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Abstract  

High contention of flows is associated with unstable 
network behavior and unmanageable resource 
administration, i.e., convergence to equilibrium becomes 
a difficult task. In this paper, we propose a new 
approach to control congestion. In this context, we 
present an algorithm for active queue management, to 
notify simultaneously all competing flows about 
incipient congestion. Typically, AQM schemes notify 
only a small portion of participating flows about 
congestion events. Our notification scheme, called 
Global Notifier (GN), allows for an immediate and less 
aggressive adjustment of transmission windows with 
three consequent properties: (i) fairness is improved, (ii) 
smoothness of responsive flows is improved and (iii) 
system utilization is better regulated between the knee 
and the cliff.  We detail our algorithm and the 
corresponding responsive behavior of participating 
flows, and we highlight significant performance results 
gathered by simulations. 
  
1. Introduction 
 

Most AQM algorithms, such as RED and ECN, 
notify flows randomly when the risk of congestion is 
increased. Notification relies on flows’ responsive 
behavior; and randomness guarantees fairness. Since the 
system responsive behavior is only partially affected by 
random drops (i.e. a few flows will respond when 
contention increases) system-wide control is not 
guaranteed. Rather, system control requires a system-
wide, synchronous responsive behavior, which, by and 
large, is feasible only when notification is global and 
responses are homogeneous, i.e., all flows respond to 
congestion signals. We propose a mechanism to control 
congestion based on global notification and responsive 
behavior. 

Global notification is activated when congestion risk 
is detected; due to the large number of notified flows, 
system-wide backward adjustment corresponds to 
minimal share per flow. This allows for a responsive 
behavior with enhanced smoothness per flow. This 
benefit is in contrast to a system behavior, where a few 
flows respond sharply, while others benefit from their 
response. This strategy leads to significant transmission 
gaps for the responsive flows. 

Global responsiveness has also another significant 
property. In particular, flows adjust their transmission 
behavior every time an implicit or explicit congestion 
signal is received; otherwise, a system-wide response for 
the participating flows, based on random signals, would 

have required much more time for all the flows to get 
their turn in responding to congestion. By the same 
token, we confirm the results of [1]. Authors in [1] prove 
that the unsynchronized decrease of windows may result 
in long-term fairness but cannot guarantee short-term 
fairness. Furthermore, they show that the synchronized 
packet drops result in throughput fluctuation and, 
eventually, to smoothness damage.  

Synchronization and congestion events alone, are 
issues that require a lot of discussion and careful 
definitions. For example, congestion is typically defined 
as the situation where packets are dropped; however, 
congestion itself may be associated with more or less 
intensive packet losses, may be persistent or transient, or 
may be associated with burst or occasional losses. These 
situations correspond to varying definitions, time-wise, 
for what is a congestion event and what not; or 
otherwise, when an event starts and ends. In this paper, 
we simplified our scenarios, considering mainly 
deterministic events and time slots; at this stage of our 
work, we attempt to address two major issues: (i) to 
quantify the level of potential gain in terms of fairness, 
efficiency and smoothness and (ii) to determine 
experimentally a responsive behavior that corresponds to 
varying contention dynamics. 

Within these guidelines, we propose a rather simple 
congestion avoidance and control scheme that aims at 
notifying a large portion of flows about incipient 
congestion. When incipient congestion is detected, the 
ECN bit of the packets that are buffered at the router is 
marked. Since more flows reduce their window almost 
simultaneously, the system converges to fair bandwidth 
allocation faster. Simulation results show that our 
algorithm notifies up to 45% of flows simultaneously 
and almost all participating flows in a very short period 
of time. Of course, the amount of notified flows depends 
largely on the level of contention, buffer sizes and 
processing capacities of the routers; however, in general, 
the number of notified flows is increased significantly. 
We show that this situation impacts short-term fairness, 
and in turn, system smoothness as well. 

 Furthermore, since more flows reduce their window 
smoothly, instead of a few reducing their windows 
sharply, the average oscillation of the system utilization 
can be better controlled; depending on the adjustment 
strategy, the system could reach fairness and still operate 
above the knee. Definitely, one has to investigate 
further, from the fairness perspective, the tradeoff 
between sharp reduction of few windows, instead of 
smooth reduction of more windows, and explore the 
thresholds where smoothness gains can be accomplished 
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along with fairness gains. Presently, we found 
experimentally that increasing and decreasing the 
window with a factor of 0.9 and 0.675, respectively, 
satisfies both objectives. 

Although the implementation of the proposed 
congestion control mechanism calls for modifications at 
both the transport and network layers, minor efforts are 
needed, which, moreover, do not require header 
extensions. The ECN bit, which is used for the network 
congestion feedback, already exists in the IP header; and 
the new algorithm does not involve much computational 
burden. Along the same lines, deployment is also 
feasible: a single modification at a bottleneck router may 
suffice to trigger appropriate responses at the senders; a 
widespread use of the algorithm is not really 
necessitated. 

The rest of the paper is organized as follows. In 
Section 2, we discuss related work on congestion 
avoidance and system smoothness. Next, in Section 3, 
we detail the proposed congestion control mechanism. In 
section 4, we present our expectations, and we justify 
our arguments and strategic decisions. Here, we also 
define our performance metrics, the parameters of 
simulations and the evaluation scenarios. Finally, in 
section 6, we conclude the paper. 
 
2. Related Work 
 

RED/ECN [3] algorithm was proposed to control 
traffic load, by discarding randomly packets prior to 
queue overflow. Authors in [2] highlight one weakness 
of RED, which cannot effectively adapt to changes of 
flow contention because of its fixed parameters. To 
alleviate this drawback, they proposed an adaptive 
model of RED/ECN, the ARED, which adjusts the value 
of maxp based on the traffic load. Although the authors 
do not extend their arguments to highlight the 
consequent impact on smoothness, based on their 
conclusion, we argue that this behavior of RED causes 
very sharp reactions when contention is low, and in turn, 
damages smoothness significantly. Authors in [4] 
propose another algorithm, the Adaptive RED, which 
attempts to adjust the dropping rate to network 
conditions. Adaptive RED attempts to adjust the maxth 
value to follow the network dynamics.   

Many other related studies with RED have been 
conducted, such as SRED[6] and BLUE[5], which also 
attempt to adjust RED operations to network conditions. 
In another front, research aiming at increasing 
smoothness has been done at the transport layer. TFRC 
for example, has been proposed in [7] to satisfy the 
objective for smooth transmissions, without requiring 
more bandwidth than TCP. Due to its smooth variation 
of throughput over time, TFRC protocol responds slowly 
to bandwidth availability. To prevent the damage of 
system performance, an inherent assumption of TFRC is 
its co-existence with TCP. TFRC sending rate is based 
on a throughput equation, which allows it to compete 
fairly with TCP by trading responsiveness for 
smoothness.   

The proposal by [1] is along the lines of the present 
work; however, the authors emphasize on the design 
aspects of congestion control at the transport layer only. 
Here, we try to exploit the collaborative impact of both 
transport and network layers.  
 
3. Proposed congestion control mechanism 
 

The proposed congestion control mechanism is 
consisted of two collaborating sub-mechanisms. The 
first one relies on an AQM algorithm at the network 
layer, while the other incorporates a transmission 
strategy at the transport layer. Note that collaboration 
here is a necessary condition for success; that is, each 
mechanism alone cannot achieve any gains. This 
condition, however, is not necessary for our scheme 
only, but for all congestion and avoidance schemes, 
presently. In this context, our inherent assumption of 
collaborative layers holds. This means that the router 
will (implicitly or explicitly) notify senders about 
incipient congestion and will expect a corresponding 
response. We investigate here both the notification and 
the response strategies.  
 
3.1 Global Notifier at the router 
 

 
Figure 1. Flow chart of Global Notifier (GN)  
 

The Global Notifier (GN) algorithm, which resides at 
the router, is briefly presented through the diagram of 
Figure 1. Upon arrival of each new packet, the average 
queue size is being estimated. The equation for the 
average queue size is the same as RED, that is:  
 If (queue is idle) 
                                                                     (1) 
else 
                                                                      (2) 
where, m = current_time – q_time 
 avg is the average queue size 
 q is the current queue length 
 q_time is last time the queue was idle 
 wq is the queue weight  

As soon as average queue size is calculated, a 
decision has to be made whether the arriving packet is 
going to be dropped, marked or just buffered. If the 
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buffer is fully utilized or the current average queue size 
has exceeded the 2*maxth the packet is being discarded; 
if utilization is below minth the packet is simply 
buffered. Otherwise the packet is buffered and the 
probability pa is being calculated. In particular, the 
corresponding equations are:                                                                                                                          

We attempt to verify our claims based mainly on 
extensive simulations. We parameterize the number of 
competing flows; the number of flows that enter and 
leave the system (i.e. emulating the dynamics of 
contention) throughout the communication; and the 
diversity of RTTs of participating flows. Our scenarios 
allow for further analysis of (i) system performance 
under stable contention, (ii) measurements of 
responsiveness and smoothness when bandwidth 
becomes available or is consumed gradually or rapidly, 
(iii) impact of RTT diversity on system behavior and 
(iv) comparison of long- versus short-term fairness 
properties of the two AQM approaches, namely classic 
RED and Global Notifier. 

and 
                                                      (4) 
where, maxp      is the maximum value for pb 
minth  is the minimum threshold for the avg 
maxth  is the maximum threshold for the avg 
count is the number of packets since the last time the 
              queue was idle 

As long as the average queue size stays between the 
minth and 2maxth threshold, the currently buffered 
packets are marked with a probability pa. The 
probability pa sets the ECN-bit to 1 not only for the just-
arrived packet but also for every single unmarked packet 
in the queue. Furthermore, one can adjust the probability 
higher or lower, to increase or decrease the level of 
marked packets, accordingly. We do not investigate here 
the dynamics associated with the probability value; 
rather, we keep pa as in RED and enhance the 
notification strategy only (i.e. mark all unmarked 
packets) whenever pa leads to setting the ECN bit to 1. 

Since the proposed algorithm notifies a larger number 
of packets (and hence flows) than RED, even with the 
same probability of marking, the values of maxth-
minth are reconsidered indeed. The thresholds, in fact, 
are used here as the regulating tool for controlling the 
amount of notified flows. This was deemed necessary 
due to the possibility of faster system response to 
congestion: a higher value for minth could assist in 
avoiding link under-utilization. Experimentally, we 
found that a good value for the minth is around 2/3 of 
the maxth.  
 
3.2. Transmission Behavior  
 

Since our Queue Management scheme triggers a 
synchronized reduction of multiple flow windows, the 
aggregated system response to incipient congestion is 
fast and, based on the typical adjustment strategies, 
could have been rapid, as well. This calls for a smoother 
window adjustment to prevent link under-utilization. 
Therefore, adjustments need to be smooth enough to 
guarantee sufficient utilization; and sharp enough to 
preserve system equilibrium.  Note that the adjustment 
itself is the fairness tool of the participating flows, since, 
this way, the transmission gap among different windows 
is reduced. Based on experiments, we found that system 
performance can be improved by an AIMD-based 
multiplicative-backward and additive-upward window 
adjustments by a factor of 0.675 and 0.9, respectively. 
Noteworthy, the gentle window adjustments do not 
come at the expense of responsiveness, which is 
balanced by the quantity of responsive flows.  
 

 
4. Performance Evaluation 
 

Due to unpredictable contention dynamics of packet 
networks that mainly appear as a consequence of 
statistical multiplexing, network flows are obliged to a 
constant increase/decrease transmission strategy. That 
allows for detecting network capacity and controlling 
congestion, respectively. However, statistical 
multiplexing relies on buffering, which in turn allows 
for utilizing temporarily more than the link capacity. 
Therefore, increase/decrease is feasible without trading 
link utilization, provided that the operational spectrum 
of aggregated transmission strategies is confined within 
the buffer space. This space corresponds to the 
detectable points knee and cliff. That said, efficiency can 
be preserved as soon as the aggregated transmission 
window is regulated to operate within those limit. 

An associated issue is also the impact of the 
aforementioned strategy (i.e., to operate between the 
knee and the cliff) on fairness. Fairness is achieved 
through backward adjustments, and convergence speed 
is proportional to the scale of adjustment. Naturally, 
aggressive downward adjustments improve fairness but 
damage utilization. However, there are two important 
issues that have to be considered: (i) the above analysis 
relies on a hypothesis where system response is 
synchronous; this is not the case with classic RED 
schemes and (ii) in asynchronous systems, a rapid 
response of a single flow cannot balance, in terms of 
fairness, the same total downward adjustment which is 
produced by smooth responses of more flows. In this 
context, our proposed scheme is expected to exhibit (i) 
better utilization due to avoiding packet drops (ii) better 
fairness, smoothness and responsiveness. 
 
4.1 Performance Metrics 
 

System Goodput and Throughput are used to 
measure the overall system efficiency in terms of 
bandwidth utilization.  

ShortTermFairness and WorseCaseFairness 
are used to reflect how fairly are the resources consumed 
by users. They are defined, respectively, as: 
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where, throughputi is the throughput of the ith 
flow and n the total number of flows (see also [1]). 

To measure system smoothness, we use the 
MaxAvgCwndDeviation and the 
MaxCwndDeviation.  
MaxAvgCwndDeviation captures the maximum 

gap of the average congestion window for a time 
duration t; while MaxCwndDeviation reflects the 
maximum gap of congestion windows that are 
frequently sampled at time snapshots tcurrent. 
Therefore, the MaxCwndDeviation metric attempts 
to reveal cases that may not be captured by the 
MaxAvgCwndDeviation metric. In this context, we 
use both a short- and a long-term metric to capture the 
window oscillations and system smoothness. That said, 
we define tcurrent as the time instant, where samples 
are taken; and we calculate the average window and 
deviation at that instant. The frequency of measurements 
has been here determined as 0.01 sec, a time-slot scale 
that corresponds to 2-3 RTTs and guarantees sufficient 
granularity. Unlike tcurrent, time t is defined as the 
period from to to tcurrent.  

Consequently, we define MaxAvgCwndDeviation 
and MaxCwndDeviation, respectively, as: 

 

 

 
where, awndi is the average congestion window of the 
ith flow, cwndi is the congestion window of the ith 
flow, and SystemAvgCwnd is the system-wide 
average congestion window and is given by the 
following equation:   
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avg_cwnd(t) is the average of all flows’ congestion 
window size at time t and  is defined as: 
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Hence, (7) captures the long-term coarse-grain 
smoothness, while (8) captures a fine-grained, short-
term notion of smoothness. 
 
4.2 Simulation Results 
 

For our simulation experiments we have used the ns 
network simulator [7]. The topology of the simulated 
network is shown in Figure 2. A set of TCP senders 

(sender_1 through N) is connected with a set of TCP 
receivers (receiver_1 through N). The queue buffer size 
is set based on the Bandwidth X Delay product. 
Simulation time is fixed to 100 seconds and all senders 
start transmitting packets within the first 2 seconds. 

 
Figure 2. Simulation Topology  

 
4.2.1 Notification efficiency 
 

At the first stage of our experiments, we attempt to 
observe and quantify the comparative efficiency of our 
notification scheme. That is, we investigate how long it 
takes with RED and with GN to notify all flows about 
incipient congestion. We present sample – but 
representative1 – results with 200 flows in Fig. 3. There, 
we depict the time required for system-wide notification. 
We see that the GN notifies all senders in the first 2 
seconds, while RED needs 8 seconds.  This observation 
justifies high expectations regarding the fairness 
performance of GN.  

 
 Figure 3.  System Notification 
 
4.2.2 System Utilization   
 

In order to capture the proposed algorithm’s gains in 
system utilization, we simulated a scenario of high 
contention, with the number of competing flows varying 
from 160 to 300.  

In Figures 4 and 5 the experimental results reveal the 
failure of TCP-Reno, in the presence of RED, to capture 
link capacity. Due to unsynchronized windows 
increase/decrease, the system behavior is unpredictable 
and senders are not able to estimate the network 
contention. This is reflected by the fact that system 
throughput decrease does not correspond to Goodput 
increase, from a point onwards. In contrast, Goodput 
evolves in reverse proportion to Throughput (see Fig.4). 

Next, we applied GN algorithm rather than RED. 
Since GN notifies almost all flows about incipient 
congestion, more senders reduce their window. When 
the number of flows is relatively small, from 160 to 220, 
                                                 
1 More experiments have been conducted with varying number of 
flows and notification thresholds (i.e., percentages) to confirm the 
findings.  



there is some link underutilization. This is confirmed by 
Fig. 4 and 5, where Throughput increase translated into 
Goodput increase as well. As the number of flows 
increases further the system reaches the link capacity.  

At the last stage of this set of experiments, we 
adjusted the protocol’s increase/decrease parameters α,β 
to 0.9 and 0.675, respectively2. We conclude this stage 
of experiments with two interesting conclusions: (i) GN 
cancels the occasional system underutilization. The 
reasoning behind this observation is rooted again on the 
dynamics of statistical multiplexing: even though the 
system is underutilized on the average, there are 
occasions of temporary buffering and RED-triggered 
packet drops. GN applies marking instead, and in turn, 
avoids unnecessary timeouts and sharp reactions. (ii) By 
the same token, GN achieves a better Goodput to 
Throughput ratio when the link is over-utilized; the 
modified responsive behavior of more flows works also 
in favor of congestion avoidance.  

 
Figure 4. System Throughput 

 
Figure 5. System  Goodput 

 
4.2.3 System Fairness 

 
At the second stage, we concentrate on measurements 

of fairness. In Figures 6,7 we show the maximum and 
minimum values of short-term fairness. Short-term 
fairness is improved at the presence of TCP (0.9, 0.675) 
with GN compared to TCP-Reno with Red. We observe 
in Figure 8 that the comparative short-term fairness 
widens its gap after the 2nd sec, when the flows start 
adjusting their transmission rates in response to 
congestion signals. 

Since the number of flows is high, a temporary unfair 
allocation of bandwidth for a small portion of flows 
cannot be captured with long-term fairness. In this 
context, we enhance our measurements with worst-case 
and allotted fairness. Figure 9 shows that worst-case 
fairness is improved with synchronized notifications.  
                                                 
2 The values have been selected based on separate experiments, which 
are not reported here. 

 
Figure 6.  System short-term Fairness (with RED) 

 
Figure 7.  System Alloted Fairness (with GN) 

 
Figure 8.  System Allotted Fairness 

 
Figure 9.  System WorstCase Fairness 
 
4.2.4 System Smoothness 
 

Next, we evaluated the algorithm’s potential for 
smoothness. For this purpose, we used the metrics given 
by equations (7) and (8). Figures 10,11,12 and 13 depict 
that the proposed strategy almost doubles smoothness 
performance.  

 
 
Figure 10.  MaxAvgCwndDeviation (with RED) 



4.2.6 Impact of diverse RTTs  

 

 
Next, we simulate a scenario (Figure16) with different 
RTTs, in order to uncover any potential undesirable 
property of GN due to RTT diversity. The simulation 
results (Figures 17, 18) show, however, that similar 
comparative performance is exhibited here as well.  

Figure 11.  MaxAvgCwndDeviation (withNG) 

 

 
Figure 12.  MaxCwndDeviation (with RED) 

 

 Figure 17. System Throughput 

 

Figure 13.  MaxCwndDeviation (with NG) 
 
4.2.5 System Responsiveness  
 
To evaluate system responsiveness to bandwidth 
availability, we simulated a scenario where, during the 
simulation time, some flows finish their work earlier. In 
particular, 300 flows initially compete for the same link 
until some of them (30, 60, 90, 120 and 150 flows) leave 
the channel. Figures 14 and 15 depict the corresponding 
results. 

Figure 18.  System Goodput 
 
5. Conclusions 
 
We have presented results to support our arguments that 
system-wide notification allows for better system 
smoothness. An interesting result relates with the trade-
off between fairness and smoothness: in contrast to 
traditional theories, we show that, in the context of 
Global Notifier, smoothness and fairness do not follow 
contradicting dynamics. 
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