
On the Properties of System-wide Responsive Behavior

Ageliki Tsioliaridou, Vassilis Tsaoussidis
Department of Electrical and Computer Engineering,

Democritus University of Thrace, Greece
This work was funded by the Europen Commission and the project PENED 2003 of GSRT.

Abstract

High contention of flows is associated with unstable
network behavior and unmanageable resource
administration, i.e., convergence to equilibrium becomes
a difficult task. In this paper, we propose a new
approach to control congestion. In this context, we
present an algorithm for active queue management, to
notify simultaneously all competing flows about
incipient congestion. Typically, AQM schemes notify
only a small portion of participating flows about
congestion events. Our notification scheme, called
Global Notifier (GN), allows for an immediate and less
aggressive adjustment of transmission windows with
three consequent properties: (i) fairness is improved, (ii)
smoothness of responsive flows is improved and (iii)
system utilization is better regulated between the knee
and the cliff. We detail our algorithm and the
corresponding responsive behavior of participating
flows, and we highlight significant performance results
gathered by simulations.

1. Introduction

Most AQM algorithms, such as RED and ECN,
notify flows randomly when the risk of congestion is
increased. Notification relies on flows’ responsive
behavior; and randomness guarantees fairness. Since the
system responsive behavior is only partially affected by
random drops (i.e. a few flows will respond when
contention increases) system-wide control is not
guaranteed. Rather, system control requires a system-
wide, synchronous responsive behavior, which, by and
large, is feasible only when notification is global and
responses are homogeneous, i.e., all flows respond to
congestion signals. We propose a mechanism to control
congestion based on global notification and responsive
behavior.

Global notification is activated when congestion risk
is detected; due to the large number of notified flows,
system-wide backward adjustment corresponds to
minimal share per flow. This allows for a responsive
behavior with enhanced smoothness per flow. This
benefit is in contrast to a system behavior, where a few
flows respond sharply, while others benefit from their
response. This strategy leads to significant transmission
gaps for the responsive flows.

Global responsiveness has also another significant
property. In particular, flows adjust their transmission
behavior every time an implicit or explicit congestion
signal is received; otherwise, a system-wide response for
the participating flows, based on random signals, would

have required much more time for all the flows to get
their turn in responding to congestion. By the same
token, we confirm the results of [1]. Authors in [1] prove
that the unsynchronized decrease of windows may result
in long-term fairness but cannot guarantee short-term
fairness. Furthermore, they show that the synchronized
packet drops result in throughput fluctuation and,
eventually, to smoothness damage.

Synchronization and congestion events alone, are
issues that require a lot of discussion and careful
definitions. For example, congestion is typically defined
as the situation where packets are dropped; however,
congestion itself may be associated with more or less
intensive packet losses, may be persistent or transient, or
may be associated with burst or occasional losses. These
situations correspond to varying definitions, time-wise,
for what is a congestion event and what not; or
otherwise, when an event starts and ends. In this paper,
we simplified our scenarios, considering mainly
deterministic events and time slots; at this stage of our
work, we attempt to address two major issues: (i) to
quantify the level of potential gain in terms of fairness,
efficiency and smoothness and (ii) to determine
experimentally a responsive behavior that corresponds to
varying contention dynamics.

Within these guidelines, we propose a rather simple
congestion avoidance and control scheme that aims at
notifying a large portion of flows about incipient
congestion. When incipient congestion is detected, the
ECN bit of the packets that are buffered at the router is
marked. Since more flows reduce their window almost
simultaneously, the system converges to fair bandwidth
allocation faster. Simulation results show that our
algorithm notifies up to 45% of flows simultaneously
and almost all participating flows in a very short period
of time. Of course, the amount of notified flows depends
largely on the level of contention, buffer sizes and
processing capacities of the routers; however, in general,
the number of notified flows is increased significantly.
We show that this situation impacts short-term fairness,
and in turn, system smoothness as well.

 Furthermore, since more flows reduce their window
smoothly, instead of a few reducing their windows
sharply, the average oscillation of the system utilization
can be better controlled; depending on the adjustment
strategy, the system could reach fairness and still operate
above the knee. Definitely, one has to investigate
further, from the fairness perspective, the tradeoff
between sharp reduction of few windows, instead of
smooth reduction of more windows, and explore the
thresholds where smoothness gains can be accomplished

(1)q q qavg w avg w avg w q= − + +

(1)mavg w avg w avg w q= − + +q q q

along with fairness gains. Presently, we found
experimentally that increasing and decreasing the
window with a factor of 0.9 and 0.675, respectively,
satisfies both objectives.

Although the implementation of the proposed
congestion control mechanism calls for modifications at
both the transport and network layers, minor efforts are
needed, which, moreover, do not require header
extensions. The ECN bit, which is used for the network
congestion feedback, already exists in the IP header; and
the new algorithm does not involve much computational
burden. Along the same lines, deployment is also
feasible: a single modification at a bottleneck router may
suffice to trigger appropriate responses at the senders; a
widespread use of the algorithm is not really
necessitated.

The rest of the paper is organized as follows. In
Section 2, we discuss related work on congestion
avoidance and system smoothness. Next, in Section 3,
we detail the proposed congestion control mechanism. In
section 4, we present our expectations, and we justify
our arguments and strategic decisions. Here, we also
define our performance metrics, the parameters of
simulations and the evaluation scenarios. Finally, in
section 6, we conclude the paper.

2. Related Work

RED/ECN [3] algorithm was proposed to control
traffic load, by discarding randomly packets prior to
queue overflow. Authors in [2] highlight one weakness
of RED, which cannot effectively adapt to changes of
flow contention because of its fixed parameters. To
alleviate this drawback, they proposed an adaptive
model of RED/ECN, the ARED, which adjusts the value
of maxp based on the traffic load. Although the authors
do not extend their arguments to highlight the
consequent impact on smoothness, based on their
conclusion, we argue that this behavior of RED causes
very sharp reactions when contention is low, and in turn,
damages smoothness significantly. Authors in [4]
propose another algorithm, the Adaptive RED, which
attempts to adjust the dropping rate to network
conditions. Adaptive RED attempts to adjust the maxth
value to follow the network dynamics.

Many other related studies with RED have been
conducted, such as SRED[6] and BLUE[5], which also
attempt to adjust RED operations to network conditions.
In another front, research aiming at increasing
smoothness has been done at the transport layer. TFRC
for example, has been proposed in [7] to satisfy the
objective for smooth transmissions, without requiring
more bandwidth than TCP. Due to its smooth variation
of throughput over time, TFRC protocol responds slowly
to bandwidth availability. To prevent the damage of
system performance, an inherent assumption of TFRC is
its co-existence with TCP. TFRC sending rate is based
on a throughput equation, which allows it to compete
fairly with TCP by trading responsiveness for
smoothness.

The proposal by [1] is along the lines of the present
work; however, the authors emphasize on the design
aspects of congestion control at the transport layer only.
Here, we try to exploit the collaborative impact of both
transport and network layers.

3. Proposed congestion control mechanism

The proposed congestion control mechanism is
consisted of two collaborating sub-mechanisms. The
first one relies on an AQM algorithm at the network
layer, while the other incorporates a transmission
strategy at the transport layer. Note that collaboration
here is a necessary condition for success; that is, each
mechanism alone cannot achieve any gains. This
condition, however, is not necessary for our scheme
only, but for all congestion and avoidance schemes,
presently. In this context, our inherent assumption of
collaborative layers holds. This means that the router
will (implicitly or explicitly) notify senders about
incipient congestion and will expect a corresponding
response. We investigate here both the notification and
the response strategies.

3.1 Global Notifier at the router

Figure 1. Flow chart of Global Notifier (GN)

The Global Notifier (GN) algorithm, which resides at
the router, is briefly presented through the diagram of
Figure 1. Upon arrival of each new packet, the average
queue size is being estimated. The equation for the
average queue size is the same as RED, that is:
 If (queue is idle)
 (1)
else
 (2)
where, m = current_time – q_time
 avg is the average queue size
 q is the current queue length
 q_time is last time the queue was idle
 wq is the queue weight

As soon as average queue size is calculated, a
decision has to be made whether the arriving packet is
going to be dropped, marked or just buffered. If the

/(2)a b bp p count p= − ⋅

max (min) /(max min)b p th th thp avg= − − (3)

buffer is fully utilized or the current average queue size
has exceeded the 2*maxth the packet is being discarded;
if utilization is below minth the packet is simply
buffered. Otherwise the packet is buffered and the
probability pa is being calculated. In particular, the
corresponding equations are:

We attempt to verify our claims based mainly on
extensive simulations. We parameterize the number of
competing flows; the number of flows that enter and
leave the system (i.e. emulating the dynamics of
contention) throughout the communication; and the
diversity of RTTs of participating flows. Our scenarios
allow for further analysis of (i) system performance
under stable contention, (ii) measurements of
responsiveness and smoothness when bandwidth
becomes available or is consumed gradually or rapidly,
(iii) impact of RTT diversity on system behavior and
(iv) comparison of long- versus short-term fairness
properties of the two AQM approaches, namely classic
RED and Global Notifier.

and
 (4)
where, maxp is the maximum value for pb
minth is the minimum threshold for the avg
maxth is the maximum threshold for the avg
count is the number of packets since the last time the
 queue was idle

As long as the average queue size stays between the
minth and 2maxth threshold, the currently buffered
packets are marked with a probability pa. The
probability pa sets the ECN-bit to 1 not only for the just-
arrived packet but also for every single unmarked packet
in the queue. Furthermore, one can adjust the probability
higher or lower, to increase or decrease the level of
marked packets, accordingly. We do not investigate here
the dynamics associated with the probability value;
rather, we keep pa as in RED and enhance the
notification strategy only (i.e. mark all unmarked
packets) whenever pa leads to setting the ECN bit to 1.

Since the proposed algorithm notifies a larger number
of packets (and hence flows) than RED, even with the
same probability of marking, the values of maxth-
minth are reconsidered indeed. The thresholds, in fact,
are used here as the regulating tool for controlling the
amount of notified flows. This was deemed necessary
due to the possibility of faster system response to
congestion: a higher value for minth could assist in
avoiding link under-utilization. Experimentally, we
found that a good value for the minth is around 2/3 of
the maxth.

3.2. Transmission Behavior

Since our Queue Management scheme triggers a
synchronized reduction of multiple flow windows, the
aggregated system response to incipient congestion is
fast and, based on the typical adjustment strategies,
could have been rapid, as well. This calls for a smoother
window adjustment to prevent link under-utilization.
Therefore, adjustments need to be smooth enough to
guarantee sufficient utilization; and sharp enough to
preserve system equilibrium. Note that the adjustment
itself is the fairness tool of the participating flows, since,
this way, the transmission gap among different windows
is reduced. Based on experiments, we found that system
performance can be improved by an AIMD-based
multiplicative-backward and additive-upward window
adjustments by a factor of 0.675 and 0.9, respectively.
Noteworthy, the gentle window adjustments do not
come at the expense of responsiveness, which is
balanced by the quantity of responsive flows.

4. Performance Evaluation

Due to unpredictable contention dynamics of packet
networks that mainly appear as a consequence of
statistical multiplexing, network flows are obliged to a
constant increase/decrease transmission strategy. That
allows for detecting network capacity and controlling
congestion, respectively. However, statistical
multiplexing relies on buffering, which in turn allows
for utilizing temporarily more than the link capacity.
Therefore, increase/decrease is feasible without trading
link utilization, provided that the operational spectrum
of aggregated transmission strategies is confined within
the buffer space. This space corresponds to the
detectable points knee and cliff. That said, efficiency can
be preserved as soon as the aggregated transmission
window is regulated to operate within those limit.

An associated issue is also the impact of the
aforementioned strategy (i.e., to operate between the
knee and the cliff) on fairness. Fairness is achieved
through backward adjustments, and convergence speed
is proportional to the scale of adjustment. Naturally,
aggressive downward adjustments improve fairness but
damage utilization. However, there are two important
issues that have to be considered: (i) the above analysis
relies on a hypothesis where system response is
synchronous; this is not the case with classic RED
schemes and (ii) in asynchronous systems, a rapid
response of a single flow cannot balance, in terms of
fairness, the same total downward adjustment which is
produced by smooth responses of more flows. In this
context, our proposed scheme is expected to exhibit (i)
better utilization due to avoiding packet drops (ii) better
fairness, smoothness and responsiveness.

4.1 Performance Metrics

System Goodput and Throughput are used to
measure the overall system efficiency in terms of
bandwidth utilization.

ShortTermFairness and WorseCaseFairness
are used to reflect how fairly are the resources consumed
by users. They are defined, respectively, as:

2

1

()
n

i
i

throughput t

=

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟

⎪ ⎪⎩ ⎭

∑
1

2()

i
i

t nShortTermFairness E
n throughput t

=⎪ ⎪⎝ ⎠= ⎨ ⎬
⎪ ⎪∑

1
m in ii nW orstC aseF airness

throughpu t
≤ ≤=

1
m ax ii n

th roughpu t
≤ ≤

1
max ()| () |i

i n
MaxAvgCwndDeviation wnd tSystemAvgCwnd t a

≤ ≤
= − (7)

1
max ()| _ () |i

i n
current currentMaxCwndDeviation cwnd tavg cwnd t

≤ ≤
= − (8)

 (5)

 (6)

where, throughputi is the throughput of the ith
flow and n the total number of flows (see also [1]).

To measure system smoothness, we use the
MaxAvgCwndDeviation and the
MaxCwndDeviation.
MaxAvgCwndDeviation captures the maximum

gap of the average congestion window for a time
duration t; while MaxCwndDeviation reflects the
maximum gap of congestion windows that are
frequently sampled at time snapshots tcurrent.
Therefore, the MaxCwndDeviation metric attempts
to reveal cases that may not be captured by the
MaxAvgCwndDeviation metric. In this context, we
use both a short- and a long-term metric to capture the
window oscillations and system smoothness. That said,
we define tcurrent as the time instant, where samples
are taken; and we calculate the average window and
deviation at that instant. The frequency of measurements
has been here determined as 0.01 sec, a time-slot scale
that corresponds to 2-3 RTTs and guarantees sufficient
granularity. Unlike tcurrent, time t is defined as the
period from to to tcurrent.

Consequently, we define MaxAvgCwndDeviation
and MaxCwndDeviation, respectively, as:

where, awndi is the average congestion window of the
ith flow, cwndi is the congestion window of the ith
flow, and SystemAvgCwnd is the system-wide
average congestion window and is given by the
following equation:

0()

n

i
i

aw nd
System A vgC w nd t

n
==
∑

 (9)

avg_cwnd(t) is the average of all flows’ congestion
window size at time t and is defined as:

1
(

_ ()

n

i c u r r e n t
i

c w n d t
a v g c w n d t

n
==
∑)

 (10)

Hence, (7) captures the long-term coarse-grain
smoothness, while (8) captures a fine-grained, short-
term notion of smoothness.

4.2 Simulation Results

For our simulation experiments we have used the ns
network simulator [7]. The topology of the simulated
network is shown in Figure 2. A set of TCP senders

(sender_1 through N) is connected with a set of TCP
receivers (receiver_1 through N). The queue buffer size
is set based on the Bandwidth X Delay product.
Simulation time is fixed to 100 seconds and all senders
start transmitting packets within the first 2 seconds.

Figure 2. Simulation Topology

4.2.1 Notification efficiency

At the first stage of our experiments, we attempt to
observe and quantify the comparative efficiency of our
notification scheme. That is, we investigate how long it
takes with RED and with GN to notify all flows about
incipient congestion. We present sample – but
representative1 – results with 200 flows in Fig. 3. There,
we depict the time required for system-wide notification.
We see that the GN notifies all senders in the first 2
seconds, while RED needs 8 seconds. This observation
justifies high expectations regarding the fairness
performance of GN.

 Figure 3. System Notification

4.2.2 System Utilization

In order to capture the proposed algorithm’s gains in
system utilization, we simulated a scenario of high
contention, with the number of competing flows varying
from 160 to 300.

In Figures 4 and 5 the experimental results reveal the
failure of TCP-Reno, in the presence of RED, to capture
link capacity. Due to unsynchronized windows
increase/decrease, the system behavior is unpredictable
and senders are not able to estimate the network
contention. This is reflected by the fact that system
throughput decrease does not correspond to Goodput
increase, from a point onwards. In contrast, Goodput
evolves in reverse proportion to Throughput (see Fig.4).

Next, we applied GN algorithm rather than RED.
Since GN notifies almost all flows about incipient
congestion, more senders reduce their window. When
the number of flows is relatively small, from 160 to 220,

1 More experiments have been conducted with varying number of
flows and notification thresholds (i.e., percentages) to confirm the
findings.

there is some link underutilization. This is confirmed by
Fig. 4 and 5, where Throughput increase translated into
Goodput increase as well. As the number of flows
increases further the system reaches the link capacity.

At the last stage of this set of experiments, we
adjusted the protocol’s increase/decrease parameters α,β
to 0.9 and 0.675, respectively2. We conclude this stage
of experiments with two interesting conclusions: (i) GN
cancels the occasional system underutilization. The
reasoning behind this observation is rooted again on the
dynamics of statistical multiplexing: even though the
system is underutilized on the average, there are
occasions of temporary buffering and RED-triggered
packet drops. GN applies marking instead, and in turn,
avoids unnecessary timeouts and sharp reactions. (ii) By
the same token, GN achieves a better Goodput to
Throughput ratio when the link is over-utilized; the
modified responsive behavior of more flows works also
in favor of congestion avoidance.

Figure 4. System Throughput

Figure 5. System Goodput

4.2.3 System Fairness

At the second stage, we concentrate on measurements

of fairness. In Figures 6,7 we show the maximum and
minimum values of short-term fairness. Short-term
fairness is improved at the presence of TCP (0.9, 0.675)
with GN compared to TCP-Reno with Red. We observe
in Figure 8 that the comparative short-term fairness
widens its gap after the 2nd sec, when the flows start
adjusting their transmission rates in response to
congestion signals.

Since the number of flows is high, a temporary unfair
allocation of bandwidth for a small portion of flows
cannot be captured with long-term fairness. In this
context, we enhance our measurements with worst-case
and allotted fairness. Figure 9 shows that worst-case
fairness is improved with synchronized notifications.

2 The values have been selected based on separate experiments, which
are not reported here.

Figure 6. System short-term Fairness (with RED)

Figure 7. System Alloted Fairness (with GN)

Figure 8. System Allotted Fairness

Figure 9. System WorstCase Fairness

4.2.4 System Smoothness

Next, we evaluated the algorithm’s potential for
smoothness. For this purpose, we used the metrics given
by equations (7) and (8). Figures 10,11,12 and 13 depict
that the proposed strategy almost doubles smoothness
performance.

Figure 10. MaxAvgCwndDeviation (with RED)

4.2.6 Impact of diverse RTTs

Next, we simulate a scenario (Figure16) with different
RTTs, in order to uncover any potential undesirable
property of GN due to RTT diversity. The simulation
results (Figures 17, 18) show, however, that similar
comparative performance is exhibited here as well.

Figure 11. MaxAvgCwndDeviation (withNG)

Figure 12. MaxCwndDeviation (with RED)

 Figure 17. System Throughput

Figure 13. MaxCwndDeviation (with NG)

4.2.5 System Responsiveness

To evaluate system responsiveness to bandwidth
availability, we simulated a scenario where, during the
simulation time, some flows finish their work earlier. In
particular, 300 flows initially compete for the same link
until some of them (30, 60, 90, 120 and 150 flows) leave
the channel. Figures 14 and 15 depict the corresponding
results.

Figure 18. System Goodput

5. Conclusions

We have presented results to support our arguments that
system-wide notification allows for better system
smoothness. An interesting result relates with the trade-
off between fairness and smoothness: in contrast to
traditional theories, we show that, in the context of
Global Notifier, smoothness and fairness do not follow
contradicting dynamics.

References
[1] Chi Zhang, Vassilios Tsaoussidis, “Improving TCP
smoothness by synchronized and measurement-based
congestion avoidance”, ACM NOSSDAV, 2003.

Figure 14. System Throughput

[2] Li Lei, Pan Yong and Shi Hongbao, “An Adaptive Model
of RED/ECN Parameters”, IEEE/Communication Technology
Proceedings, WCC-JCCT,2000.
[3] Sally Floyd and Van Jacobson, “Random Early Detection
Gateways for Congestion Avoidance”, IEEE/ACM
Transactions on Networking, 1993.
[4] S. Floyd, R. Gummadi, S. Shenker, “Adaptive RED: An
Algorithm for Increasing the Robustness of RED’s Active
Queue Management”, 2001. Figure 15. System Goodput
[5] W. Feng, D. Kandlur, D. Saha, K. Shin, “Blue: A New
Class of Active Queue Management Algorithms”, UM CSE-
TR-387-99, 1999.

[6] T. J. Ott, T. V. Lakshman, and L. H. Wong, “SRED:
Stabilized RED”, INFOCOM, 1999.
[7] S. Floyd, M. Handley, J. Padhye, and J. Widmer,
“Equation-Based Congestion Control for Unicast
Applications”, In Proc. of ACM SIGCOMM , 2000. Figure 16. Simulation Topology

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/z/Zhang:Chi.html

	3. Proposed congestion control mechanism

