire-
less links, within the framework of bandwidth efficiency,
smoothness, and fairness.
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1 Introduction

An increasing demand for multimedia data delivery coupled
with reliance on best-effort networks, such as the Internet,
has spurred interest in efficient transport solutions for mul-
timedia streams. Video streaming, in particular, is compar-
atively intolerant to delay and variations of throughput and
delay. Unlike bulk-data transfers, video delivery requires a
minimum and continuous bandwidth guarantee. Video qual-
ity is also affected by reliability factors, such as packet drops
due to congestion or link errors. In MPEG, for example,
dropping packets from an independently encoded I (intra
picture) frame causes the following dependent P (predic-
tive), and B (bidirectional) frames not to be fully decodable.
In practice, inter-frame dependencies may convert a 3%
packet loss rate up to a 30% frame loss rate [4]. Generally,
streaming applications yield satisfactory performance only
under certain Quality of Service (QoS) provisions, which
may vary depending on the application task and the type of
media involved.

Today’s multimedia applications are expected to run in
physically heterogeneous environments composed of both
wired and wireless components. Wireless links exhibit dis-
tinct characteristics, such as limited bandwidth, bit errors
and potential handoff operations. Bit errors typically occur
when the signal to interference and noise ratio is not high
enough to decode information correctly. Furthermore, wire-
less channels are hard to model and predict, and designing
an error-free communication link generally entails sacrific-
ing significant capacity. QoS requirements in wireless net-
working essentially remain stringent and complicated, tak-
ing additionally into account the influencing mobile device
characteristics and limitations. For example, a considerable
number of mobile devices offer limited buffer capacities, be-
ing unable to smooth the fluctuations in the receiving rate. In
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this case, the task of smooth delivery is primarily delegated
to the transport protocol.

Transmission Control Protocol (TCP) is basically de-
signed to provide a reliable service for wired Internet. The
Additive Increase Multiplicative Decrease (AIMD) algo-
rithm [10], incorporated into standard TCP versions, reduces
the sending window by half to avoid persistent packet losses
when the demand of competing flows exceeds the chan-
nel bandwidth, and increases the window additively every
Round Trip Time (RTT) to exploit the available bandwidth.
AIMD is also designed to converge to fairness. However,
most existing TCP mechanisms do not satisfy the need for
universal functionality in heterogeneous wired/wireless en-
vironments, since they do not flexibly adjust the rate and
pattern of the transmitted multimedia streams to the char-
acteristics of the end-to-end network path. Authors in [33]
outline three major shortfalls of TCP: (i) ineffective band-
width utilization, (ii) unnecessary congestion-oriented re-
sponses to wireless link errors (e.g. fading channels) and
operations (e.g. handoffs), and (iii) wasteful window ad-
justments over asymmetric, low-bandwidth reverse paths.
Furthermore, TCP’s process of probing for bandwidth and
reacting to observed congestion causes oscillations to the
achievable transmission rate. TCP may also introduce arbi-
trary delays, since it enforces reliability and in-order deliv-
ery. In response to standard TCP limitations, several TCP
protocol extensions [2, 5, 16, 20, 23, 32, 34, 37] have
emerged providing more effective bandwidth utilization and
sophisticated mechanisms for congestion control.

User Datagram Protocol (UDP) has been widely used
instead of TCP by media-streaming applications. UDP lacks
all basic mechanisms for error recovery and flow/congestion
control. Thus, it allows for transmission attempts at applica-
tion speed. That said, UDP cannot guarantee reliability, and
certainly is not able to deal with network delays either. In
[25] we showed that UDP may perform worse than TCP in
several occasions.

Since TCP is not preferred by multimedia applications
and UDP poses a threat to network stability, rate-based con-
gestion control has become an attractive alternative. Rate-
based mechanisms directly control the transmission rate of
the connection, based on either measurements taken at the
end host or feedback from the network [13, 24, 28]. Avoid-
ing the burstiness occasionally induced by the window-
based mechanisms, rate-based protocols generate a smooth
data flow by spreading the data transmission across a time
interval. Therefore, rate-based mechanisms compose plau-
sible candidates when smooth delivery is a primary objec-
tive. However, the challenge does not lie in simply achiev-
ing smoothness, but rather providing adequate efficiency and
resilience to the inherent characteristics of wireless links.
More precisely, a suitable protocol for wired/wireless net-
works should be able to detect the nature of the errors that

result in packet loss in order to determine the appropri-
ate error-recovery strategy. Based on such an approach, the
sender would not be obliged to reduce its transmission rate
in the event of a wireless error or handoff.

In contrast to transport-layer solutions, a series of in-
dependent mechanisms have been proposed, which nor-
mally interact with the transport protocol and provide reli-
able transmission over wireless links [1, 11, 18, 19]. Most
of them operate on link layer and generally are consid-
ered more efficient than physical-layer techniques, such as
spread-spectrum and OFDM modulation or channel coding.
However, link-layer approaches may degrade performance,
especially in the presence of highly variable error rates. Lo-
cal error recovery may alter the characteristics of the net-
work affecting the functionality of higher layer protocols.
For example, local retransmission could result in packet re-
ordering or in considerable RTT fluctuations. In addition,
concurrent responses from both local and end-to-end error
control may result in undesirable interactions, causing inef-
ficiencies and potentially instability. Considering real-time
traffic where data packets bear information with a limited
useful lifetime, retransmissions are often a wasted effort. In
such conditions, unfruitful retransmissions deliver delayed
packets which are either discarded, or at the worst they ob-
struct the proper reconstruction of oncoming packets.

Our objective is to combine an efficient transport protocol
with a mechanism that provides robustness and resilience to
link errors, achieving uninterrupted and smooth video de-
livery in wired/wireless environments. In this context, we
present an end-to-end mechanism that effectively decou-
ples congestion from wireless loss to abolish the damage
of error-induced multiplicative decrease on flow through-
put and smoothness. This work builds on [26] extending the
analysis, discussion, and simulation results. Packet loss is
characterized as wireless or congestive based on the mea-
sured queuing delay. The mechanism relies on RTT mea-
surements to estimate current queue length and subsequently
determine the appropriate error-recovery strategy. We note
that the proposed loss differentiation scheme does not re-
quire any modifications in the network infrastructure or the
underlying transport protocol. This mechanism can be easily
adapted and incorporated into existing transport-layer solu-
tions, spanning from TCP to rate-based AIMD protocols.
Since we focus on streaming video delivery, we incorpo-
rate the proposed mechanism into Scalable Streaming Video
Protocol (SSVP) [24] and evaluate its efficiency in terms of
bandwidth utilization, video playback quality, and fairness.
SSVP is an AIMD-oriented rate control scheme optimized
for video streaming applications.

We organize the remainder of the paper as follows. Sec-
tion 2 provides an overview of related work. In Sect. 3 we
elaborate on the proposed loss differentiation mechanism,
and we further incorporate it into SSVP in Sect. 4. Section 5
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provides a detailed description of the experimental environ-
ment, followed by Sect. 6, which includes extensive perfor-
mance studies based on simulations. Finally, in the last sec-
tion we highlight our conclusions.

2 Related work

In the sequel, we provide a taxonomy of the most prominent
approaches that tackle the limitations of media delivery in
wired/wireless networks. In this context, we discuss sepa-
rately end-to-end enhancements for heterogeneous environ-
ments, transport-layer solutions for efficient media delivery,
and selected mechanisms operating on the link layer.

2.1 End-to-end enhancements for wireless links

Numerous proposals have been presented in order to im-
prove transport-layer efficiency over wireless links [1, 3,
6–9, 16, 18, 23, 29, 32]. Most related research efforts fo-
cus on bulk-data transmission and are usually advertised as
enhanced TCP versions. TCP Westwood [17, 23] is a TCP-
friendly protocol that emerged as a sender-side-only mod-
ification of TCP Reno congestion control. TCP Westwood
exploits end-to-end bandwidth estimation in order to adjust
the values of slow-start threshold [30] and congestion win-
dow after a congestion episode. The protocol incorporates a
recovery mechanism which avoids the blind halving of the
sending rate of TCP Reno after packet losses and enables
Westwood to achieve high link-utilization in the presence of
wireless errors. In [24, 25] we showed that TCP Westwood
tends to underestimate the available resources, since the es-
timation filter is slow, needing time to converge to the avail-
able bandwidth. TCP Westwood+ is a recent extension of
TCP Westwood, based on an Additive Increase/Adaptive De-
crease mechanism. Unlike the initial version of Westwood,
TCP Westwood+ computes one sample of available band-
width every RTT, using all data acknowledged in the specific
RTT.

In TCP-Vegas [5], for every RTT the sender calculates
the throughput rate which subsequently is compared to an
expected rate. Depending on the outcome of this comparison
the transmission rate of the sender is adjusted accordingly.
More precisely, whenever an acknowledgement is received,
TCP Vegas computes the quantity:

diff =
(

cwnd

baseRTT
− cwnd

RTT

)
× baseRTT

where cwnd is the congestion window and baseRTT is the
minimum RTT measured by the TCP source. If diff > 3, the
sender infers congestion and decreases the transmission rate.
Any loss experienced while diff < 1 is interpreted as wire-
less. If 1 ≤ diff ≤ 3, the sending rate remains temporarily
unaffected.

Selected end-to-end loss differentiation algorithms are
applied to TCP-friendly Rate Control (TFRC) and their effi-
ciency is analyzed in [8]. These algorithms include ZigZag,
Biaz and Spike. ZigZag and Biaz detect the nature of loss
based on packet inter-arrival times at the receiver, while
Spike measures one-way delay to decouple wireless loss
from congestion. The measured one-way delay is used to
identify the spike state. More precisely, if the connection is
in the spike state, any experienced packet losses are inter-
preted as congestive; otherwise, losses are assumed to be
wireless. [8] also presents a hybrid loss differentiation algo-
rithm, namely ZBS, which dynamically switches between
ZigZag, Biaz and Spike according to the prevailing network
conditions. However, the accuracy of ZBS discriminator is
highly dependent on the number of flows sharing the bottle-
neck link and yields high wireless and congestion misclassi-
fications [3]. Furthermore, inferring a specific behavior from
inter-arrival times or packet pair can be inaccurate, due to the
variation and complication of traffic patterns in the Internet.

Authors in [7] present and analyze the bandwidth esti-
mation schemes implemented at the sender side of a TCP
connection, including the estimation algorithms of TCP Ve-
gas [5] and TCP Westwood. In addition, they propose TI-
BET (Time Intervals based Bandwidth Estimation Tech-
nique), a new bandwidth estimation scheme implemented
within the TCP congestion control procedure, which en-
hances TCP performance over wireless links. TCP Prob-
ing [32] grafts a probing cycle and an Immediate Recovery
Strategy into standard TCP in order to control effectively
the throughput/overhead trade-off. Freeze-TCP [16] distin-
guishes handoffs from congestion through the use of the ad-
vertised window. WTCP [29] implements a rate-based con-
gestion control replacing entirely the ACK-clocking mecha-
nism. MULTFRC [9] is a recent extension to TFRC for wire-
less networks, establishing multiple TFRC connections on
the same path when a single connection is not able to utilize
the wireless resources efficiently.

2.2 Transport-layer approaches for multimedia traffic

Since TCP is rarely chosen to transport multimedia traffic
over the Internet, numerous TCP-friendly protocols [13, 36,
37] constitute an elegant framework for multimedia appli-
cations. We consider as TCP-friendly any protocol whose
long-term arrival rate does not exceed the one of any con-
formant TCP in the same circumstances [12]. TCP-friendly
congestion control maintains network stability by promptly
responding to congestion and is also cooperative with other
flows, while it commonly provides a smoother sending rate
for multimedia applications. TFRC [13] is a representative
TCP-friendly protocol, which adjusts its transmission rate in
response to the level of congestion, as estimated based on the
calculated loss rate. Multiple packet drops in the same RTT
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are considered as a single loss event by TFRC and hence, the
protocol follows a more gentle congestion control strategy.
More precisely, the TFRC sender uses the following TCP
response function:

Y(p,RTT,RTO) = 1

RTT
√

2p
3 + RTO

(
3
√

3p
8

)
p(1 + 32p2)

(1)

where p is the steady-state loss event rate and RTO is the
retransmission timeout value. Equation (1) enforces an up-
per bound on the sending rate T . However, the throughput
model is quite sensitive to parameters (i.e., p, RTT), which
are often difficult to measure efficiently and to predict accu-
rately. Furthermore, the long-term TCP throughput equation
does not capture the transit and short-lived TCP behaviors,
and it is less responsive to short-term network and session
dynamics [35].

GAIMD [37] is a TCP-friendly protocol that generalizes
AIMD congestion control by parameterizing the additive in-
crease rate α and multiplicative decrease ratio β . For the
family of AIMD protocols, authors in [37] derive a simple
relationship between α and β in order to be friendly to stan-
dard TCP:

a = 4(1 − β2)

3
. (2)

Based on experiments, they propose an adjustment of β =
0.875 as an appropriate smooth decrease ratio, and a moder-
ated increase value α = 0.31 to achieve TCP-friendliness.

TCP-Real [34] is a high-throughput transport protocol
that incorporates congestion avoidance mechanism in or-
der to minimize transmission-rate gaps. The protocol ap-
proximates a receiver-oriented approach beyond the balanc-
ing trade of the parameters of additive increase and multi-
plicative decrease. TCP-Real introduces another parameter,
namely γ , which determines the window adjustments dur-
ing congestion avoidance. This parameter can be adaptive to
the detected conditions. Generally, TCP-Real can be viewed
as a TCP (α,β, γ ) protocol, where γ captures the protocol’s
behavior prior to congestion when congestion boosts up.

Rate Adaptation Protocol (RAP) [28] is a rate-based pro-
tocol which employs an AIMD algorithm for the transmis-
sion of real-time streams. The sending rate is continuously
adjusted by RAP in a TCP-friendly fashion using feedback
from the receiver. RAP attempts to resemble TCP’s func-
tionality, leaving out only the undesired reliability. The RAP
source receives acknowledgments (ACK) infrequently and
exploits the redundant information on a single incoming
ACK to detect packet loss, inline with TCP’s Fast Recov-
ery algorithm [30]. However, some aspects of TCP design
that do not favor smooth delivery are incorporated into RAP.
For example, the multiplicative decrease by a factor of 1/2

invokes abrupt rate reductions upon congestion, degrading
smoothness.

Datagram Congestion Control Protocol (DCCP) [21] is a
new transport protocol that provides a congestion-controlled
flow of unreliable datagrams. DCCP is intended for delay-
sensitive applications which have relaxed packet loss re-
quirements. The protocol aims to add to a UDP-like founda-
tion the minimum mechanisms necessary to support conges-
tion control. DCCP provides the application with a choice
of congestion control mechanisms via Congestion Control
IDs (CCIDs), which explicitly name standardized conges-
tion control mechanisms. Currently, two CCIDs have been
developed supporting TCP-like and TFRC congestion con-
trol. Our proposed loss differentiation algorithm can be in-
corporated into DCCP to improve the existing congestion
control mechanisms in wireless Internet environments.

2.3 Link-layer enhancements

There are several techniques operating on the link layer,
which attempt to ameliorate the impact of wireless er-
rors [1, 11, 18, 19]. The most remarkable implementations,
which provide error correction, are Forward Error Correc-
tion (FEC) and Automatic Repeat Request (ARQ) [11]. FEC
introduces added overhead to data bits in order to cope with
data corruption. Corrupted packets are directly corrected,
without retransmission, which is critical for lossy links with
long end-to-end delays. However, the redundant information
is not exploited in the absence of link errors resulting in a
waste of bandwidth. Furthermore, FEC requires additional
resources in CPU processing time, memory and power con-
sumption.

On the other hand, ARQ mechanisms are invoked when
packets containing bit errors cannot be corrected. In such
case, the erroneous packets are discarded and a retransmis-
sion is directly triggered. Unlike FEC, ARQ allocates ad-
ditional network resources only when a packet is retrans-
mitted. The mechanism generally operates more efficiently
for low bit rates. An undesirable effect of ARQ is that it
may interfere with the transport protocol [1]. Furthermore,
retransmission-based recovery of corrupted packets is not
usually a viable solution for certain types of multimedia ap-
plications (e.g., multicast video). Generally, in multimedia
applications, instead of having a packet delivered late inter-
polating the lost data with previously delivered data is usu-
ally preferred.

Authors in [19] recently designed a link-layer retransmis-
sion protocol, namely PP-ARQ, enabling a more sophisti-
cated error-recovery strategy than conventional ARQ. More
precisely, the receiver compactly requests the retransmission
of selected portions of a packet where there are possibly
bits with corruption. In response, the sender retransmits the
bits and checksums for those ranges, so that the receiver can
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Fig. 1 RTT vs. network load

eventually be certain that all the bits in the packet are correct.
The receiver’s request encoding uses a dynamic program-
ming algorithm that minimizes the expected bit overhead of
communicating the feedback.

Our work is different from the existing approaches in that
the proposed loss differentiation algorithm incorporates the
combined dynamics of sending rates, queuing delay and link
losses. As it can be seen from (1), queuing dynamics are not
incorporated into existing TCP-friendly protocols. On the
other hand, most of the link- layer enhancement strategies
above are not discussed in the context of TCP-friendly video
streaming. Without sacrificing fairness and friendliness, our
algorithm is applied and evaluated in the context of video
streaming over lossy links.

3 Loss differentiation algorithm

Most transport-layer mechanisms are not able to detect
the cause of packet loss, invoking congestion-oriented re-
sponses to all types of losses. Apart from a wasteful rate
decrease, further undesirable implications may take place
since the flows that reduce their rates can be suppressed by
competing flows that do not experience wireless loss. From
the perspective of media delivery, a wireless error-prone link
can induce large variations in the sending rate with an ad-
verse effect on playback quality. In this context, we present
a Loss Differentiation Algorithm (LDA), which allows the
underlying transport protocol to distinguish congestion from
random wireless loss based on queuing delay. The proposed
LDA is a pure end-to-end mechanism and does not require
any modifications in the network infrastructure or the un-
derlying network protocol. It relies on RTT estimation to
observe current network dynamics and detect the nature of
the error.

3.1 Queue dynamics

Figure 1 illustrates the relation between network load and
RTT, as the load increases. RTTmin denotes the round-trip

propagation delay and qdelay the queuing delay in the bot-
tleneck buffer of the network path, which can be expressed
as:

qdelay = k × S

B
(3)

where k represents the number of packets that linger in the
queue, S is the packet length and B is the capacity of the
bottleneck link. While the link remains underutilized, there
is no steady queue built-up in the bottleneck buffer (i.e.,
RTT = RTTmin). As soon as the bottleneck channel has been
fully utilized, a queue is being built up and RTT is currently:

RTT = RTTmin + qdelay. (4)

If the load increases further, the queue grows as well, until
it occupies the whole bottleneck buffer where RTT is even-
tually maximized and expressed as:

RTTmax = RTTmin + qdelaymax. (5)

At this point, queuing delay is maximum and expressed as:

qdelaymax = bufSize × S

B
(6)

where bufSize denotes the bottleneck buffer size in packets.
Buffer overflow inevitably leads to congestion and the expe-
rienced packet loss triggers a decrease in the sending rate,
enforcing the draining of the buffer.

We observe that congestion is the outcome of buffer over-
flow (i.e., when queuing delay is maximum), while wireless
loss and delay have a weak correlation since wireless er-
rors may occur independently of the bottleneck buffer state.
Hence, queuing delay composes a plausible loss discrimi-
nator, allowing the sender to follow the appropriate error-
recovery strategy. Without explicit feedback (e.g., ECN
[27]), queuing delay should be properly measured at the end
hosts. Note that throughput cannot be used to estimate the
bottleneck buffer occupancy, since it stops increasing after
the capacity of the link has been fully utilized. Indeed, with
respect to (3) and (4), and considering that the number of
packets with length S that can be accommodated in the bot-
tleneck link within each RTT can be expressed as:

K = RTTmin × B

S

throughput is given by:

throughput = (K + k) × S

RTT
= (K + k) × S

RTTmin + qdelay

= (RTTmin × B
S

+ qdelay×B
S

) × S

RTTmin + qdelay
= B

where (K + k) is the total number of packets transmitted per
RTT. Since throughput is bounded by link capacity while
queue increases, queuing delay can be simply estimated by
RTT measurements based on (4).
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Fig. 2 Typical wireless
scenario

Fig. 3 LDA behavior

3.2 Proposed algorithm

We consider a typical scenario for streaming video deliv-
ery across an Internet path that includes a wireless link. As
shown in Fig. 2, a streaming server transmits data to a re-
ceiver located in the wireless network. In the event of packet
loss, the proposed LDA virtually suffices to observe cur-
rent RTT and subsequently determine the nature of the loss.
The LDA interacts with the protocol monitoring RTTmin and
RTTmax , while the queuing delay can be derived by deduct-
ing RTTmin from the last RTT measured. In the absence of
wireless loss, RTTmax is normally observed before conges-
tion control is triggered. Practically, upon packet loss if the
last RTT is close to RTTmin, the bottleneck is not congested
and the loss is due to a link error. On the other hand, a
measured RTT substantially larger than RTTmin and close to
RTTmax indicates a congestive loss. The protocol’s conges-
tion control is therefore complemented with the following
loss differentiation algorithm. Upon the detection of packet
loss, the transmission rate is decreased only when the fol-
lowing condition is satisfied:

qdelay

qdelaymax

= RTT − RTTmin

RTTmax − RTTmin

≥ qthresh. (7)

Threshold qthresh in (7) specifies the point in queuing delay
where packet loss is considered to be congestion-induced. If
condition (7) does not hold, the experienced loss is classified
as wireless.

Although recovery in response to congestion appears to
be straightforward (i.e., multiplicative decrease for AIMD
protocols), how should the sender respond to a wireless error
detected by the LDA? One approach would allow the sender
to ignore the loss and readily increase the transmission rate.

In contrast, following a conservative recovery strategy, the
source could trigger a gentle rate decrease (i.e., with a higher
β), interpreting the wireless error as an indication of a fad-
ing wireless channel. We adopt an intermediate approach
keeping the sending rate unaffected. Such recovery does not
endanger packet loss by increasing the sending rate and at
the same time it does not enforce a rate decrease that might
be unnecessary and harmful (degrading flow throughput and
smoothness). Figure 3 illustrates the behavior of the pro-
posed LDA.

Note that both congestion and wireless loss may take
place, rendering differentiation limited. In this case, queu-
ing delay is considerable:

qdelay ≥ qthresh × qdelaymax (8)

which is sensed by:

RTT ≥ qthresh × RTTmax + (1 − qthresh) × RTTmin. (9)

However, in the presence of large queuing delay differenti-
ation is not necessary: packet loss should trigger a rate re-
duction anyway. Therefore, the LDA classifies the loss as
congestive, allowing the flow to recover from congestion,
even if wireless loss has been also experienced.

4 SSVP with loss differentiation

4.1 SSVP overview

SSVP [24] is an end-to-end TCP-friendly protocol which is
optimized for video streaming applications in the Internet.
The protocol does not rely on functionality in routers, such
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as Random Early Detection (RED) [14], Explicit Conges-
tion Notification (ECN) [27] or other Active Queue Man-
agement (AQM) mechanisms. SSVP operates on top of the
light-weight UDP which is already preferred by the majority
of streaming applications and Internet telephony. The proto-
col employs AIMD-oriented congestion control and adapts
the sending rate by adjusting the inter-packet gap (IPG).
SSVP applies modifications only in the sending and receiv-
ing hosts. The recipient uses control packets in order to send
feedback of reception statistics to the sender. In accordance
with the relaxed packet loss requirements of streaming video
and considering the delays induced by retransmitted pack-
ets, SSVP does not integrate reliability into UDP datagrams.
Hence, control packets do not trigger retransmissions. How-
ever, they are effectively used to determine bandwidth and
RTT estimates in order to adjust the rate of the outgoing
video streams.

SSVP enables a smoothness-oriented modulation of
AIMD parameters in order to reduce the magnitude of
AIMD oscillation and allow for smooth transmission pat-
terns, without compromising TCP-friendliness. More pre-
cisely, SSVP’s congestion control employs an additive in-
crease rate α = 0.31 and a multiplicative decrease ratio
β = 0.875. On the occurrence of packet loss, the protocol
infers congestion and the sender immediately reduces the
transmission rate via the multiplicative increase of IPG:

IPGi+1 = IPGi

β
. (10)

If congestion has not been detected, the SSVP source in-
creases the transmission rate by decreasing IPG, as follows:

IPGi+1 = 1

1 + α
IPGi (11)

The sender adjusts the transmission rate once per RTT in
order to maintain a smoothed flow, especially at sudden
changes of bandwidth availability. Further details on SSVP
can be found in [24].

4.2 Interaction of SSVP with LDA

Consider an SSVP source that transmits n packets with
packet lengths S1, S2, . . . , Sn during a time period t , where
Si represents the length of the ith packet. The average
throughput achieved by the connection is given by:

throughputi = 1

t

n∑
i=1

Si = n × S̄

t
(12)

where S̄ denotes the average packet length. Since SSVP per-
forms rate adjustments once every RTT, we define K as a
function of IPG:

Kj = RTTj

IPGj

(13)

representing the number of packets transmitted within j th
RTT. Assuming a measurement period of one RTT, flow
throughput is given by:

throughput = Kj × S̄

RTTj

. (14)

Combining (13) and (14), we obtain the instantaneous trans-
mission rate Ri for the SSVP flow:

Ri = S̄

IPGi

(15)

which is derived from:

Ri = S̄

ti + IPGi

(16)

if we consider the transmission time ti of each packet negli-
gible (compared to IPG).

SSVP does not inherently incorporate any loss differ-
entiation mechanism, and therefore the protocol invokes
congestion-oriented responses to all wireless errors. There-
fore, upon detecting packet loss, IPG is increased multiplica-
tively based on (10). Apparently, an increase in the IPG di-
rectly affects the transmission rate, as well as flow through-
put. Since the protocol does not decouple wireless loss from
congestion, wireless errors result in considerable throughput
degradation.

The proposed LDA can effectively interact with SSVP,
exploiting the RTT estimates obtained by the protocol. The
combined approach, denoted as SSVP-LD, decouples con-
gestion from wireless loss based on measured queuing de-
lay. Packet loss is followed by a reduction in the transmis-
sion rate with the protocol’s standard decrease ratio (i.e.,
β = 0.875) only when (7) holds. Alternatively, the sending
rate remains temporarily unaffected. Figure 4 provides an
overview of SSVP-LD’s responses to loss events, depend-
ing on current queuing delay. Threshold qthresh is adjusted
experimentally at 0.5 for SSVP. Hence, when the queue oc-
cupies less than half of the bottleneck buffer size, packet
drops do not trigger congestion control actions. Certainly,
qthresh can be adjusted differently in order to modify the
protocol’s error-recovery strategy.

SSVP-LD is one of the few available end-to-end schemes
that exploit both packet loss and delay to decouple wire-
less loss from congestion. Most mechanisms rely solely on
packet loss (e.g., TCP, TFRC [13]) or delay (e.g., Vegas [5],
TCP FAST [20]) in order to adjust the transmission rate.
While packet loss alone is arguably not sufficient to clas-
sify the loss, recent studies (e.g., [22]) uncovered that using
delay as a measure of congestion may cause undesirable ef-
fects in terms of bandwidth utilization, if it is not augmented
with loss information. This implication usually takes place
when packet loss occurs due to other reasons than buffer
overflow (i.e., wireless errors).
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Fig. 4 SSVP-LD flowchart

5 Experimental environment

5.1 Experimental settings

The evaluation was performed on the NS-2 network sim-
ulator. Initially, we conducted simulations on a single-
bottleneck dumbbell topology (Fig. 5a) with a round-trip
link delay of 64 ms. The bottleneck link is shared by com-
peting MPEG and TCP Reno connections and its capacity is
1 or 10 Mbps, depending on each experiment. The capacity
of all access links to the sink nodes is set to 1 Mbps. Further-
more, we used a network topology (Fig. 5b) which includes
multiple bottlenecks, reverse traffic and varying RTTs. TCP
Reno flows are simulated both in the forward and backward
direction, while random UDP traffic with the Pareto distrib-
ution has been also introduced to the forward direction. The
propagation delays of the access links from all the source
nodes, as well as the links to the TCP sink nodes range from
5 ms to 15 ms, while the corresponding bandwidth capaci-
ties range from 2 Mbps to 10 Mbps. By randomizing RTTs,
we avoid synchronization effects.

In both topologies, we used a wireless packet loss model
in the access links to the MPEG sink nodes. The loss model
was configured on both directions of the link traffic. We
specifically used a two-state Markov model, also known as
Gilbert-Elliot model [15], where the channel switches be-
tween a Good (G) and a Bad (B) state according to given
transition probabilities (Fig. 6). A transmission is successful

only if the channel is in the Good state, otherwise the trans-
mitted packets are lost. The system starts from the Good
state. The state transitions are shown in the transition prob-
ability matrix:

P =
[

p 1 − q

1 − p q

]

where p denotes the probability of successfully transmit-
ting a packet if the previous one was successfully transmit-
ted, and 1 − q is the probability of successfully transmitting
a packet given the previous packet was not received. The
steady-state packet error rate is defined as:

ε = 1 − p

1 − p + 1 − q
.

In our simulations, we adjusted p = 0.994 and q = 0.78
which roughly give ε = 0.02, unless otherwise explicitly
stated.

All routers are drop-tail with buffer size adjusted in
accordance with the bandwidth-delay product. We set the
packet size to 1000 bytes for all system flows (with the ex-
ception of UDP flows in the topology in Fig. 5b, which have
250 bytes packet size) and the maximum congestion win-
dow to 64 KB for all TCP connections. Each simulation lasts
for 200 sec allowing all protocols to unfold their potential.
Successive runs of each experiment resulted in insignificant
confidence intervals. All the results are collected after 2 sec
in order to avoid the skew introduced during flows start-up.
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Fig. 5 Simulation topologies

In order to simulate MPEG traffic, we developed an
MPEG-4 Traffic Generator. The traffic generated closely
matches the statistical characteristics of an original MPEG-4
video trace. MPEG-4 coding standard is based on I , P and
B frames. The compression initiates by encoding a single
frame, followed by a group of P and B frames. P frames
carry the signal difference between the previous frame and

motion vectors, while B frames are interpolated; the en-
coding is based on the previous and the next frame. The
model developed is based on Transform Expand Sample
(TES). We used three separate TES models for I , P and
B frames, respectively. The resulting MPEG-4 stream is
generated by interleaving data obtained by the three mod-
els.
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Fig. 6 Two-state Markov model

5.2 Measuring performance

We hereby refer to the performance metrics supported by our
simulation model. Since the simulation topology includes
competing MPEG and FTP connections, our performance
metrics are applied separately to the MPEG and FTP traffic.
Throughput is used to measure the efficiency in link utiliza-
tion:

Throughput = Transmitted_Data

Connection_Time

where Connection_Time is the time required for data deliv-
ery. Long-term fairness is measured by the Fairness Index
[10], which is defined as:

Fairness Index

=
(

n∑
i=1

throughputi

)2/(
n

2∑
i=1

throughput2i

)

where Throughputi is the throughput of the ith flow and n is
the total number of flows.

In order to quantify the performance on video delivery,
we monitor packet inter-arrival times and eventually distin-
guish the packets that can be effectively used by the client
application from delayed packets (according to a config-
urable inter-arrival threshold). The proportion of delayed
packets is reflected in Delayed Packets Ratio. Each recip-
ient, receiving packets from the MPEG streaming applica-
tion, calculates the number of delayed packets based on Al-
gorithm 1.

Several notations used in the pseudocode algorithms are
as follows:

1. threshold: packet inter-arrival time threshold
2. delayedPackets: number of packets with inter-arrival

times exceeding the threshold
3. packetTime: packet arrival time.

According to streaming video guidelines, playback qual-
ity is notably degraded when delay variation exceeds 75
ms. Buffering can eliminate the effects of delay variation
by smoothing out jitter; however, additional delays are in-
curred to the video playback. Furthermore, buffering ex-
hibits certain limitations, such as application delay toler-
ance and buffer memory constraints. Along these lines, we

Algorithm 1 Delayed packets

# For each packet received with sequence number i,
determine
# whether it is delayed
if threshold > 0 then

set packetTime[i] = currentTime
increase packetsReceived
if i > 0 and

packetTime[i] − packetTime[i − 1] > threshold then
increase delayedPackets

end if
end if

adjusted the packet inter-arrival threshold at 75 ms, which
specifies the point where delay variation becomes percepti-
ble and possibly disturbing. Since MPEG traffic is sensitive
to packet drops, we additionally define Packet Loss Ratio,
as the ratio of the number of lost packets over the number of
packets sent by the application.

In order to gauge the accuracy of an LDA, we define the
accuracy of loss classification as the proportion of the num-
ber of accurately detected packet losses over the total num-
ber of packets losses:

Accuracy = #accurately detected packet losses

#total packet losses

For a system with multiple flows, we present the average
accuracy of loss classification of all flows.

6 Performance evaluation

In this section, we demonstrate conclusive performance
studies based on extensive simulation results. More pre-
cisely, we evaluate the loss classification accuracy of the
proposed LDA and the efficiency of SSVP when it is aug-
mented with the proposed LDA in terms of bandwidth uti-
lization, video delivery, and intra-protocol fairness.

6.1 Accuracy of loss classification

First, we explore the efficiency of the proposed LDA with
diverse qthresh adjustments, which allows the fine tuning
of this mechanism. We study accuracy of loss classification
results for (i) 1 MPEG flow competing with 1 TCP flow
on the dumbbell topology with the bottleneck capacity set
to 1 Mbps (Fig. 7a), and (ii) 30 MPEG flows on the same
topology with bottleneck capacity set to 10 Mbps (Fig. 7b).
The corresponding results are presented with diverse packet
error rate (PER) adjustments (0.01–0.05).

In both scenarios, our simulation results indicate a
slightly increased accuracy for qthresh adjusted to 0.5. In
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Fig. 7 Accuracy of loss classification with diverse qthresh adjustments vs. PER

Fig. 7a, the single MPEG flow experiences contention from
the corporate TCP flow, which eventually leads to conges-
tive drops. However, as PER increases, wireless losses be-
come dominant. In this case, the presence of congestion and
wireless loss makes differentiation difficult and inevitably
the accuracy of the LDA slightly decreases.

The proper adjustment of qthresh can provide percepti-
ble benefits. A qthresh that is set close to 0 tends to mis-
classify wireless losses as congestion. In contrast, a qthresh
adjustment near 1 prevents the LDA from detecting conges-
tion, interpreting the experienced loss mostly as wireless.
This behavior does not allow rapid recovery from conges-
tion. Our results show that setting qthresh to 0.5 achieves
the desired loss differentiation, while misclassifications can
only occur for increased queuing delays where the LDA in-
fers congestion. Despite the possible misclassification, the
protocol is instructed (by the LDA) to decrease its rate (typ-
ically multiplicatively), which is the correct action due to the
large queue in the bottleneck buffer.

With the multiple MPEG flows (Fig. 7b), congestion is
experienced more frequently, due to the strong contention
between the flows. Adjusting qthresh to 0.75 evidently de-
creases the level of accuracy, since, as already explained, an
amount of congestive loss is misclassified as wireless. Set-
ting qthresh to 0.5 provides the highest accuracy among the
qthresh adjustments. Hence, qthresh is always set to 0.5 for
the simulation results in the remainder of Sect. 6.

Furthermore, we conducted simulations to evaluate the
loss classification accuracy of our proposed LDA (noted as
LD in Fig. 8) versus two well-known LDAs: the Vegas pre-
dictor and Spike. More precisely, we simulated (i) 1 MPEG
flow competing with 1 TCP flow on the dumbbell topology
with the bottleneck capacity set to 1 Mbps and varying PER
adjustments, and (ii) a diverse number of MPEG flows in

the same topology with 10 Mbps bottleneck and PER set to
0.02.

Although misclassifications occur in all LDAs, our mech-
anism achieves high accuracy, even with high PER or in-
creased contention. The Vegas predictor tends to misclas-
sify wireless losses and its accuracy decreases for high PER
(Fig. 8a). On the contrary, its accuracy is not significantly af-
fected by the level of contention (Fig. 8b). Although Spike
does not achieve a remarkable degree of accuracy, it exhibits
less sensitivity to increased PER or contention. Our simula-
tion results show that the proposed LDA compares favorably
with the two representative mechanisms for loss classifica-
tion. The gains from using our LDA in terms of throughput
and video performance are discussed in the following sub-
sections.

6.2 LDA efficiency with SSVP

Departing from the loss classification accuracy, we assess
the efficiency of the proposed LDA on the SSVP proto-
col. The corresponding experiments were conducted on the
dumbbell topology with the bottleneck capacity set to 10
Mbps. We simulated a wide range of MPEG flows (10–60)
of (i) SSVP, and (ii) SSVP with LDA (SSVP-LD), succes-
sively. We measured System Throughput and Fairness In-
dex, and we additionally demonstrate statistics from delayed
packets which compose an influencing factor for perceptual
video quality (Fig. 9).

Throughput performance (Fig. 9a) reflects the beneficial
role of the integrated LDA. SSVP-LD is relatively immu-
nized by the link errors across the wireless channel and uti-
lizes a higher fraction of the available bandwidth, regardless
of link multiplexing. On the other hand, standard SSVP in-
vokes congestion-oriented responses to the wireless errors,
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Fig. 8 Accuracy loss of classification for the proposed LD vs. Vegas and Spike

Fig. 9 Performance with wireless errors
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Fig. 10 Performance with diverse error rates

diminishing the throughput rate. We note that the protocol
incorporates a gentle decrease ratio (i.e., β = 0.875), and
therefore the impact of an unnecessary multiplicative de-
crease is not destructive on throughput performance. Nev-
ertheless, a protocol with conventional congestion control
parameters (i.e., α = 1, β = 0.5), such as TCP, would expe-
rience significant throughput degradation. Therefore, incor-
porating the proposed LDA into other protocols may result
in more gains, depending on the selection of the AIMD pa-
rameters.

As shown in Fig. 9b, SSVP-LD excels in bandwidths
sharing, while SSVP also achieves satisfactory levels of fair-
ness. Although SSVP’s congestion control maintains ade-
quate AIMD oscillation allowing all the system flows to con-
verge to the fairness point, congestion along with wireless
loss can undermine long-term fairness (i.e. 60 SSVP flows).
In this case, the presence of the LDA notably improves fair-
ness, as well as system stability.

In order to quantify the smoothness observed by the end-
user, we trace the proportion of delayed packets, effectively
capturing the effect of jitter. In [24] we showed that SSVP
maintains a smooth sending rate in accordance with the QoS
provisions of video streaming applications. SSVP’s smooth-
ness is also demonstrated in Fig. 9c, where the protocol
achieves the timely delivery of most packets. However, the
incorporated LDA further refines transmission rate fluctua-
tions, abolishing the damage of error-induced multiplicative
decrease on flow throughput and smoothness. As a result,
SSVP-LD delivers a smoother video flow, especially when
link errors are the primary cause for the observed packet
drops (i.e., 10–40 flows).

We also carried out experiments using diverse PER ad-
justments (0.02–0.08) in order to investigate the efficiency
of the LDA over highly erroneous wireless links. We hereby
demonstrate results from 30 MPEG flows on the dumbbell
topology (Fig. 10). Although packet error rates as high as
0.08 are not common across wireless channels, such simu-
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lations provide useful insights into protocol sensitivity over
lossy links.

Figure 10a illustrates that throughput performance no-
tably degrades, especially in the case of SSVP. SSVP-LD is
less sensitive to the increased error rates, since the integrated
LDA alleviates most of the undesirable effects induced by
the link errors. We note that throughput degradation is some-
times inevitable, since wireless errors may occur while the
queue length is close to the buffer size.

Besides the throughput gains achieved by the LDA,
Fig. 10b reveals that fairness for SSVP-LD is not degraded,
even for error rates as high as 0.08. Errors are not concur-
rently experienced by all flows; hence, some flows may back
off while the others may keep growing. This partial down-
ward adjustment upon packet loss results in varying flow
throughput rates and has a direct impact on fairness. This
observation is primarily applicable to SSVP, as well as to
other protocols that cannot detect the nature of the error.
SSVP-LD nearly avoids this implication, since multiplica-
tive decrease is invoked only when the queue occupies a
considerable proportion of the buffer size.

In terms of video delivery, delay variation becomes more
evident, as the error rate increases (Fig. 10c). Packet er-
rors occasionally induce interruptions in the sending rate
and the perceptual video quality inevitably deteriorates. The
proposed LDA manages to alleviate most of these impair-
ments and sustain a relatively smooth video flow. On the
contrary, SSVP’s downward adjustments in response to the
wireless errors cause perceptible oscillations in the sending
rate, with the effect of jitter becoming evident to the end-
user. We observe that the Delayed Packets Ratio increases
almost in proportion to PER for SSVP. In contrast, SSVP-
LD effectively enforces an upper bound to the magnitude of
delay variation, providing a possible guarantee for stream-
ing applications that can efficiently operate within this QoS
provision.

6.3 SSVP-LD performance

The remainder of Sect. 6 includes evaluations of SSVP-LD
with TFRC [31] and GAIMD (0.31, 0.875). TFRC, in par-
ticular, is designed for efficiency on media delivery over a
wide range of network and session dynamics. We simulated
a diverse range of MPEG flows (10–60) of (i) SSVP-LD,
(ii) TFRC, and (iii) GAIMD, competing with 5 FTP connec-
tions of TCP Reno, successively. PER was adjusted at 0.02.
Similarly to the previous scenarios, we obtained the corre-
sponding Throughput, Fairness Index and Delayed Packets
Ratio measurements, along with Packet Loss Ratio (Fig. 11).
These experiments were conducted on the dumbbell topol-
ogy with 10 Mbps bottleneck capacity.

According to Fig. 11a, both SSVP-LD and TFRC uti-
lize a high fraction of the available bandwidth. SSVP-LD

remains relatively immunized by the wireless errors, as well
as by the interfering TCP flows. The protocol apparently op-
erates more efficiently during high link-multiplexing, since
it performs downward adjustments primarily in response to
congestion. On the contrary, GAIMD fails to adapt to the
network dynamics, since it cannot detect the nature of the er-
ror. The presence of both congestion and error-induced loss
eventually diminishes the protocol’s throughput rate.

Figure 11b illustrates that SSVP-LD and GAIMD achieve
high levels of fairness. The AIMD-based responses during
congestion enforce competing flows to converge to the fair-
ness point for both protocols. On the other hand, we ob-
serve that the Fairness Index for TFRC degrades abruptly,
reflecting a throughput imbalance between the connections.
TFRC’s equation-based responses to packet loss undermine
long-term fairness, along with contention increase.

According to Fig. 11c, SSVP-LD achieves the timely de-
livery of video packets maintaining an uninterrupted and
smooth sending rate that is slightly affected by wireless er-
rors and contention. TFRC’s error-induced downward ad-
justments cause oscillations in the sending rate, and subse-
quently delay variation of perceptible magnitude. Further-
more, Fig. 11d illustrates increased packet losses for TFRC,
which inevitably deteriorate the perceptual video quality.
In dynamic environments with wireless errors, TFRC occa-
sionally fails to obtain accurate estimates of the loss event
rate, since TFRC’s throughput model, as expressed in (1),
is sensitive to packet loss. GAIMD’s performance on video
delivery may as well frustrate the end-user. The protocol’s
congestion-oriented responses to all types of errors counter-
balance the potential gains from a gentle decrease ratio that
could favor smoothness in a static and error-free network.

6.4 SSVP-LD performance with heterogeneous networks
and reverse traffic

We conclude our performance studies with simulations on
the reverse-traffic topology, which allowed us to draw fur-
ther conclusions on SSVP-LD efficiency at conditions of in-
creased contention with various types of traffic, including
TCP reverse flows and UDP burst traffic. We specifically
simulated 10–60 MPEG flows competing with 15 TCP (5
in the forward and 10 in the reverse direction) and 10 UDP
flows. The peak sending rates for UDP flows range from
64 to 256 kbps, each one occupying up to 2.5% of the bot-
tleneck bandwidth. The MPEG flows were simulated with
SSVP-LD, TFRC, and GAIMD.

Figure 12a shows that SSVP-LD achieves effective band-
width utilization, despite the relatively limited available re-
sources due to the presence of interfering TCP and UDP
flows. Furthermore, SSVP-LD is not perceptibly affected by
reverse traffic, achieving high throughput rates even for high
link-multiplexing. TFRC’s error-induced downward adjust-
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Fig. 11 Performance with wireless errors and competing traffic

ments do not allow the protocol to utilize wireless resources
efficiently, sacrificing an amount of available bandwidth.
GAIMD exhibits a notable inefficiency, since reverse traffic
throttles the rate of incoming ACKs and subsequently the
growth of the congestion window. An infrequent ACK rate
may also result in timeout events for TCP protocols, since
Fast Retransmit and Fast Recovery [30] are not triggered
(i.e., the TCP sender does not receive 3 duplicate ACK)
when the reverse path becomes congested.

In terms of intra-protocol fairness, the AIMD-based
SSVP-LD and GAIMD achieve a fair behavior among their
flows (Fig. 12b). Inline with our observations in Sect. 6.3,
TFRC’s Fairness Index exhibits a noticeable degradation,
as the number of MPEG flows increases. Hence, multiple
TFRC flows may have varying throughput rates resulting in
different levels of service quality. This difference can be fur-
ther amplified in the presence of many background flows or
higher loss rates.

Figures 12c, 12d illustrate the remarkable efficiency of
SSVL-LD from the perspective of video delivery. Inline with
the corresponding results of the previous section (Fig. 11),
the protocol delivers video of acceptable quality regardless
of link-multiplexing. The interaction of the LDA with SSVP
sustains low packet loss, delivering a large amount of the
video data sent by the application without any retransmis-
sion effort (Fig. 12d). Apart from packet loss statistics, the
proportion of delayed packets, as shown in Fig. 12c, reflects
SSVP-LD’s smooth video delivery for a wide range of net-
work dynamics. An overview of all results in Fig. 12 reveals
that competing flows in the forward and backward direction
do not cause notable implications on SSVP-LD efficiency
and the perceptual video quality achieved by the protocol.
The rest of the protocols exhibit a notable degree of perfor-
mance degradation (Figs. 12c, 12d), which becomes more
evident as contention increases. Packet loss composes a lim-
iting factor both for TFRC and GAIMD, while the latter
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Fig. 12 Performance with heterogeneous networks and reverse traffic

additionally introduces considerable delay variation with an
adverse effect on stream playback quality.

7 Conclusions

We have presented an efficient and viable end-to-end mech-
anism for loss differentiation that renders the underlying
transport protocol less susceptible to wireless loss. Conse-
quently, a wasteful rate reduction in response to a wireless
error is usually prevented with notable gains in terms of flow
throughput. Furthermore, the proposed LDA reduces the
magnitude of AIMD oscillation inline with the requirements
of media-streaming applications for smooth patterns of data
transmission. We incorporated the LDA into AIMD-based
SSVP, concentrating on the interactions between the two
mechanisms. Our simulation results validated the feasibil-
ity and efficiency of this combined approach, in the context
of bandwidth utilization, video delivery, and intra-protocol

fairness. According to our knowledge, SSVP-LD composes
one of the few available end-to-end schemes that achieve ef-
ficient performance on video delivery in wired/wireless net-
works, without requiring the support from lower-layer feed-
back or AQM mechanisms.
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