

Adaptive Head-to-Tail: Active Queue Management

based on implicit congestion signals

Stylianos Dimitriou, Vassilis Tsaoussidis

Department of Electrical and Computer Engineering

Democritus University of Thrace

Xanthi, Greece

{sdimitr, vtsaousi}@ee.duth.gr

Abstract— Active Queue Management is a

convenient way to administer the network load

without increasing the complexity of end-user

protocols. Current AQM techniques work in two

ways; the router either drops some of its packets

with a given probability or creates different

queues with corresponding priorities. Head-to-

Tail introduces a novel AQM approach: the

packet rearrange scheme. Instead of dropping,

HtT rearranges packets, moving them from the

head of the queue to its tail. The additional

queuing delay triggers a sending rate decrease and

congestion events can be avoided. The HtT scheme

avoids explicit packet drops and extensive

retransmission delays. In this work, we detail the

HtT algorithm and demonstrate when and how it

outperforms current AQM implementations. We

also approach analytically its impact on packet

delay and conduct extensive simulations. Our

experiments show that HtT achieves better results

than Droptail and RED methods in terms of

retransmitted packets and Goodput.

Keywords-QoS, AQM. Packet rearrangement

1. INTRODUCTION

TCP congestion control works on the basis of
exhausting the available bandwidth. In order to detect
the level of available bandwidth, TCP increases
gradually its sending rate, until a packet loss occurs.
This way, TCP detects the maximum bandwidth
allowed and retreats. As a result, congestion events
occur. However, as flows enter and leave the network,
the bandwidth that corresponds to each flow changes
and TCP is forced to repeatedly detect the available
bandwidth (i.e. its fair share). TCP versions that rely
on the AIMD algorithm, such as Tahoe, Reno, and
Newreno [7], detect congestion by packet losses.
Unlike traditional TCP, more sophisticated variations
use additional metrics beside packet loss to detect
congestion. Measurement-based TCP, such as Vegas
[1], Westwood [21] and Real [22] base their
congestion control on passive or active measurements.

Some of the most common and easily deployable
metrics are RTT, on the sender’s side, and interarrival
gap, on the receiver’s side if we refer to packets and
on the sender’s side if we refer to ACKs [13]. It is,
thus, apparent that transport layer protocols are able to
respond both to explicit (multiple DACKs and
expirations of the RTO interval) and implicit
(fluctuations of RTT, variable jitter etc.) congestion
signals.

However, network layer mechanisms do not have
the same level of sophistication. Whilst the majority
of existing AQM techniques are capable to generate
explicit congestion signals via packet dropping, they
are unable to generate implicit congestion signals.
Apart from the pure dropping-based AQM, many
schemes use packet drops to set priorities among
packets or flows; for example they drop lower priority
packets with higher probability. Occasionally, their
main objective is not to avoid a congestion event but,
rather, to favor higher priority packets. Thus current
AQM techniques lack mechanisms to generate
implicit congestion signals, hindering transport
protocols to reach their full potential.

In order to bridge the gap among highly
responsive transport protocols and traditional network
layer mechanisms, we introduce Head-to-Tail, an
AQM technique that introduces implicit congestion
signals via packet rearrangement. HtT has four main
characteristics: packet rearrangement, adaptive
behavior, in-order delivery and no proactive dropping.
Based on a probability, Head-to-Tail moves all the
packets of a specific flow from the head of the queue
to its tail and as a result it increases their queuing
delay and “generates” an implicit congestion signal.
As more flows content for resources and more packets
occupy the queue, packet rearrangement has greater
impact, and the additional queuing delay inflicted
becomes more perceptible. The rearrange probability
is adaptive and aims at minimizing packet losses due
to overflow. In order to eliminate the probability of
out-of-order delivery and generation of DACKS, HtT
rearranges all the packets of one flow. HtT also avoids
proactive packet dropping due to its unpleasant

effects. Apart from degradation of real-time
applications quality, blind packet dropping might
result in loss of certain types of packets (SYN, ACK,
ICMP packets) and extend significantly the
connection time of short-lived flows. Instead, HtT
informs indirectly the end-user on the levels of
contention in the buffers.

During our work we faced four major challenges:

1. Overcome TCP heterogeneity. The
heterogeneity of TCP versions reflects a
corresponding heterogeneity on their levels of
sophistication. Traditional TCP measures RTT only to
adjust the RTO interval and detect packet losses,
while more advanced approaches, based on
measurements, are able to detect the level of
contention with better precision. Moreover, each TCP
version relies on different metrics to form its strategy:
it may measure RTT values, one-way delays or
interpacket gaps. Some versions are conservative
(Tahoe has no fast recovery phase) while other are
more aggressive (Vegas retransmits a packet after
only one DACK). HtT should be able to broadly
accommodate such conflicting protocol requirements,
with emphasis on measurement-based protocols.

2. Reach a level of granularity that incorporates
the scale of delay increments. We should be able to
regulate the delay increase inflicted by HtT in order to
have the desirable behavior; causing congestion
window decrease without causing timeout. Namely,
the additional delay should be big enough to be
captured from TCP as an irregularity on measured
RTT values and small enough to be below the RTO
interval. This objective becomes more intricate as the
sample RTT, frequently, tends to fluctuate, rendering
the delay increase obsolete.

3. Balance the delay decrease caused by HtT.
Since HtT rearranges the order of the packets in the
queue, some packets will be favored in the final
ranking and the corresponding flows will perceive a
diminished queuing delay. If the perceived RTT is
much smaller than expected, the flows will probe for
more bandwidth and increase their rates. HtT has to
incorporate a technique to regulate this delay decrease
to desirable levels.

4. Surmount the “no-proactive-dropping strategy”
limitations. No packet dropping may have negative
effects, concerning the limited buffer capacity.
Current AQM techniques use packet dropping not
only to warn end-users for an upcoming congestion
event, but also to alleviate the buffer load. Although
HtT lacks such a packet dropping mechanism, it
adapts its strategy on the amount of dropped packets
due to overflow in a period of time, and specifically
on the dropped to enqueued packets ratio. While this
ratio is high, HtT is offensive, rearranging many
packets. As this ratio decreases, HtT decreases its
rearrangements.

The AIMD mechanism, that regulates the
congestion window of traditional TCP, results in
varying congestion window, which has, in turn, the

undesirable effect of fluctuating queue length at the
router. In these cases, as we will prove later, HtT may
have harmful results to end-users, resulting in multiple
timeouts and retransmissions. However, since the
research interest moves to sophisticated transport
protocols that result in constant sending rates and
stable queue lengths, more protocols will take
advantage of HtT capabilities eventually. Further
analysis indicates that the implementation of a
transport protocol that cooperates closely with HtT is
possible. Such a protocol, will be able to capture a
very good approximation of the link state and respond
accordingly.

The rest of the paper is organized as follows:
Section 2 presents the work that has been done on the
AQM schemes field. In Section 3 we outline the
requirements that HtT needs to satisfy and in Section
4 we describe in detail the HtT algorithm and its
various mechanisms. In Section 5 we quantify the
rearrangement delay invoked by TCP, by analyzing its
various components and in Section 6 we analyze the
effect of TCP on queue length and relate it with TCP’s
capability to detect delay variations. Section 7
includes the simulation topologies and results and in
Section 8 we conclude and set the framework for
future work.

2. RELATED WORK

Since 1993 when RED [8] was first proposed,
researchers have investigated a plethora of
mechanisms that are either dropping-based or priority-
based.

Random Early Detection introduced proactive
dropping so as to inform the flows that a congestion
event was imminent and at the same time lower the
size of the queue. The initial RED utilized two
thresholds, a maximum and a minimum, which
corresponded to average queue length. Every packet
that arrived at the queue whose length was greater
than the maximum threshold would be discarded.
Considering that many packets that could otherwise
be accommodated by the queue would be
unnecessarily dropped, the gentle RED [17]
modification extended maximum threshold to twice
its value. However, although we may exploit fully the
buffer space this way, packet drops do not have
always desirable effects. Some applications that
generate a small amount of critical data, such as
Telnet, do not exit from slow start and may delay by
packet drops. In [15] the authors propose for the first
time ECN (Explicit Congestion Notification). In ECN
packets are not dropped; instead they are marked by
the router, and their marking will have the same effect
on senders as packet loss. One issue with RED
gateways is the lack of adaptability on different traffic
levels. Adaptive RED [4], [6] avoids link
underutilization by maintaining the average queue
length among the two thresholds by adjusting pmax.
Another approach, Exponential-RED (E-RED) [10]
sets the packet marking probability to be an
exponential function of the length of a virtual queue
whose capacity is slightly smaller than the link

capacity. As we see, RED and many of its variants use
queue size in order to determine the level of
contention. Contrary to this approach, BLUE [5]
manages dropping, based on packet loss and link idle
events; if the queue drops packets due to buffer
overflows, BLUE increases the dropping probability,
whereas if the queue becomes empty or idle, BLUE
decreases the dropping probability. Loss Ratio based
RED (LRED) [20] follows a similar way by
measuring the latest packet loss ratio, and using it as a
complement to queue length so as to dynamically
adjust packet drop probability and decrease response
time.

Besides AQM techniques that drop packets
blindly, more sophisticated algorithms aim to penalize
high-bandwidth or unresponsive flows while other
offer service differentiation by treating packets
according to their type. Weighted RED (WRED) [2] is
designed to serve Differentiated Services based on IP
precedence. Packets with a higher IP precedence are
less likely to be dropped, thus high priority traffic will
be delivered with higher probability than low priority.
Flow RED (FRED) [9] uses per-active-flow
accounting to impose on each flow a loss rate that
depends on the flow’s buffer use. Unfortunately,
extended memory and processor power is required for
a big number of flows. On the other hand RED-PD
(Preferential Dropping) [11] maintains a state only for
the high-bandwidth flows.

Stochastic Fair BLUE (SFB) [5] uses mechanisms
similar to BLUE and aims to identify and rate limit
unresponsive flows based on accounting tables.
Similar to SFB, ERUF [16] uses source quench to
have undeliverable packets dropped at the edge
routers. The CHOKe mechanism [14] matches every
incoming packet against a random packet in the
queue. If they belong to the same flow, both packets
are dropped. Otherwise, the incoming packet is
admitted with a certain probability. Last, NCQ [12]
distinguishes data into congestive and non-congestive
queuing (minimal-size) packets and favors non-
congestive packets over congestive during scheduling.

Although HtT cannot be categorized as neither
dropping-based nor priority-based AQM technique, it
has some similarities with the former group of
algorithms. HtT implicitly indicates congestion status
to the end-nodes, not by packet loss but by packet
delay. HtT can thus be considered as a new category
of Active Queue Management mechanisms.

3. BASIC REQUIREMENTS

Prior to presenting the HtT implementation, it is
essential to list the basic requirements which need to
be satisfied. In general, HtT is oriented towards
performance and, on this stage of development, does
not incorporate solution for real-time traffic.

1. HtT should aim towards the decrease of
unnecessary packet retransmissions. Apart from
link underutilization, packet retransmissions have
harmful effects on battery-powered devices, like
laptops and sensors. They increase the time the

network card has to be in sending mode and they
expand the total connection time. Moreover, most
real-time applications are less tolerant in packet
losses (since the UDP, that is usually utilized by
real-time applications, does not incorporate packet
retransmission mechanisms) and would accept a
small delay rather than not to receive the packet at
all.

2. The rearrangement algorithm should not result in
out-of-order delivery. Out-of-order delivery,
depending on the TCP version, usually results in
packet retransmission. Let’s consider the situation
in Fig. 1, where we decide to rearrange only the
first packet of the queue, and move it from the
head to the tail (packets a and b belong to the same
connection). If these two packets belong to a TCP
Vegas flow, when the packet ‘b’ arrives at the
receiver it will trigger the generation of a DACK
for packet ‘a’. TCP Vegas will respond to this
DACK with an immediate packet retransmission,
even though no loss has occurred. Typically, 3
DACKs are required.

3. HtT needs to associate its strategy with the level of
contention, namely adjust its rearrangement
probability as flows enter and leave the network.
Unlike RED and some of its variants that take into
account the queue length, HtT’s mechanism is
self-adjustable. The significance of rearrangement
depends strictly by the number of packets
presently in the queue; no extra action has to be
taken.

Figure 1. Rearranging the first packet of the queue.

4. BASIC HTT SCHEME

HtT’s main component is a Rearrange Probability
Function (RPF), which is a function of the actual
queue length (Fig. 2). As we notice, the RPF is a pulse
function and defines that rearrangements may happen
only when the queue is 10%-90% full. This can be
explained intuitively and shows off the need to avoid
too small or too big additional queuing delays.
Nevertheless, the choice of a pulse function may be
questionable. One might expect that an increasing
function would be more appropriate, since, as the
queue size is increased the function should be able to
notify more flows. However, the rearrangement
function does not carry a binary congestion signal as
the dropping function; that is, many rearrangements

a

b

a

b

do not have similar effect as many drops. Besides,
although we will analyze extensively this remark later,
we note for now that there is a hidden increase as
more packets arrive at the queue. Though, instead of
notifying more flows, we notify the same number of
flows more explicitly. It is obvious from Fig. 1 that as
the queue size increases, the additional queuing delay
is also increased and the effect for the end-nodes is
more significant. A first approach on the packet
rearrangement scheme is in [3]. In the same paper
there is an experimental justification of the choice of
the pulse RPF. The p_htt variable defines the
probability that some packets will be rearranged and
varies depending on the router state (the initial value
is 0.1).

Figure 2. The Rearrange Probability Function.

HtT’s operation is rather simple. For every packet
that is ready to be served the router generates a
random number between 0 and 1. If this number is
smaller than p_htt then the router rearranges the head
and some other packets (more details in Subsection
4.1), otherwise it routes the head and moves to the
next packet.

Besides the basic scheme, HtT performs many
functions that need to be discussed in detail
separately, namely the rearrange function, the marking
function and the adaptation function.

4.1 Rearrange function

As we mentioned in the introduction, each
rearrangement consists of moving all the packets of a
specific flow from their position in the queue to the
tail. HtT examines the transport and network layer
headers of the head and extracts the ‘addressing
information’ of the packet, i.e. the (IP address, port
number) pair. These fields indicate the
connection/flow the packet belongs, that is the unique
connection between two communicating end-nodes.
Although this operation has some processing cost, the
router does not keep a state; it only uses this
information once. After rearranging the head, HtT
scans all the packet of the queue starting from the
head towards the tail and reads their flow. If they
belong to the same flow as the head, then they are
moved to the tail. We show the pseudo-code of the
algorithm below. We use the following functions;

flow(pkt): returns the flow that pkt belongs

rearrange(pkt): moves the pkt from its current
position to the tail of the queue

packet(n): returns the packet that belongs on the n-
ith place on the queue, where n=0 is the head

no_pkts(): returns the total number of packets
currently populating the queue

n=0

hf=flow(packet(n))

rearrange(packet(n))

do {

 n=n+1

 pf=flow(packet(n))

 if (hf==pf) then rearrange(packet(n))

} while(n<no_pkts())

Figure 3. Rearranging packets with HtT.

Fig. 3 depicts how the rearrangement scheme
works. Packets 1, 2 and 3 all belong to the same flow.
HtT picks the head, reads the flow that it belongs and
moves the packet to the tail. Then it scans the entire
queue from the beginning to the end, searching for
packets that belong to the same flow as the head. If it
finds one, it moves it to the tail and repeats until it
reaches to the end of the queue.

An actual implementation of the algorithm would
have to face a lot of practical problems. The first is the
difficulty to characterize accurately a flow and detect
which packets belong to this flow. Due to Network
Address Translation (NAT) [18], which is frequent in
IPv4 networks, the pair of sender/receiver IP
addresses is not enough to characterize a single
connection. In order to identify exactly a connection
we also need the pair of sender/receiver ports, as well
as the transport protocol used. However, extracting
more information for the packet renders the algorithm
complicated and thus time-consuming. None the less,
HtT is based on packet delay, so a time-consuming
algorithm would contribute to the total increase of
queuing delay, as long as we do not have outgoing
link underutilization. If the algorithm is proved to be
very heavy, we could implement it in a way that the
router sends packet while scanning the queue. The
implementation details of such a solution are beyond
the scope of this work. An other apparent solution is
to this problem is to assume that the pair of IP
addresses can characterize a single connection, an
assumption which will be more valid in the future as
IPv6 users are increased. Even though on edge-routers

1

2

3

1

2

3

1

2

3

2

3

1

0

prob

1

100%

p_htt

10% 90%

q_len

such an approach is unrealistic, for example, many
computers behind a company’s router that uses NAT
may communicate with the same server, the worst
case scenario is the router rearranging all the
incoming packets, thus adding only a little processing
delay for each packet.

We should note that, this way, rearranging the
packets of a single connection, HtT will add different
amount of queuing delay for different packets of the
same flow and will eliminate any interpacket gap that
might have occurred by the router’s multiplexing
algorithm. Different transport protocols (or versions
of well known transport protocols, such as TCP)
might interpret differently the measured delays of the
packets. A given transport protocol might consider
that zero interpacket gap means little traffic and
increase the congestion window, without taking into
account that the average queuing delay has increased.

4.2 Adaptation Function

Using the same rearrange probability might work
well in cases with a constant number of users, but as
flows enter and leave the network, we should follow a
more dynamic strategy. Our aim is not to limit the
queue size to a threshold, but to minimize the packet
drops caused by congestion events and specifically the
portion of dropped-to-enqueued packets. We measure
the number of packets arrived in the queue and the
number of packets dropped due to overflow for one
second. If the dropped-to-enqueued ratio measured
recently is greater than the previous one, then the
rearrange probability is multiplicatively increased,
otherwise decreased. If the two ratios are the same,
then this almost always means that there are not
dropped packets in neither case, so we decrease the
rearrange probability. To describe in pseudo-code the
algorithm, we use the following variables and
functions;

p_htt: indicates the rearrange probability of HtT

enqueued: is increased whenever a packet is
successfully enqueued by the queue

dropped: is increased whenever a packet is
dropped by the queue due to overflow

now(): returns the current time in seconds

if(now()-last==1) {
 new_ratio=dropped/enqueued
 if(new_ratio>old_ratio)
 then p_htt=p_htt*1.1
 else p_htt=p_htt/1.1
 old_ratio=new_ratio
 last=now()
 enqueued=0
 dropped=0
}

One critical difference of dropping-based AQM

schemes against HtT is that as more packets are

dropped, more flows are notified by the increasing

contention signal. However, with HtT, after a specific

point, the impact of increased queuing delay

diminishes as more and more packets are being

rearranged. In Fig. 4 we have 3 flows, which have

packets (1,2,3), (a,b,c) and (x,y).

Figure 4. The resulting queue with too many rearrangements.

If we do not limit the rearrange probability to a
maximum value, in case of a gradually increasing
contention, the probability will take big values like 0.7
or 0.8. In such a case there will be little effect on the
packets and the router might not be able to return to
the previous state. In order to avoid such a reaction,
we will limit the maximum rearrange probability
deterministically to 0.2, based on sample
measurements.

4.3 Marking function

Rearranging a packet on the queue has double
effect. The first is that the queuing delay of this packet
is increased significantly, depending by its position in
the queue. The second is that all the other packets
have their queuing delay slightly decreased since now
their waiting time in the router is smaller (we will
cover this aspect later). In order to avoid an excessive
delay for a packet that may result in expiration of the
retransmission timeout, we should limit the maximum
number of times a packet could be rearranged. HtT
defines that a packet can be rearranged, at the very
most, only once per router. In order for the router to
keep track of the packets that have been rearranged, it
should have a way to ‘remember’ which packets it has
rearranged, i.e. implement a marking function. This
marking has no relation to the marking function
implemented by ECN; it refers to marking a packet
while it is in the router and unmarking it when it
departs. Thus the packet remains the same from hop to
hop. Marking in HtT can be implemented in two
ways.

1. Mark each packet separately. Using this approach,
the router marks the rearranged packet in the
header, usually by altering one unused bit in the
Options field. When this packet becomes again the
head of the queue, the router knows that this
packet has been rearranged once and hence should
not be rearranged again. Before the packet departs
from the queue, the router alters the same bit and
sends the packet to the next router. The advantages
are that the router doesn’t need to keep track in a
separate data structure the packets rearranged, and

2

3

a

b

y

x

c

1
1

b

1

x

c

2

y

3

a

y

a

3

2

b

1

c

x

y

a

3

x

1

2

b

c

that it doesn’t need to alter the Header checksum
of the field, since the packet returns to the
previous state before moving to the next router.

2. Maintain separate data structure. This way we
have an array or a list where we record the
connections whose packets have been rearranged
and the number of packets for each connection;
any other information, e.g. sequence number, is
unnecessary. When a packet leaves the queue, the
router just needs to examine the flow it belongs
and either decrease by one the total number of
packets, or erase the record if this is the last packet
of the flow. The packets are not affected and the
process of identifying the already rearranged
packets is faster. Unfortunately, a memory
consuming data structure should be created.

Both these approaches are semi-stateless, in the
sense that we don’t have to maintain a large reference
table for all the flows in the network. Only the flows
whose packets currently occupy the router are
recorded for a small period time. During our
evaluation of the technique we followed the first
approach.

5. ANALYSIS OF REARRANGEMENT DELAY

In Section 4 we saw that the effect of HtT on
packets is twofold; some packets gain additional
delay, while the rest take higher priority in the queue.

We will continue by analyzing the effect on the
additional queuing delay on a per hop perspective. At
the end of the analysis we end-up with a sum
(dHtT++dHtT-), which indicates the delay factor inflicted
by HtT to a packet. If this factor is positive it should
be big enough to be perceived as an indication of
increased contention. On the other hand, if it is
negative, it should be so small that would not be
perceived as an indication of small contention levels;
otherwise the sender might increase its rate.

We consider a link (Fig. 5). We summarize our
definitions in Table 1. We also consider λ>µ (in this
case the service rate equals to the bandwidth of the
link) and we assume that all packets have fixed length.
We deliberately omit processing delay from our
analysis. Processing delay can be an important part of
the total delay since the router has to examine the
network and transport layer header for every packet to
decide if it will rearrange it, and then, if it decides to
rearrange it, it has to examine the headers of every
other packet in the queue.

TABLE 1. LINK CHARACTERISTICS

Link characteristics

x packets/sec Channel bandwidth

y sec Propagation delay

D packets Router storage capacity

λ packets/sec Average arrival rate

µ packets/sec Average service rate

leni Average queue length

Figure 5. Channel characteristics.

On a per hop perspective, the total delay of a
packet consists of four delays:

dp: propagation delay

dt: transmission delay

dq: queuing delay

dpr: processing delay

We will ignore processing delay for now. On HtT
gateways, we have two more delay components:

dHtT+: the additional delay inflicted by HtT

dHtT-: denotes the decrease of the queuing delay
caused by the rearrangement of other packets.

We consider an arriving packet at the queue. If leni
is the length of the queue the time the packet arrives,
we have:

 secpd y= (1)

1 pkt 1
= sec

 pkt/sec
td

x x
= (2)

 seci
q i t

avg
d len d

x
= ⋅ = (3)

In HtT gateways, we have two possibilities; either
a packet is rearranged or not. If the packet is
rearranged, it will gain an additional queuing delay,
dHtT+. Regardless of the packet’s rearrangement, other
packets might be rearranged in the queue as well. In
case other packets are rearranged, for each packet
rearrangement, the waiting time of the packet will be
diminished by a delay equal to the transmission delay
of one packet. The total decrease of the queuing delay
in that case is the dHtT- factor. In reality, things are
more complex since each rearranged packet has
different dHtT+ and the effect on the entire congestion
window is cumulative; however, at present, we
emphasize on the delay impact of HtT on a single
packet.

We considered earlier a packet that arrives at a
router with queue length equal to leni. After a time
equal to the queuing delay dq, all the previous packets
have been routed and the packet is the first to be
served. During this time, more packets have arrived at
the router. Thus the current length of the queue is:

R
BW=x pkt/sec

dp=y sec

λ pkt/sec

µ pkt/sec

average length

D pkts

() pktslength iq len x λ µ= + ⋅ − (4)

If, at this point, the router decides to rearrange that
packet, the queuing delay will increase by the
expected delay of the packet. If A+ is a variable that
corresponds to the combined probability of
rearrangement and the present position of the packet
in the queue, this additional delay equals to:

() 1
 sec

 sec

HtT i

i
HtT

d A len x
x

len
d A

x

λ µ

λ µ

+ +

+ +

 = ⋅ + ⋅ − ⋅ ⇔

 = ⋅ + −

 (5)

Most of the times, a rearranged packet is the head
of the queue, however sometimes it may be
rearranged from the ‘body’ of the queue. For our
current analysis we consider that the rearranged
packet is the head.

At the same time, the packet might be favored by a
waiting time equal to several transmissions delays. If
A- is a factor that includes both the probability and the
number of rearrangements of other packets, the sum
of these delays is:

1
 secHtTd A

x
− −= − ⋅ (6)

The total delay for a packet now becomes:

total p t q pr HtT HtTd d d d d d d+ −= + + + + + (7)

which, if analyzed further, becomes:

x
A

x

len
A

x

len

x
yd i

ii
total

11
⋅−

−+⋅+++= + µλ (8)

Eq. (8) describes generally the total delay for a
packet. If A+=0 then the delay increase due to HtT is
zero, that is the packet is not rearranged in this hop. If
both A+ and A- are zero, then during the time period
that the packet is in the queue, the router rearranges
no packet, thus causes neither delay increase nor
decrease for no packet. The last two elements of Eq.
(8) also indicate the required level of granularity of
the transport protocol in order to capture the extra
queuing delay caused by HtT. The sum (dHtT++ dHtT-)
should be significant enough to signal increased
contention. In cases of smaller contention, it should
approach zero.

Moreover, the aforementioned expression of
packet delay, which is an equation of x, y and leni,
indicates the conditions under which HtT has its
optimal performance, that is the conditions under
which current TCP implementations can capture the
variations of queuing delay. Topologies with small
propagation delays or big buffer spaces are ideal for
HtT operation. Leni corresponds to the expected
average length of the queue, in this way we would
expect bigger leni for routers with greater buffer
capacity.

6. AVERAGE QUEUE LENGTH

In Eq. (8), leni indicates the length of the queue
the moment a random packet arrives. None the less,
the queue length is mostly determined by the number
of flows and the underlying transport protocol.
AIMD-based TCP variations tend to create queues
whose length fluctuates whereas more sophisticated
TCP variations maintain stable queue lengths. Using a
dumbbell topology with 20 flows, we observed the
length of the queue of the bottleneck link for 20
seconds.

TCP Tahoe

0

10

20

30

40

50

60

0 5 10 15 20

sec

p
k
ts

Figure 6. Queue length with TCP Tahoe flows.

TCP Newreno

0

10

20

30

40

50

60

0 5 10 15 20

sec

p
k
ts

Figure 7. Queue length with TCP Newreno flows.

TCP Vegas

0

10

20

30

40

50

60

0 5 10 15 20

sec

p
k
ts

Figure 8. Queue length with TCP Vegas flows.

TCP Real

0

10

20

30

40

50

60

0 5 10 15 20

sec

p
k
ts

Figure 9. Queue length with TCP Real flows.

As we observe in Figs. 6-9, depending on the
congestion control implemented, the queue may
heavily fluctuate - in case of AIMD-based TCP - or
may have a more stable behavior - in case of more
sophisticated TCP versions.

The queue length corresponds to queuing delay.
Stable queue length results to stable queuing delay.
Flows that base their strategy on RTT measurements
measure values with small deviation and thus they
tend not to modify significantly the sending rate. In
these cases the delay caused by HtT can be easily
captured by TCP as an unexpected additional delay.
On the other hand, fluctuating queue lengths have the
disadvantage that instant small values of RTT,
combined with a decrease of the queuing delay dHtT-,
might trick the protocol to think that there is link
underutilization and lead to a congestion window
increase and inevitably to a congestion event. This
uncertainty on the expected packet delay for the
AIMD-based TCP, combined to the fact that it bases
its operation, almost exclusively, to packet losses,
renders HtT mechanism obsolete if not damaging to
this category of protocols. In most extreme cases, a
randomly high packet delay with HtT delay may lead
to an expiration of RTO and unnecessary
retransmissions.

7. SIMULATIONS

In this section, we present performance evaluation
based on simulations. HtT has been implemented in
ns-2 and is compared to Droptail and RED. HtT is
tested with two measurement-based TCP variations;
one sender-oriented - TCP Vegas - and one receiver-
oriented - TCP Real. Although none of these protocols
can cooperate perfectly with HtT, their functionality
allows them to take advantage of the extra delay. We
will review briefly their algorithms.

Contrary to TCP Reno, Vegas has differentiated
congestion avoidance and recovery mechanisms. TCP
Vegas introduces baseRTT which is the smallest
measured RTT during one connection and represents
the packet delay without queuing delay. It then
computes two throughputs, the Actual, which is the
actual throughput of the sending process, and the
Expected, which is an ideal throughput with no
queuing delay and equals to windowSize/baseRTT
(windowSize is almost always the congestion

window). The difference diff=Expected-Actual
indicates the extra, in-fly data of the flow. We
consider two thresholds α and β where α<β. If diff is
less than α then the flow increases its sending rate. If
diff is less than β then it decreases its sending rate and
if it falls between these two thresholds then it keeps
the same sending rate. Vegas also favors less out of
order delivery because it resends a packet
immediately after just one DACK, instead of three.

TCP Real is a receiver-oriented protocol, using the
notion of wave, introduced in [19]. The wave is the
congestion window with three more characteristics; its
size is constant during an RTT, it is advertised to both
the sender and the receiver and it is determined by the
pace of arriving packets at the receiver, not by the
pace of ACKs at the sender. The less the contention in
the channel, the greater is the level of the wave. In this
wave, TCP has not only a binary knowledge of the
link state, but also knows the exact level of
contention. Apart from the above, TCP Real has also
improved recovery mechanisms and can detect the
nature of packet losses (congestion, transient errors,
handoffs) and respond accordingly.

During the simulations we omitted AIMD-based
TCP, such as Tahoe, Reno or Newreno. The reason is
that these variations only measure RTT in order to
adjust their RTO interval and not to adjust their
transmission strategy. However, although Vegas and
Real do not comply exactly with HtT specifications,
they give us a good idea of the protocol’s
performance. One last remark is that while we are
mostly interested on retransmitted packets, which is
the main quantity we wish to decrease, we present
also results on received packets (Goodput) as well as
fairness. Although the differences are marginal, we
emphasize that HtT in many cases can increase
performance while maintain high Fairness.

7.1 Simulation metrics

In order to evaluate HtT, we use three criteria:
Received packets, Retransmitted packets and Fairness.
Received packets are the packets successfully
received by the receivers and retransmitted packets
are the packets that were dropped by the network
layer mechanisms and were retransmitted again. The
reason we use packets instead of Goodput or
Throughput, is that we consider that the users are
active during the span of the simulation, which is 50 s.
In this way, packets and rate indicate the same thing.
The Fairness index we used is the Jain’s index. Since
our current study does not involve real-time
applications, we do not include metrics as jitter or
interpacket gap.

7.2 Dumbbell simulations

The first simulation topology is a dumbbell
topology with 100 flows (Fig. 10). During three sets
of simulations we vary the propagation delay and the
bandwidth of the bottleneck link, as well as the buffer
capacity of the router.

Figure 10. Dumbbell topology.

7.2.1 Varying propagation delay
In this first set of simulations we consider a 100

Mbps bottleneck link and a router with 100 packets
capacity. We then vary the propagation delay from 1
ms to 30 ms. Figs. 11 and 12 depict the results on
retransmitted packets, 13 and 14 on received packets
and 15, 16 on Fairness.

TCP Vegas

0

10000

20000

30000

40000

50000

1 5 10 15 20 25 30

msec

R
e
tP
a
c
k
s DT

RED

HtT

Figure 11. Retransmitted packets with varying propagation delay

and TCP Vegas flows.

TCP Real

0

5000

10000

15000

20000

25000

30000

1 5 10 15 20 25 30

msec

R
e
tP
a
c
k
s DT

RED

HtT

Figure 12. Retransmitted packets with varying propagation delay

and TCP Real flows.

TCP Vegas

590000

595000

600000

605000

610000

615000

620000

625000

1 5 10 15 20 25 30

ms

R
e
c
P
a
c
k
s DT

RED

HtT

Figure 13. Received packets with varying propagation delay and

TCP Vegas flows.

TCP Real

580000

590000

600000

610000

620000

630000

1 5 10 15 20 25 30

ms

R
e
c
P
a
c
k
s

DT

RED

HtT

Figure 14. Received packets with varying propagation delay and

TCP Real flows.

TCP Vegas

0

0.2

0.4

0.6

0.8

1

1.2

1 5 10 15 20 25 30

ms

F
a
ir
n
e
s
s DT

RED

HtT

Figure 15. Fairness with varying propagation delay and TCP

Vegas flows.

TCP Real

0

0.2

0.4

0.6

0.8

1

1.2

1 5 10 15 20 25 30

ms

F
a
ir
n
e
s
s DT

RED

HtT

Figure 16. Fairness with varying propagation delay and TCP Real

flows.

The simulation results can be partly explained by
the Eq. (8). As we increase the propagation delay, the
delay caused by rearrangement becomes less and less
significant and the decrease on retransmitted packets
is very small for big values of propagation delay.

7.2.2 Varying bandwidth
In this second set, we consider a bottleneck link

with 30 ms propagation delay (the worst case from the
previous scenario) and 100 packets buffer capacity.

TCP Vegas

0

5000

10000

15000

20000

25000

20 40 60 80 100

Mbps

R
e
tP
a
c
k
s DT

RED

HtT

Figure 17. Retransmitted packets with varying bandwidth and TCP

Vegas flows.

TCP Real

0

2000

4000

6000

8000

10000

12000

14000

20 40 60 80 100

Mbps

R
e
tP
a
c
k
s DT

RED

HtT

Figure 18. Retransmitted packets with varying bandwidth and TCP

Real flows.

TCP Vegas

0

100000

200000

300000

400000

500000

600000

700000

20 40 60 80 100

Mbps

R
e
c
P
a
c
k
s

DT

RED

HtT

Figure 19. Received packets with varying bandwidth and TCP

Vegas flows.

TCP Real

0

100000

200000

300000

400000

500000

600000

700000

20 40 60 80 100

Mbps

R
e
c
P
a
c
k
s

DT

RED

HtT

Figure 20. Received packets with varying bandwidth and TCP

Real flows.

TCP Vegas

0

0.2

0.4

0.6

0.8

1

1.2

20 40 60 80 100

Mbps

F
a
ir
n
e
s
s DT

RED

HtT

Figure 21. Fairness with varying bandwidth and TCP Vegas flows.

TCP Real

0

0.2

0.4

0.6

0.8

1

1.2

20 40 60 80 100

Mbps

F
a
ir
n
e
s
s DT

RED

HtT

Figure 22. Fairness with varying bandwidth and TCP Real flows.

Eq. (8) indicates that as the bandwidth of the link
increases, the delay caused by HtT becomes
inconsiderable. If we consider λ≈x, A+=1, leni=80 and
100 Mbps bandwidth we have dHtT+=6.4 ms and if
bandwidth equals to 20 Mbps than dHtT+=32 ms. We
can see thus that even for a 100 Mbps bandwidth link,
dHtT+ is important. In the first case, the one-way delay
without HtT is 36.48 ms, the RTT is almost 72.96 ms
and HtT adds an 8.7% to the total delay. In the last
case, HtT adds a 25.7% to the total delay.

7.2.3 Varying buffer capacity
In the third set of simulations we vary buffer size.

As expected, bigger buffers have better results in
decreasing the number of retransmitted packets.

TCP Vegas

0

5000

10000

15000

20000

25000

100 150 200 250 300

packs

R
e
tP
a
c
k
s DT

RED

HtT

Figure 23. Retransmitted packets with varying buffer capacity and

TCP Vegas flows.

TCP Real

0

2000

4000

6000

8000

10000

12000

14000

100 150 200 250 300

packs

R
e
tP
a
c
k
s DT

RED

HtT

Figure 24. Retransmitted packets with varying buffer capacity and

TCP Real flows.

TCP Vegas

618000

619000

620000

621000

622000

623000

100 150 200 250 300

packs

R
e
c
P
a
c
k
s

DT

RED

HtT

Figure 25. Received packets with varying buffer capacity and TCP

Vegas flows.

TCP Real

550000

560000

570000

580000

590000

600000

610000

620000

630000

100 150 200 250 300

packs

R
e
c
P
a
c
k
s

DT

RED

HtT

Figure 26. Received packets with varying buffer capacity and TCP

Real flows.

TCP Vegas

0

0.2

0.4

0.6

0.8

1

1.2

100 150 200 250 300

packs

F
a
ir
n
e
s
s DT

RED

HtT

Figure 27. Fairness with varying buffer capacity and TCP Vegas

flows.

TCP Real

0

0.2

0.4

0.6

0.8

1

1.2

100 150 200 250 300

packs

F
a
ir
n
e
s
s DT

RED

HtT

Figure 28. Fairness with varying buffer capacity and TCP Real

flows.

During the last years there is a debate about the
optimal size of router buffers and their effect on
network utilization. We do not ignore this debate; but
instead we note that (i) the buffer size depends also on
the network size and DxB product and therefore,
buffers can occasionally grow large even when the
design is conservative; (ii) we explicitly state that the
bigger the buffer, the more noticeable the delay is.

7.3 Cross-traffic simulations

Now we will make some simulations with a cross
traffic topology (Fig. 29). We have 3 groups of
senders, S1x, S2x and S3x and 3 groups of
corresponding receivers, R1x, R2x and R3x.

Figure 29. Cross-traffic topology.

We increase the number of users from 50 for each
group to 100. In this case we do not depict the results
of simulations with RED because its performance is
poor in the specific topology.

TCP Vegas

0

5000

10000

15000

20000

25000

30000

150 180 210 240 270 300

flows

R
e
tP
a
c
k
s

DT

HtT

Figure 30. Retransmitted packets with TCP Vegas flows.

TCP Real

0

5000

10000

15000

20000

25000

150 180 210 240 270 300

flows

R
e
tP
a
c
k
s

DT

HtT

Figure 31. Retransmitted packets with TCP Real flows.

TCP Vegas

928000

929000

930000

931000

932000

933000

934000

150 180 210 240 270 300

flows

R
e
c
P
a
c
k
s

DT

HtT

Figure 32. Received packets with TCP Vegas flows.

TCP Real

929000

929500

930000

930500

931000

931500

150 180 210 240 270 300

flows

R
e
c
P
a
c
k
s

DT

HtT

Figure 33. Received packets with TCP Real flows.

Fairness

0

0.2

0.4

0.6

0.8

1

1.2

150 180 210 240 270 300

flows

F
a
ir
n
e
s
s

DT

HtT

Figure 34. Fairness with TCP Vegas flows.

Fairness

0

0.2

0.4

0.6

0.8

1

1.2

150 180 210 240 270 300

flows

F
a
ir
n
e
s
s

DT

HtT

Figure 35. Fairness with TCP Real flows.

As the number of users increases Goodput
increases and unnecessary data transmission is
avoided. This leads us to the conclusion that HtT
works better under heavy contention conditions.

7.4 TCP Vegas vs TCP Real

Both TCP Vegas and Real can get significant
improvements from HtT’s delay mechanisms.
However, while Real has a smooth behaviour, Vegas
is unpredictable as network conditions change (Figs.
23 and 24). This is due to the fact that Vegas is
parameter sensitive; it depends heavily on the values
of α and β, which define the thresholds between which
the sending rate is allowed to fluctuate. For this
reason, there are some “optimal” topologies which
allow Vegas algorithm to operate with its full
potential, while other topologies with slight
differences may cause dysfunctions. On the other
hand, TCP Real does not have such dependencies and
does not rely strongly to the underlying topology.
Thus, it is more scalable and can exploit better the
network resources.

Moreover, Vegas and Real have different results
because they measure different things. Vegas
measures the RTT while Real measures the one-way
delay. Thus the positive and negative effects of HtT
are captured more easily by Real. TCP Real then
informs the sender from the exact level of the
contention, which if A+=0 and A-≠0 (Eq. (8)) will
seem to be lower than usual and will trigger the
increase mechanism of the sender. Contrary to Real,
Vegas not only captures less easily the additional
delay but also is tolerant for relatively small decreases
of the RTT.

8. CONCLUSION AND FUTURE WORK

In this paper, we reviewed and revised the HtT
technique. We analyzed its operation and evaluated its
performance. We demonstrated with simulations how
HtT can decrease the burden of retransmitted packets
in the network. In many cases, HtT can induce
additional delay to packets, transport protocols can
detect it and react accordingly.

Continuing our theoretic work, we study the effect
of the algorithm when used on different levels on the
network. Is it preferable to use HtT only on the core
routers where delays are greater, or should we use it

only on edge routers where packet flow is lower?
Furthermore, what are the effects on fairness when we
rearrange both UDP and TCP flows? An interesting
point to examine is the level of service differentiation
we can achieve if we rearrange only TCP flows, and
not UDP. Moreover, we work on the creation of a
transport layer protocol, probably a TCP variant that
will have the appropriate level of sophistication to
cooperate with HtT. Having defined the granularity of
the transport protocol in order to achieve maximum
performance, we can get a rough idea of the protocols
structure.

The next obvious step is the implementation of the
algorithm in an actual network. Since processing
delay is a factor that may affect seriously the
performance of HtT, it is vital to move along to an
actual implementation of the code to verify the
correspondence of simulation data to actual results, as
well as to examine any complexities that might arise.
Is processing delay significant enough to eliminate the
problem of delay decrease we studied earlier? If it is
bigger than expected, are there ways to abate it, for
example with more sophisticated scheduling? The
implementation is also crucial for testing HtT with
real-time applications whose performance depends
mainly on the user-perceived quality and not on
transmission metrics.

REFERENCES

[1] Brakmo et al, TCP Vegas: New Techniques for Congestion

Detection and Avoidance, Proceedings of ACM SIGCOMM,

London, UK, August 1994.

[2] Technical Specification from Cisco, Distributed Weighted

Random Early Detection, URL: http://www.cisco.com/

univercd/cc/td/doc/product/software/ios111/cc111/wred.pdf.

[3] S. Dimitriou, V. Tsaoussidis, Head-to-Tail: Managing

Network Load through Random Delay Increase, Proceedings

of IEEE ISCC, Aveiro, Portugal, July 2007.

[4] W.C. Feng, D. Kandlur, D. Saha, K. Shin, A Self-Configuring

RED Gateway, Proceedings of IEEE Infocom, New York,

Usa, March 1999.

[5] W. Feng, D. Kandlur, D. Saha, K. Shin, Blue: A New Class of

Active Queue Management Algorithms, U. Michigan CSE-

TR-387-99, April 1999.

[6] S. Floyd, R. Gummadi, S. Shenker, Adaptive RED: An

Algorithm for Increasing the Robustness of RED’s Active

Queue Management, August 2001.

[7] S. Floyd, T. Henderson, A. Gurtov, The NewReno

modification to TCP’s fast recovery algorithm, RFC 3782,

April 2004.

[8] S. Floyd, V. Jacobson, Random Early Detection Gateways for

Congestion Avoidance, IEEE/ACM Transactions on

Networking, 1(4):397-413, August 1993.

[9] D. Lin, R. Morris, Dynamics of Random Early Detection,

Proceedings of ACM SIGCOMM, Cannes, France, September

1997.

[10] S. Liu, T. Basar, R. Srikant, Exponential-RED: A Stabilizing

AQM Scheme for Low- and High-Speed TCP Protocols,

IEEE/ACM Transactions on Networking, Volume 13, Issue 5,

October. 2005.

[11] R. Mahajan, S. Floyd, “Controlling High Bandwidth Flows at

the Congested Router”, Proceedings of ICNP, California,

USA, November 2001.

[12] L. Mamatas, V. Tsaoussidis, A new approach to Service

Differentiation: Non-Congestive Queuing, Proceedings of

CONWIN, Budapest, Hungary, July 2005.

[13] L. Mamatas, V. Tsaoussidis, C. Zhang, BOTTLENECK-

QUEUE BEHAVIOR: How much can TCP know about it?,

Proceedings of INC, Samos, Greece, July 2005.

[14] R. Pan, B. Prabhakar, K. Psounis, CHOKe: a stateless AQM

scheme for approximating fair bandwidth allocation,

Proceedings of IEEE Infocom, Tel Aviv, Israel, March 2000.

[15] K. Ramakrishnan, and S. Floyd, A Proposal to Add Explicit

Congestion Notification (ECN) to IP, RFC 2481, January

1999.

[16] A. Rangarajan, A. Acharya, ERUF: Early Regulation of

Unresponsive Best-Effort Traffic, Proceedings of ICNP,

Toronto, Canada, October 1999.

[17] V. Rosolen, O. Bonaventure, G. Leduc, A RED discard

strategy for ATM networks and its performance evaluation

with TCP/IP traffic, ACM Computer Communication Review,

July 1999.

[18] P. Srisuresh, M. Holdrege, IP Network Address Translator

(NAT) Terminology and Considerations, RFC 2663, August

1999.

[19] V. Tsaoussidis, H. Badr, R. Verma, Wave and Wait Protocol:

An energy-saving Transport Protocol for Mobile IP-Devices,

Proceedings of ICNP, Toronto, Canada, October 1999.

[20] C. Wang, B. Li, Y. Hou, K. Sohraby, Y. Lin, LRED: A

Robust Active Queue Management Scheme Based on Packet

Loss Ratio, Proceedings of IEEE Infocom, Hong Kong,

March 2004.

[21] A. Zanella, G. Procissi, M. Gerla, M. Y. Sanadidi, TCP

Westwood: Analytic Model and Performance Evaluation,

Proceedings of IEEE Globecom, Texas, USA, December

2001.

[22] C. Zhang, V. Tsaoussidis, TCP-Real: Improving Real-time

Capabilities of TCP over Heterogeneous Networks,

Proceedings of NOSSDAV, New York, USA, June 2001.

