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Abstract 
 

We discuss the impact of fixed window increase rules 
on network utilization, fair resource allocation and 
overall transmission effort. We exploit the dynamics of 
adaptive additive increase as the strategy of choice for 
regulating transmission in accordance with the current 
level of contention. We show that, based on the additive 
increase rate of flows, a contention-oriented responsive 
strategy can be designed to (i) increase utilization under 
low-contention, (ii) reduce overhead and transmission 
effort under heavy loads, and (iii) maintain system 
capability to reach fairness. 
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1. Introduction 
 

We examine TCP's additive increase impact on end-
system/network performance. We depart from the idea 
that system-wide rate increase, given a fixed increase 
parameter a, depends strictly on network contention. In 
turn, frequency of congestion events, persistence of 
congestion, and system stability, largely depend on 
contention also. Retransmission overhead, goodput to 
throughput proportion, and possibly fairness and 
smoothness, may be affected too. 

In this context, we seek a way to increase stability, 
reduce overhead, and adjust system behavior to current 
conditions of contention. One way to achieve this is by 
adapting additive increase in accordance with current 
contention. Ultimately, we adjust parameter a in a 
manner that the collective rate increase for the 
participating flows remains fixed at a target value. In 
simple terms, contention fluctuation does not translate 
into aggregated rate increase/decrease. However, this 
target alone cannot characterize an efficient system. That 
is, we also need to satisfy concurrently the condition of 
fairness; and judge system behavior not only in terms of 
achieved throughput gains, but also in terms of invested 
effort. The reasoning behind our evaluation strategy is 

mainly rooted on the strategic impact of parameter a on 
system behavior. The increase rule determines the 
capability of a flow to exploit available resources; the 
pace of congestion events and hence the convergence 
speed to equilibrium; the amount of retransmitted packets 
and hence the wasted effort of a flow. In this context, we 
target a system, which satisfies three main objectives: (i) 
high utilization, (ii) fairness, and (iii) minimal overhead. 
We claim that a system can have these properties iff it 
exhibits a contention-oriented transmitting behavior. 

In order to design a contention-oriented 
increase/decrease transmission scheme, we need to: 

• be able to estimate contention, and 
• exploit the corresponding relation of additive-

increase-value & contention. 
Contention estimation is a research subject in its own 
right; we do not address presently this issue but rely on 
the fact that related studies exist with relatively satisfying 
results (e.g. [6], [7]). That said, we use predetermined 
scenarios where contention fluctuation is known a priori 
and we focus mainly on the corresponding relation 
between contention and additive increase rules. 

In order to investigate the need for (and the dynamics 
of) adaptive additive increase, we follow three evaluation 
stages. At the first stage, we use a fixed α = 1, as it is used 
in standard protocols, for varying levels of contention and 
we criticize that selection of α = 1. At the second stage, 
we investigate other values of parameter a with varying 
levels of contention; we observe that the rate of increase 
depends strictly on contention. We further observe that 
the increase rate should grow in reverse proportion to 
contention. In particular, through simulations, we 
demonstrate that a relatively small value for increase 
parameter a contributes to better system performance 
when contention is high. Moreover, a relatively large 
additive increase value favors performance in low 
contention scenarios. At the third stage we investigate the 
corresponding relation between aggressiveness and 
contention. A constant additive increase value does not 
constitute an optimal choice because, as we show in our 
experiments, it does not keep pace with contention 
variation. We present good indications that adaptive 
additive increase for TCP effectively enhances system 



performance. Departing from there, we propose Adaptive 
Additive Increase Multiplicative Decrease (A-AIMD). 

By and large, we show that with A-AIMD system 
utilization is increased; less packet retransmissions occur 
during congestion; bandwidth is better exploited during 
low contention; and fairness is either enhanced or 
maintained at acceptable levels. The proposed mechanism 
has the potential for deployment indeed: no change in 
network functionality is required; and only a slight 
modification in TCP sending side is needed. 

The paper is organized as follows. In Section 2, we 
provide related work. Next, in Section 3, we elaborate on 
the significance of an adaptive, contention-oriented 
transmission strategy. In Section 4, we present our 
evaluation methodology, and in Section 5, we discuss 
simulation results. Finally, we conclude the paper in 
Section 6. 
 
2. Related Work 
 

Related work was focused mainly on two objectives. 
The first was to exploit the adjustment strategy of 
parameter a, while the second was to exploit the impact 
of contention on selected network or protocol control 
strategies. 

The first objective has been extensively targeted 
during the past years and various congestion control 
mechanisms have been proposed and evaluated. Relevant 
studies include: standard TCP versions based on AIMD 
algorithm such as TCP New-Reno [2] and TCP SACK 
[3]; General AIMD congestion control [4], a generalized 
version of AIMD algorithm that parameterizes the 
additive increase value a and the multiplicative decrease 
ratio β; and TFRC (TCP-Friendly Rate Control) [5], 
which is a mechanism for equation-based congestion 
control, where the sender explicitly adjusts its sending 
rate as a function of the packet loss rate reported 
periodically by the receiver. For a comprehensive list of 
congestion control approaches, see [10]. In conclusion, 
increase strategies have been studied mainly as a 
necessary consequence of regulating parameter β, not as a 
strategic goal itself that impacts contention-oriented 
behavior. Here, we highlight the role of increase strategy 
alone, when contention varies. 

The second objective was the target of significant 
previous research on various congestion control schemes, 
but no relation was established between congestion 
control and network contention. A contention-oriented 
strategy dominated the retransmission scheduling in the 
recent work presented in [6] and [7]. Also, authors in [8] 
observe, at a very preliminary level, that information on 
network contention should be retrieved and exploited for 
Active Queue Management as well. They propose an 
adaptive model for tuning RED/ECN algorithm based on 
contention level. Again, contention-oriented strategies for 

setting the transport protocol increase policy dynamically 
have not been established. 
 
3. Adaptive Additive Increase 
 

We demonstrate that an enhanced transport protocol 
capable of sensing network contention can improve 
system performance without sacrificing network stability. 
More specifically, we modify TCP sender so that it reacts 
more aggressively when contention is relatively low and 
more conservatively when contention reaches higher 
levels. 

Applying the network model presented in [1], we 
consider n users sharing a bottleneck link. Users adjust 
their load (namely, their congestion window) according to 
the binary feedback received by the network. The 
network operates in discrete time slots, thus forming a 
synchronous feedback and control loop. Each time slot 
represents an interval at the beginning of which users set 
their load level based on the network feedback received at 
the previous interval. When feedback is 1, users increase 
their congestion window; when feedback is 0, users 
decrease their congestion window and consequently, their 
sending rate. 

If during time slot t, user's i load is xi(t) then the total 
load at the bottleneck resource is the sum of all users' 
load, Σxi(t). When a positive network feedback is 
received, the sender increases its window by a (i.e., 
additive increase = α), and at the following time slot t + 1 
his load becomes: 

i ix (t + 1) = a + x (t), where a is the additive increase value.
At time t + 1, total load at the bottleneck resource 
becomes: 

n n n

i i
i = 1 i = 1 i = 1

ix (t + 1) = (a + x (t)) = n a + x (t).⋅∑ ∑ ∑  

Similarly, after two time slots (t + 2), total load becomes: 
n n n

i i i
i = 1 i = 1 i = 1

n n

i i
i = 1 i = 1

x (t + 2) = (a + x (t + 1)) = n a + x (t + 1) =

= n a + (a + x (t)) = 2 n a + x (t).

⋅

⋅ ⋅ ⋅

∑ ∑ ∑

∑ ∑

 

Consequently, after k time slots and without congestion, 
total network load becomes: 

n n

i i
i = 1 i = 1

x (t + k) = k n a + x (t) = A + B⋅ ⋅∑ ∑                 (1) 

.  
n

i
i = 1

where A= k n a, and B = x (t)⋅ ⋅ ∑
Equation (1) reveals that network load dynamics (and 

network resources utilization, by extension) is determined 
by two terms: term B that characterizes the initial state of 
the network system (at time t), and term A that essentially 
forms the driving force for changing current network 
state. Notably, term A is based on: 



• contention level, which is expressed by the 
number of network flows (coupled with their 
current load), and 

• senders' aggressiveness, controlled by additive 
increase specific value. 

The efficiency of network usage is defined by the 
proximity of the total load to a desired level: 

i goalx (t) = X∑  

where Xgoal denotes the desired network load level and 
can be equated with bottleneck capacity, in the context of 
our analysis. Network is operating efficiently as long as 
total allocation X(t)=Σxi(t) is close to Xgoal. Overload 
(X(t)>Σxi(t)) or underload (X(t)<Σxi(t)) are both 
undesirable and are considered inefficient. 

When current network load exceeds bottleneck 
capacity, congestion is encountered and network state is 
adjusted accordingly. Senders' reaction to congestion will 
eventually decrease network load and free up bandwidth 
resources. The capability of network flows to efficiently 
exploit available resources is therefore dictated by term A 
in (1): current number of users and additive increase 
parameter jointly affect network performance, 
smoothness, and responsiveness. 

Given some initial network state (B in (1)), the time 
required for the network to approach the desired load 
level Xgoal – and subsequently reach congestion – is 
determined by term A. So, it is: 

max goal max goalA + B = X A = X - B⇔  

maxmaxwhere A k n a= ⋅ ⋅                                          (2) 
In essence, kmax reflects frequency of reaching and 
exceeding Xgoal, thus resulting in congestion. Therefore, 
kmax mirrors frequency of congestion. For a given initial 
network state, term Amax is a constant quantity. 
Additionally, (2) shows that: for a fixed increase 
parameter a, when contention increases (namely, higher 
n), the required time kmax up to congestion decreases; 
congestion events appear more frequently; and network 
system becomes unstable because frequent packet drops 
result in high system overhead. Improving network 
efficiency requires preserving stability and maintaining 
system overhead at acceptable levels. As seen in (2), in 
order to regulate frequency of congestion, additive 
increase value a should be adjusted in accordance with 
contention level n. 
 
4. Evaluation Methodology 
 

Our simulations use the packet-level simulator ns-2 
[9]. We evaluate the performance of adaptive additive 
increase in a wide range of constant and variable 
contention scenarios. Simulations are conducted on a 
single-bottleneck dumbbell topology (Fig. 1) with 
bottleneck capacity of 10Mbps. Propagation delay is 2ms 
for the edge links and 30ms for the bottleneck link, thus 

producing a round-trip link delay of 68ms. Senders are 
neither limited by their access link capacity (which is set 
to bottleneck capacity, namely 10Mbps) nor by the 
maximum congestion window value allowed (which is set 
to a relatively high value that was never exceeded during 
simulation runs). Thus, congestion on the bottleneck link 
is the only limiting factor for sending rates. In other 
words, a single flow can potentially use the overall 
bottleneck capacity in the absence of competing flows. 
The data packet size is 1000 bytes. The flows RTTs are 
equivalent and the sources are long-lived FTP 
connections. Influence and performance of short-lived 
connections, which comprise a significant part of current 
Internet traffic, are left for future work. In this work, our 
aim is to exploit the benefits of adaptive transmission 
control against standard TCP constant sending behavior, 
and not the interaction between transport and application 
protocols or queuing disciplines. For the same reason, 
drop-tail is the only dropping policy used in our 
simulations. The bottleneck buffer size is adjusted to the 
Bandwidth-Delay product. Each simulation lasts for 120 
seconds. 

 
Figure 1. Dumbbell topology 

 
We evaluate system performance based on four 

distinct metrics, which we define below. (In the following 
metrics, n denotes the number of flows.) 

(i). Flow Throughput is measured at the sending side, 
includes packet headers and retransmitted packets, and 
illustrates the total transmission effort of the sender 
including the retransmission effort. System Throughput is 
the sum of throughput of all flows and reflects system 
utilization. 

Total Data SentThroughput =
Transmission Time

 

n

i
i=1

System Throughput = Throughput∑  

Note that system throughput and utilization are not 
identical since system utilization cannot exceed network 
capacity. Instead, throughput measured at the sender may 
do. Therefore: 

,
.

System Throughput System Utilization
when System Throughput Network Capacity

=
≤

 

(ii). Goodput of a flow is calculated at the receiver and 
refers to the original data received, i.e. excluding packet 
headers overhead and retransmitted packets. System 
Goodput is the sum of goodput of all flows and is used to 



measure the overall system efficiency in bandwidth 
utilization. 

Original Data ReceivedGoodput =
Transmission Time

 

n

i
i=1

System Goodput = Goodput∑  

Hence, an increase in the difference between system 
throughput and goodput indicates an increase in the 
number of retransmitted packets and implies wasted 
bandwidth but also wasted effort, which occasionally can 
be translated as energy cost, as well. 

(iii). Wasted Transmission Effort is also measured (see 
[11] for more details); given the fixed packet size in our 
simulations, wasted effort can be calculated as the 
percentage of retransmitted packets for all flows: 

Retransmitted PacketsWasted Effort =
Total Packets Sent

 

(iv). Fairness index is defined in [1] as: 

.

2n

i
i=1
n

2
i

i=1

Throughput
Fairness =

n (Throughput )

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑

∑
 

 
5. Results and Discussion 
 

Next, we demonstrate conclusive performance results 
for adaptive additive increase. It is shown that an adaptive 
increase parameter a outperforms standard TCP for 
which α = 1. Adaptation strategy is based on the 
following simple concept: 

• when contention is relatively low, raise 
parameter a; 

• should contention reach relatively high levels, 
reduce parameter a. 

In this work, we do not propose any sophisticated 
mechanism for dynamic TCP additive increase. However, 
a recent work of ours that contributes to contention 
estimation can be viewed at [6]. 

In our simulations, additive increase adaptivity is not 
incorporated as a responsive procedure; instead, at this 
stage of our work, it is predetermined. In constant 
contention scenarios, we evaluate a wide range of fixed 
values for parameter a. However, in variable contention 
scenarios, each simulation comprises a distinct number of 
constant contention periods. Thus, additive increase value 
remains constant for a certain contention period, and is 
modified accordingly for each of the consecutive 
contention periods. A sufficiently large number of 
increase-value/contention-level pairs are evaluated, in 
order to characterize comparatively system performance 
and observe system dynamics. 
 

5.1. Impact of Fixed-Rate Additive Increase when 
Contention is Constant 
 

Using the topology in Fig. 1, additive increase impact 
is evaluated in constant contention scenarios. More 
specifically, number of flows remains constant and takes 
values in the range 10-160 across different simulation 
runs. Also, additive increase value is fixed for a single 
simulation and its value varies between 0.1 and 2.0 from 
one simulation to another. Apart from that, rest of TCP 
functionality is kept unchanged. Different combinations 
of additive-increase/contention-level reveal that standard 
window growth function of TCP in congestion avoidance 
(namely, α = 1) is not always an appropriate choice 
(Figures 2-4). 

Based on Fig. 2, one may fall into a false conclusion 
about the dominance of α = 0.1. Although goodput-wise 
value 0.1 appears as the additive increase value of choice, 
Figures 2 and 4 reveal that certain trade-offs need careful 
consideration. For example, α = 0.1 achieves lower 
goodput (Fig. 2) when number of flows is less than 50. 
Also, we see that for up to 70 flows, α = 0.1 corresponds 
to worse fairness (Fig. 4). 

Increase in contention induces deviation of goodput 
curves (Fig. 2). This underlines the importance of 
adaptive additive increase: in intense contention 
conditions, a lower value for parameter a results in 
remarkably better performance. 

 
Figure 2. System goodput (Mbps) 

 
Figure 3. Wasted effort (%) 



 
Figure 4. Fairness index 

 
5.2. Impact of Adaptive Additive Increase when 
Contention Increases 
 

We evaluate the impact of adaptive additive increase 
in contention increase scenarios. Each simulation lasts for 
120 seconds and comprises four constant contention 
periods. More specifically, the initial number of flows is 
10, and it is doubled every 30 seconds. Thus, at 
simulation time 0, 30, 60, and 90 seconds, the total 
number of flows is 10, 20, 40, and 80 respectively. We 
note that we have tried a wide range for number of flows, 
from 5 through 160 flows, with similar results. 

However, increase parameter a is adapted in a 
predetermined way. In our simulations, TCP modifies 
additive increase value each time a new contention period 
begins. Thus, at simulation time 0, 30, 60, and 90 
seconds, each TCP flow adjusts its additive increase value 
to a1, a2, a3, and a4 respectively. A combination of 
increase parameter values during a simulation forms an 
adaptive TCP version (see Table 1), which decreases 
parameter a when contention increases. 

We use NewReno as reference protocol and all the 
graphs in Figures 5, 6, and 7 refer to the comparative 
performance of adaptive additive increase and NewReno. 
From the three relevant graphs, we observe that various 
adaptive TCP versions (e.g. A, B, D, and E) outperform 
in all aspects the standard TCP version. We also observe 
that the trade-off between goodput and fairness still 
exists. This is highlighted in point C where goodput and 
retransmissions exhibit higher performance, however 
fairness is degraded. In conclusion, if we judge on the 
basis of system capacity to reach equilibrium with high 
utilization, then point A demonstrates a clear-cut 
advantage. Note that point A traverses a spectrum of very 
aggressive to very conservative increase rates. Instead, 
point C reaches too conservative rates, which reflect a 
more-or-less stable utilization at high levels (Fig. 5), 
minor retransmissions (Fig. 6) but significantly less 
fairness (Fig. 7). The latter was expected since the flows 
rarely had the opportunity to adjust the windows 
backwards and reduce their size gap. Note, however, that 
even an increase step of 0.05, when contention is high, 

may suffice to maintain fairness at the same level with 
NewReno (see point B in Fig. 7). 

 

 
Figure 5. System goodput percent change 

 
Figure 6. Retransmitted packets percent change 

 
Figure 7. Fairness index percent change 

 
Table 1. Adaptive TCP versions 

Increase Parameter Value TCP 
Version a1 a2 a3 a4 

A 2.0 1.0 0.5 0.1 
B 2.0 1.0 0.25 0.05 
C 2.0 1.0 0.1 0.01 
D 1.5 1.0 0.5 0.1 
E 1.0 0.7 0.4 0.1 
F 1.0 0.5 0.1 0.05 
G 0.5 0.4 0.2 0.1 

 
 



5.3. Impact of Adaptive Additive Increase when 
Contention Decreases 

 
6. Conclusions 
  

We studied the potential of adaptive increase strategies 
for transport protocols. This can be summarized in three 
major conclusions: 

We set up contention increase and decrease scenarios 
in a similar way. In the contention decrease scenario, the 
initial number of flows is 80, and it is halved every 30 
seconds. We evaluate a number of adaptive TCP versions, 
which are shown in Table 2. 

1) Adaptive strategy should correspond to contention 
level. 
2) Adaptive additive increase has the potential to (i) 
cancel the possibility of congestion collapses, (ii) improve 
the effort/gain dynamics of protocol behavior, and (iii) 
maintain or improve the efficiency/fairness tradeoff 
among flows. 

In our last scenario, resource supply exceeds the 
demand and hence we investigate the potential to exploit 
available bandwidth. In this context, we do not evaluate 
the fairness potential of the selected increase strategies. 

Point J (which corresponds to point C of Table 1 but in 
reverse order) demonstrates clear-cut advantage here (see 
Figures 8 and 9). Although this may appear initially as a 
contradictory result, it is reasonable indeed. Since fairness 
is not an issue here, a wide range of values for parameter 
a results in better goodput with less retransmissions. 

3) Adaptive additive increase strategy relies on the 
capability to monitor contention and its success depends 
on the accuracy and granularity of contention estimation 
strategies. 

Our results justify conclusions 1 and 2. Further study 
is required for exploiting the possibility and impact of 
false estimations. 
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