

On the Properties of Adaptive Additive Increase

Christos V. Samaras, Vassilis Tsaoussidis
Department of Electrical and Computer Engineering

Democritus University of Thrace, Greece
{csamaras, vtsaousi}@ee.duth.gr

Abstract

We discuss the impact of fixed window increase rules
on network utilization, fair resource allocation and
overall transmission effort. We exploit the dynamics of
adaptive additive increase as the strategy of choice for
regulating transmission in accordance with the current
level of contention. We show that, based on the additive
increase rate of flows, a contention-oriented responsive
strategy can be designed to (i) increase utilization under
low-contention, (ii) reduce overhead and transmission
effort under heavy loads, and (iii) maintain system
capability to reach fairness.

Key Words- Network Contention, TCP, AIMD,
Adaptive Transmission, TCP Enhancement

1. Introduction

We examine TCP's additive increase impact on end-
system/network performance. We depart from the idea
that system-wide rate increase, given a fixed increase
parameter a, depends strictly on network contention. In
turn, frequency of congestion events, persistence of
congestion, and system stability, largely depend on
contention also. Retransmission overhead, goodput to
throughput proportion, and possibly fairness and
smoothness, may be affected too.

In this context, we seek a way to increase stability,
reduce overhead, and adjust system behavior to current
conditions of contention. One way to achieve this is by
adapting additive increase in accordance with current
contention. Ultimately, we adjust parameter a in a
manner that the collective rate increase for the
participating flows remains fixed at a target value. In
simple terms, contention fluctuation does not translate
into aggregated rate increase/decrease. However, this
target alone cannot characterize an efficient system. That
is, we also need to satisfy concurrently the condition of
fairness; and judge system behavior not only in terms of
achieved throughput gains, but also in terms of invested
effort. The reasoning behind our evaluation strategy is

mainly rooted on the strategic impact of parameter a on
system behavior. The increase rule determines the
capability of a flow to exploit available resources; the
pace of congestion events and hence the convergence
speed to equilibrium; the amount of retransmitted packets
and hence the wasted effort of a flow. In this context, we
target a system, which satisfies three main objectives: (i)
high utilization, (ii) fairness, and (iii) minimal overhead.
We claim that a system can have these properties iff it
exhibits a contention-oriented transmitting behavior.

In order to design a contention-oriented
increase/decrease transmission scheme, we need to:

• be able to estimate contention, and
• exploit the corresponding relation of additive-

increase-value & contention.
Contention estimation is a research subject in its own
right; we do not address presently this issue but rely on
the fact that related studies exist with relatively satisfying
results (e.g. [6], [7]). That said, we use predetermined
scenarios where contention fluctuation is known a priori
and we focus mainly on the corresponding relation
between contention and additive increase rules.

In order to investigate the need for (and the dynamics
of) adaptive additive increase, we follow three evaluation
stages. At the first stage, we use a fixed α = 1, as it is used
in standard protocols, for varying levels of contention and
we criticize that selection of α = 1. At the second stage,
we investigate other values of parameter a with varying
levels of contention; we observe that the rate of increase
depends strictly on contention. We further observe that
the increase rate should grow in reverse proportion to
contention. In particular, through simulations, we
demonstrate that a relatively small value for increase
parameter a contributes to better system performance
when contention is high. Moreover, a relatively large
additive increase value favors performance in low
contention scenarios. At the third stage we investigate the
corresponding relation between aggressiveness and
contention. A constant additive increase value does not
constitute an optimal choice because, as we show in our
experiments, it does not keep pace with contention
variation. We present good indications that adaptive
additive increase for TCP effectively enhances system

performance. Departing from there, we propose Adaptive
Additive Increase Multiplicative Decrease (A-AIMD).

By and large, we show that with A-AIMD system
utilization is increased; less packet retransmissions occur
during congestion; bandwidth is better exploited during
low contention; and fairness is either enhanced or
maintained at acceptable levels. The proposed mechanism
has the potential for deployment indeed: no change in
network functionality is required; and only a slight
modification in TCP sending side is needed.

The paper is organized as follows. In Section 2, we
provide related work. Next, in Section 3, we elaborate on
the significance of an adaptive, contention-oriented
transmission strategy. In Section 4, we present our
evaluation methodology, and in Section 5, we discuss
simulation results. Finally, we conclude the paper in
Section 6.

2. Related Work

Related work was focused mainly on two objectives.
The first was to exploit the adjustment strategy of
parameter a, while the second was to exploit the impact
of contention on selected network or protocol control
strategies.

The first objective has been extensively targeted
during the past years and various congestion control
mechanisms have been proposed and evaluated. Relevant
studies include: standard TCP versions based on AIMD
algorithm such as TCP New-Reno [2] and TCP SACK
[3]; General AIMD congestion control [4], a generalized
version of AIMD algorithm that parameterizes the
additive increase value a and the multiplicative decrease
ratio β; and TFRC (TCP-Friendly Rate Control) [5],
which is a mechanism for equation-based congestion
control, where the sender explicitly adjusts its sending
rate as a function of the packet loss rate reported
periodically by the receiver. For a comprehensive list of
congestion control approaches, see [10]. In conclusion,
increase strategies have been studied mainly as a
necessary consequence of regulating parameter β, not as a
strategic goal itself that impacts contention-oriented
behavior. Here, we highlight the role of increase strategy
alone, when contention varies.

The second objective was the target of significant
previous research on various congestion control schemes,
but no relation was established between congestion
control and network contention. A contention-oriented
strategy dominated the retransmission scheduling in the
recent work presented in [6] and [7]. Also, authors in [8]
observe, at a very preliminary level, that information on
network contention should be retrieved and exploited for
Active Queue Management as well. They propose an
adaptive model for tuning RED/ECN algorithm based on
contention level. Again, contention-oriented strategies for

setting the transport protocol increase policy dynamically
have not been established.

3. Adaptive Additive Increase

We demonstrate that an enhanced transport protocol
capable of sensing network contention can improve
system performance without sacrificing network stability.
More specifically, we modify TCP sender so that it reacts
more aggressively when contention is relatively low and
more conservatively when contention reaches higher
levels.

Applying the network model presented in [1], we
consider n users sharing a bottleneck link. Users adjust
their load (namely, their congestion window) according to
the binary feedback received by the network. The
network operates in discrete time slots, thus forming a
synchronous feedback and control loop. Each time slot
represents an interval at the beginning of which users set
their load level based on the network feedback received at
the previous interval. When feedback is 1, users increase
their congestion window; when feedback is 0, users
decrease their congestion window and consequently, their
sending rate.

If during time slot t, user's i load is xi(t) then the total
load at the bottleneck resource is the sum of all users'
load, Σxi(t). When a positive network feedback is
received, the sender increases its window by a (i.e.,
additive increase = α), and at the following time slot t + 1
his load becomes:

i ix (t + 1) = a + x (t), where a is the additive increase value.
At time t + 1, total load at the bottleneck resource
becomes:

n n n

i i
i = 1 i = 1 i = 1

ix (t + 1) = (a + x (t)) = n a + x (t).⋅∑ ∑ ∑

Similarly, after two time slots (t + 2), total load becomes:
n n n

i i i
i = 1 i = 1 i = 1

n n

i i
i = 1 i = 1

x (t + 2) = (a + x (t + 1)) = n a + x (t + 1) =

= n a + (a + x (t)) = 2 n a + x (t).

⋅

⋅ ⋅ ⋅

∑ ∑ ∑

∑ ∑

Consequently, after k time slots and without congestion,
total network load becomes:

n n

i i
i = 1 i = 1

x (t + k) = k n a + x (t) = A + B⋅ ⋅∑ ∑ (1)

.
n

i
i = 1

where A= k n a, and B = x (t)⋅ ⋅ ∑
Equation (1) reveals that network load dynamics (and

network resources utilization, by extension) is determined
by two terms: term B that characterizes the initial state of
the network system (at time t), and term A that essentially
forms the driving force for changing current network
state. Notably, term A is based on:

• contention level, which is expressed by the
number of network flows (coupled with their
current load), and

• senders' aggressiveness, controlled by additive
increase specific value.

The efficiency of network usage is defined by the
proximity of the total load to a desired level:

i goalx (t) = X∑

where Xgoal denotes the desired network load level and
can be equated with bottleneck capacity, in the context of
our analysis. Network is operating efficiently as long as
total allocation X(t)=Σxi(t) is close to Xgoal. Overload
(X(t)>Σxi(t)) or underload (X(t)<Σxi(t)) are both
undesirable and are considered inefficient.

When current network load exceeds bottleneck
capacity, congestion is encountered and network state is
adjusted accordingly. Senders' reaction to congestion will
eventually decrease network load and free up bandwidth
resources. The capability of network flows to efficiently
exploit available resources is therefore dictated by term A
in (1): current number of users and additive increase
parameter jointly affect network performance,
smoothness, and responsiveness.

Given some initial network state (B in (1)), the time
required for the network to approach the desired load
level Xgoal – and subsequently reach congestion – is
determined by term A. So, it is:

max goal max goalA + B = X A = X - B⇔

maxmaxwhere A k n a= ⋅ ⋅ (2)
In essence, kmax reflects frequency of reaching and
exceeding Xgoal, thus resulting in congestion. Therefore,
kmax mirrors frequency of congestion. For a given initial
network state, term Amax is a constant quantity.
Additionally, (2) shows that: for a fixed increase
parameter a, when contention increases (namely, higher
n), the required time kmax up to congestion decreases;
congestion events appear more frequently; and network
system becomes unstable because frequent packet drops
result in high system overhead. Improving network
efficiency requires preserving stability and maintaining
system overhead at acceptable levels. As seen in (2), in
order to regulate frequency of congestion, additive
increase value a should be adjusted in accordance with
contention level n.

4. Evaluation Methodology

Our simulations use the packet-level simulator ns-2
[9]. We evaluate the performance of adaptive additive
increase in a wide range of constant and variable
contention scenarios. Simulations are conducted on a
single-bottleneck dumbbell topology (Fig. 1) with
bottleneck capacity of 10Mbps. Propagation delay is 2ms
for the edge links and 30ms for the bottleneck link, thus

producing a round-trip link delay of 68ms. Senders are
neither limited by their access link capacity (which is set
to bottleneck capacity, namely 10Mbps) nor by the
maximum congestion window value allowed (which is set
to a relatively high value that was never exceeded during
simulation runs). Thus, congestion on the bottleneck link
is the only limiting factor for sending rates. In other
words, a single flow can potentially use the overall
bottleneck capacity in the absence of competing flows.
The data packet size is 1000 bytes. The flows RTTs are
equivalent and the sources are long-lived FTP
connections. Influence and performance of short-lived
connections, which comprise a significant part of current
Internet traffic, are left for future work. In this work, our
aim is to exploit the benefits of adaptive transmission
control against standard TCP constant sending behavior,
and not the interaction between transport and application
protocols or queuing disciplines. For the same reason,
drop-tail is the only dropping policy used in our
simulations. The bottleneck buffer size is adjusted to the
Bandwidth-Delay product. Each simulation lasts for 120
seconds.

Figure 1. Dumbbell topology

We evaluate system performance based on four

distinct metrics, which we define below. (In the following
metrics, n denotes the number of flows.)

(i). Flow Throughput is measured at the sending side,
includes packet headers and retransmitted packets, and
illustrates the total transmission effort of the sender
including the retransmission effort. System Throughput is
the sum of throughput of all flows and reflects system
utilization.

Total Data SentThroughput =
Transmission Time

n

i
i=1

System Throughput = Throughput∑

Note that system throughput and utilization are not
identical since system utilization cannot exceed network
capacity. Instead, throughput measured at the sender may
do. Therefore:

,
.

System Throughput System Utilization
when System Throughput Network Capacity

=
≤

(ii). Goodput of a flow is calculated at the receiver and
refers to the original data received, i.e. excluding packet
headers overhead and retransmitted packets. System
Goodput is the sum of goodput of all flows and is used to

measure the overall system efficiency in bandwidth
utilization.

Original Data ReceivedGoodput =
Transmission Time

n

i
i=1

System Goodput = Goodput∑

Hence, an increase in the difference between system
throughput and goodput indicates an increase in the
number of retransmitted packets and implies wasted
bandwidth but also wasted effort, which occasionally can
be translated as energy cost, as well.

(iii). Wasted Transmission Effort is also measured (see
[11] for more details); given the fixed packet size in our
simulations, wasted effort can be calculated as the
percentage of retransmitted packets for all flows:

Retransmitted PacketsWasted Effort =
Total Packets Sent

(iv). Fairness index is defined in [1] as:

.

2n

i
i=1
n

2
i

i=1

Throughput
Fairness =

n (Throughput)

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑

∑

5. Results and Discussion

Next, we demonstrate conclusive performance results
for adaptive additive increase. It is shown that an adaptive
increase parameter a outperforms standard TCP for
which α = 1. Adaptation strategy is based on the
following simple concept:

• when contention is relatively low, raise
parameter a;

• should contention reach relatively high levels,
reduce parameter a.

In this work, we do not propose any sophisticated
mechanism for dynamic TCP additive increase. However,
a recent work of ours that contributes to contention
estimation can be viewed at [6].

In our simulations, additive increase adaptivity is not
incorporated as a responsive procedure; instead, at this
stage of our work, it is predetermined. In constant
contention scenarios, we evaluate a wide range of fixed
values for parameter a. However, in variable contention
scenarios, each simulation comprises a distinct number of
constant contention periods. Thus, additive increase value
remains constant for a certain contention period, and is
modified accordingly for each of the consecutive
contention periods. A sufficiently large number of
increase-value/contention-level pairs are evaluated, in
order to characterize comparatively system performance
and observe system dynamics.

5.1. Impact of Fixed-Rate Additive Increase when
Contention is Constant

Using the topology in Fig. 1, additive increase impact
is evaluated in constant contention scenarios. More
specifically, number of flows remains constant and takes
values in the range 10-160 across different simulation
runs. Also, additive increase value is fixed for a single
simulation and its value varies between 0.1 and 2.0 from
one simulation to another. Apart from that, rest of TCP
functionality is kept unchanged. Different combinations
of additive-increase/contention-level reveal that standard
window growth function of TCP in congestion avoidance
(namely, α = 1) is not always an appropriate choice
(Figures 2-4).

Based on Fig. 2, one may fall into a false conclusion
about the dominance of α = 0.1. Although goodput-wise
value 0.1 appears as the additive increase value of choice,
Figures 2 and 4 reveal that certain trade-offs need careful
consideration. For example, α = 0.1 achieves lower
goodput (Fig. 2) when number of flows is less than 50.
Also, we see that for up to 70 flows, α = 0.1 corresponds
to worse fairness (Fig. 4).

Increase in contention induces deviation of goodput
curves (Fig. 2). This underlines the importance of
adaptive additive increase: in intense contention
conditions, a lower value for parameter a results in
remarkably better performance.

Figure 2. System goodput (Mbps)

Figure 3. Wasted effort (%)

Figure 4. Fairness index

5.2. Impact of Adaptive Additive Increase when
Contention Increases

We evaluate the impact of adaptive additive increase
in contention increase scenarios. Each simulation lasts for
120 seconds and comprises four constant contention
periods. More specifically, the initial number of flows is
10, and it is doubled every 30 seconds. Thus, at
simulation time 0, 30, 60, and 90 seconds, the total
number of flows is 10, 20, 40, and 80 respectively. We
note that we have tried a wide range for number of flows,
from 5 through 160 flows, with similar results.

However, increase parameter a is adapted in a
predetermined way. In our simulations, TCP modifies
additive increase value each time a new contention period
begins. Thus, at simulation time 0, 30, 60, and 90
seconds, each TCP flow adjusts its additive increase value
to a1, a2, a3, and a4 respectively. A combination of
increase parameter values during a simulation forms an
adaptive TCP version (see Table 1), which decreases
parameter a when contention increases.

We use NewReno as reference protocol and all the
graphs in Figures 5, 6, and 7 refer to the comparative
performance of adaptive additive increase and NewReno.
From the three relevant graphs, we observe that various
adaptive TCP versions (e.g. A, B, D, and E) outperform
in all aspects the standard TCP version. We also observe
that the trade-off between goodput and fairness still
exists. This is highlighted in point C where goodput and
retransmissions exhibit higher performance, however
fairness is degraded. In conclusion, if we judge on the
basis of system capacity to reach equilibrium with high
utilization, then point A demonstrates a clear-cut
advantage. Note that point A traverses a spectrum of very
aggressive to very conservative increase rates. Instead,
point C reaches too conservative rates, which reflect a
more-or-less stable utilization at high levels (Fig. 5),
minor retransmissions (Fig. 6) but significantly less
fairness (Fig. 7). The latter was expected since the flows
rarely had the opportunity to adjust the windows
backwards and reduce their size gap. Note, however, that
even an increase step of 0.05, when contention is high,

may suffice to maintain fairness at the same level with
NewReno (see point B in Fig. 7).

Figure 5. System goodput percent change

Figure 6. Retransmitted packets percent change

Figure 7. Fairness index percent change

Table 1. Adaptive TCP versions

Increase Parameter Value TCP
Version a1 a2 a3 a4

A 2.0 1.0 0.5 0.1
B 2.0 1.0 0.25 0.05
C 2.0 1.0 0.1 0.01
D 1.5 1.0 0.5 0.1
E 1.0 0.7 0.4 0.1
F 1.0 0.5 0.1 0.05
G 0.5 0.4 0.2 0.1

5.3. Impact of Adaptive Additive Increase when
Contention Decreases

6. Conclusions

We studied the potential of adaptive increase strategies
for transport protocols. This can be summarized in three
major conclusions:

We set up contention increase and decrease scenarios
in a similar way. In the contention decrease scenario, the
initial number of flows is 80, and it is halved every 30
seconds. We evaluate a number of adaptive TCP versions,
which are shown in Table 2.

1) Adaptive strategy should correspond to contention
level.
2) Adaptive additive increase has the potential to (i)
cancel the possibility of congestion collapses, (ii) improve
the effort/gain dynamics of protocol behavior, and (iii)
maintain or improve the efficiency/fairness tradeoff
among flows.

In our last scenario, resource supply exceeds the
demand and hence we investigate the potential to exploit
available bandwidth. In this context, we do not evaluate
the fairness potential of the selected increase strategies.

Point J (which corresponds to point C of Table 1 but in
reverse order) demonstrates clear-cut advantage here (see
Figures 8 and 9). Although this may appear initially as a
contradictory result, it is reasonable indeed. Since fairness
is not an issue here, a wide range of values for parameter
a results in better goodput with less retransmissions.

3) Adaptive additive increase strategy relies on the
capability to monitor contention and its success depends
on the accuracy and granularity of contention estimation
strategies.

Our results justify conclusions 1 and 2. Further study
is required for exploiting the possibility and impact of
false estimations.

7. References

[1] D. Chiu and R. Jain, “Analysis of the Increase and Decrease
Algorithms for Congestion Avoidance in Computer Networks,”
Journal of Computer Networks and ISDN Systems, vol. 17, no.
1, pp. 1-14, June 1989.
[2] S. Floyd, T. Henderson, and A. Gurtov, “The NewReno
Modification to TCP's Fast Recovery Algorithm,” RFC 3782,
April 2004.
[3] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP
Selective Acknowledgement Options,” RFC 2018, October
1996.

Figure 8. System goodput percent change

[4] Y. R. Yang and S. S. Lam, “General AIMD Congestion
Control,” in Proceedings of IEEE International Conference on
Network Protocols 2000, Osaka, Japan, November 2000.
[5] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-
Based Congestion Control for Unicast Applications,” in
Proceedings of ACM SIGCOMM 2000, Stockholm, Sweden,
September 2000.
[6] Ioannis Psaras, Vassilis Tsaoussidis, and Lefteris Mamatas,
“CA-RTO: A Contention Adaptive Retransmission Timeout,” in
Proceedings of ICCCN 2005, San Diego, California, U.S.A.,
October 2005.
[7] Ioannis Psaras and Vassilis Tsaoussidis, “Why TCP timers
(still) don't work well,” The International Journal of Computer
and Telecommunications Networking Computer Networks and
ISDN Systems, 2007.

Figure 9. Retransmitted packets percent change

Table 2. Adaptive TCP versions
Increase Parameter Value TCP

Version a1 a2 a3 a4
H 0.1 0.5 1.0 2.0
I 0.05 0.25 1.0 2.0
J 0.01 0.1 1.0 2.0
K 0.1 0.5 1.0 1.5
L 0.1 0.4 0.7 1.0
M 0.05 0.1 0.5 1.0
N 0.1 0.2 0.4 0.5

[8] Li Lei, Pan Yong, and Shi Hongbao, “An Adaptive Model of
RED/ECN Parameters,” in Proceedings of WCC-ICCT 2000.
[9] The Network Simulator, ns-2, http://www.isi.edu/nsnam/ns/.
[10] L. Mamatas, T. Harks, V. Tsaoussidis, “Approaches to
Congestion Control in Packet Networks,” Journal of Internet
Engineering, vol. 1, issue 1, Kleidarithmos Press, 2007.
[11] L. Mamatas, V. Tsaoussidis, and C. Zhang, “Protocol
Behavior: More Effort, More Gains?”, in Proceedings of IEEE
PIMRC 2004, Barcelona, Spain, September 2004.

