
 1

Abstract— RED is an Active Queue Management technique

that has been around for many years. Contrary to the Droptail
algorithm, RED manages to increase fairness dramatically,
although occasionally against network performance. RED's
efficiency is due to a dropping mechanism that, based on a
function of average queue length, drops probabilistically packets
from the queue. Unlike RED, Droptail may favor performance
over fairness. In this paper we analyze RED's dropping
algorithm and based on the results we attempt to create a RED
variant for maximum performance and fairness: Equilibrium-
RED. We present results that demonstrate EQU-RED’s ability to
balance the trade-off between Droptail and classic RED
behaviors.

I. INTRODUCTION

ED [7] is an AQM technique used by routers to avoid
buffer overflows, which cause bursts of drops. It uses
proactive packet dropping: RED drops probabilistically

packets from the queue, before it reaches its maximum
capacity, in order to notify the senders that a congestion event
is imminent. As more packets are dropped, more flows detect
packet losses and retreat. However, retreating has a cost: lost
packets have to be retransmitted, resulting in additional
energy consumption; a critical matter for battery-supplied
devices. Therefore, RED has two main characteristics: a lot of
retransmissions and high fairness. On the other hand, Droptail
has no proactive dropping. It accepts packets as long as there
is buffer space available and rejects all the incoming packets
after the router has reached its maximum capacity. Unlike
RED, in Droptail, only a small percentage of flows is notified
of the occurrence of a congestion event and thus only few
flows detect lost data and retreat. Thus, retransmissions will
be minimized leading, however, to unfair distribution of
resources.

Although the above remarks are not by law, there are many
cases where Fairness and Badput (packet retransmissions) are
related to the number of packets proactively dropped. In this
work we investigate this correlation; we show that the level of
this correlation depends on the portion of forced (drops
caused by buffer limitations) and unforced (proactive drops
caused by the AQM mechanism) drops and that in many cases
fairness and network overhead are inversely related. We then
propose Equilibrium-RED, a tunable RED variant which aims

to offer maximum fairness and minimum retransmissions by
adjusting the dropping probability in order to achieve equal
numbers of unforced and forced drops. Contrary to RED, the
dropping probability is constant, almost for the entire length
of the queue and equals to pEQU. For a given time period,
EQU-RED measures the number of forced and unforced drops
made by the router. If unforced drops are more than forced
drops then it decreases the pEQU, otherwise it increases it.

We demonstrate through simulations that EQU-RED can
achieve good performance with only a small loss in fairness.
Moreover, we show that most AQM methods, although they
may work better under specific conditions (networks with
real-time flows or small-lived flows), they tend to follow this
Badput-Fairness trade-off. While some manage to maintain
high fairness with many retransmissions (RED, REM), others
cause less retransmissions and weak fairness. Only EQU-
RED, however, can be tuned in order to lean towards the first
or the second approach.

In section 2, we present the modifications that have been
proposed towards the improvement of the original RED, as
well as the various RED-derived protocols. In section 3, we
review RED’s algorithm and emphasize on the analysis of the
dropping mechanism. Section 4 is focused on the EQU-RED
proposal and its experimental evaluation. In section 5, we
define the simulation scenarios and in section 6, we analyze
the relevance between dropping probability and network
metrics. In section 7 we measure the effect of different
dropping schemes. Section 8 concludes and sets the
framework for future work.

II. RELATED WORK
In [7] S. Floyd and V. Jacobson proposed the RED

algorithm. The original RED scheme proposed a dropping
mechanism based on average queue length. RED sets a
maximum threshold for the average queue length, beyond
which it discards all incoming packets. The gentle RED
modification extends this threshold to double the previous
value, making full exploitation of the buffer space. However,
some applications that generate a small amount of critical
data, like Telnet, do not exit from slow start and may delay
from packet drops. In [13] the authors propose for the first
time ECN (Explicit Congestion Notification). In ECN packets

Equilibrium-RED: Adjusting RED's Dropping
Probability for Maximum Fairness and

Performance
S. Dimitriou, and V. Tsaoussidis

Dept. of Electrical and Computer Engineering
Democritus University of Thrace, Greece

R

 2

are not dropped, but are marked by the router instead, and
their marking will have the same effect on senders as packet
loss.

One more issue of RED gateways is the lack of adaptability
on different traffic levels. Adaptive RED [3], [5] avoids link
underutilization by maintaining the average queue length
among the two thresholds by adjusting pmax. Weighted RED
(WRED) [14] is designed to serve Differentiated Services
based on IP precedence. Packets with a higher IP precedence
are less likely to be dropped, thus high priority traffic will be
delivered with higher probability than low priority. Flow RED
(FRED) [9] uses per-active-flow accounting to impose on
each flow a loss rate that depends on the flow’s buffer use.
Unfortunately, extended memory and processor power is
required for a big number of flows. On the other hand RED-
PD (Preferential Dropping) [11] maintains a state only for the
high-bandwidth flows. Loss Ratio based RED (LRED) [16]
measures the latest packet loss ratio, and uses it as a
complement to queue length in order to dynamically adjust
packet drop probability and decrease response time. Lastly,
Exponential-RED (E-RED) [10] sets the packet marking
probability to be an exponential function of the length of a
virtual queue whose capacity is slightly smaller than the link
capacity.

In section 7, during our simulations we will use three well
known techniques, REM, BLUE and the PI controllers.
REM’s [1] main characteristic is that it matches user rates to
network capacity by sending the right signal to the senders.
BLUE [4] manages dropping, based on packet loss and link
idle events; if the queue drops packets due to buffer
overflows, BLUE increases the dropping probability, whereas
if the queue becomes empty or idle, BLUE decreases the
dropping. Last, the Proportional-Integral (PI) controller [8] is
a robust controller that outperforms the RED controller.

III. ANALYZING RED DROPPING POLICIES
Instead of using queue's actual length, RED uses a

weighted moving average of the queue’s length. We have
()= ⋅ + − ⋅sampleavg p q 1 p avg

where the p variable takes small values, usually around
0.002. RED also uses two thresholds, minimum and maximum
threshold, which are determined by the buffer size. We have
three distinct cases:

1. If the average length is less than the minimum threshold
then no packet is dropped.

2. If the average length is greater than the maximum
threshold or if the queue is full, then the last packet of the
queue is definitively dropped (forced drop).

3. If the average length is between these two thresholds
then the last packet is dropped with a given probability
(unforced drop), which increases as the average length
approaches maximum threshold. The dropping probability
function for the original RED algorithm is shown in Fig. 1.

Fig. 1. RED’s Dropping Probability Function

Thus, when the flow traffic exploits the available buffer

space, RED causes some unforced and some forced drops.
The number of unforced drops is typically much higher than
the number of forced drops; however, this is determined by
the number of flows and the thresholds. Unlike RED, the
original Droptail causes forced drops only when the queue
exceeds buffer’s capacity. These two types of drops have
some specific characteristics.

Forced Dropping: Forced dropping occurs when the

queue’s length exceeds a threshold, either user-defined
(maxthresh in RED) or physical (buffer’s capacity). Forced
drops occur in bursts and most times they involve a small
number of participating flows. The arising problem is
twofold; some flows will not be aware of the occurrence of a
congestion event and they will continue to increase their
sending rates, whereas the rest will be synchronized.
However, as contention increases, more flows will be notified
of the congestion event. In many cases the system could reach
better performance since the packets will be rejected only
when it is “absolutely necessary”. Unfortunately, in cases of
TCPs that create stable queue lengths, as TCP Vegas or TCP
Real [17], a threshold set too low would result in an average
length practically equal to the physical capacity of the queue,
and hence buffer underutilization will be inevitable.

Unforced Dropping: Unforced dropping is a proactive

measure to avoid buffer overflow. The dropped packets
typically belong to various flows, thus notifying more senders
about high contention. This enhanced diversity of notifying
receivers may result in wide transmission retreat which causes
inevitably underutilization. Moreover, some highly-
sophisticated TCP versions might conceive these drops as
corrupted data caused by wireless links and might maintain
the same sending rate. For the protocol senders the
unbalanced forced/unforced dropping policy may be
experienced as a paradox: More transmission effort may not
result in higher throughput gains [12]. An interesting
characteristic of unforced drops is their location
independence. The reaction of the sender on a packet drop, is
based on the way it perceives the loss (multiple DACKs or
timeout), not on the buffer state the time the drop occurred.
This leads to the conclusion that the router could be more
aggressive even for low level of queue utilization.

minthresh maxthresh avgqmax

pdrop

1

pmax

 3

From Fig. 1 we can deduce that the parameters that
determine the dropping probability of RED are minthresh,
maxthresh and pmax; in order to adjust the number of dropped
packets each time, we should alter one or more of these
parameters. Minimum and maximum threshold are
inappropriate for this purpose, since they may lead to queue
underutilization for protocols that generate stable queue
lengths. Thus, pmax is the only parameter left that seems to
have a direct connection with packet drops. However,
experiments show that increasing pmax may lead to less
unforced dropping than with a lower value. These results
indicate that maybe the current dropping probability function
is inadequate to balance the two types of drops.

RetPacks

0

20000

40000

60000

80000

100000

120000

0 0.01 0.03 0.1

Pmax

Re
tP

ac
ks Vegas

Newreno

Fig. 2. Retransmitted packets vs pmax using gentle RED

Fairness

0.75

0.8

0.85

0.9

0.95

1

1.05

0 0.01 0.03 0.1

Pmax

Fa
ir

ne
ss Vegas

Newreno

Fig. 3. Fairness vs pmax using gentle RED

TCP Vegas

0
10000
20000
30000
40000
50000
60000
70000
80000

0 0,01 0,03 0,1

Pmax

D
ro

ps Unforced
Forced

Fig. 4. Types of drops vs pmax using gentle RED and TCP Vegas flows

TCP Newreno

0

20000

40000

60000

80000

100000

120000

0 0,01 0,03 0,1

Pmax

D
ro

ps Unforced
Forced

Fig. 5. Types of drops vs pmax using gentle RED and TCP Newreno flows

In order to justify our claims we made some experiments

with the current gentle RED scheme. We used a dumbbell
topology with 100 flows and we ran some ns-2 [15]
simulations with different values of pmax. We can observe, that
even with gentle RED, pmax increase does not necessarily
correspond to more unforced drops. Moreover, even for the
cases where there is an increase in retransmitted packets, this
is increase is not linear; significant increase in pmax doesn’t
necessarily result in a significant increase of RetPacks, thus
adjusting pmax to modify the number of drops, might lead to
oscillation and slow convergence.

IV. EQUILIBRIUM RED
To achieve the desired balance we propose a modified

dropping function. In order to decrease complexity we use a
constant function where the dropping probability is the same
for almost the entire of the queue length (apart from 0-10%
because of low link utilization in this area). The proposed
function can be seen in Fig. 6. The rest of RED’s functionality
still applies.

Fig. 6. The EQU-RED dropping probability function

Minimum and maximum threshold should be extended in

order to occupy the available buffer space. The functionality
of EQU-RED gateways includes measurement and
adjustment. First they measure the number of forced and
unforced dropped packets for a predetermined period of time
(e.g. one second). If the number of forced drops is greater
than the number of unforced drops, pEQU will be
multiplicatively increased, otherwise decreased. We adjust
multiplicatively pEQU to achieve faster convergence. After
some seconds the router will adjust to an equilibrium state
where the number of forced and unforced drops will be equal.

0

pdrop

avg

1

qmax

pEQU

10%

 4

Using only one point of control (pEQU) and choosing the
equilibrium point equally between forced and unforced drops,
we achieve three goals:

1. We avoid buffer underutilization. In many cases RED

leads to buffer underutilization since the dropping probability
is so high that the queue never reaches its full capacity. Our
proposed scheme imposes forced dropping leading to a more
efficient buffer use.

2. We ensure adaptability on various network conditions.

Every second the router will recalculate the dropping
probability to capture the current network conditions.

3. We achieve full control of the dropping function.

Although the gentle RED proposal gives better results over
original RED, the connection between pEQU and drops is not
explicit. Using our function we establish a corresponding
relation between pEQU and the amount of packet drops.

EQU-RED’s algorithm is simple. The differences from the

original RED algorithm are the modification of the dropping
probability function and the addition of two more counters:
total_forced (the total number of forced drops in a second)
and total_unforced (the total number of unforced drops in a
second).

if(forced_dropping_occurs()) total_forced++;
if(unforced_dropping_occurs()) total_unforced++;

every_second() {

if(total_forced>total_unforced) p_equ=p_equ*1.1;
else p_equ=p_equ/1.1;
total_forced=0;
total_unforced=0;

}

The time interval between measurements and the factor we
use to adjust pEQU should be dynamically modified to reflect
network conditions; however, in this first approach we will
consider them constant throughout the transmission, 1sec and
1.1 respectively.

By and large, our algorithm can be further adjusted in order
to give weight either to fairness or performance, by altering
the Forced to Unforced proportion appropriately. The choice
depends on the network topology and the requirements of the
specific applications e.g. battery-powered devices might
tolerate unfair treatment for less retransmissions.

Having defined the EQU-RED scheme we demonstrate
through simulations that the proposed function can adjust the
unforced-to-forced ratio better; let alone that EQU-RED
combines effectively the desired properties of both Droptail
and RED.

V. NETWORK TOPOLOGY AND SCENARIOS
We conducted simulations with ns-2 on a cross-traffic

topology (Fig. 7). The topology was designed in the way that

all flows have the same propagation delay in order to allow
for direct, accurate measurements of fairness. In both cases
the number of flows varies from 2 to 200 and the simulation
time is 100sec. R1_1 to R1_N/2 and R2_1 to R2_N/2 are the
receiving nodes for the S1_1 to S1_N/2 and S2_1 to S2_N/2
sending nodes, respectively.

Fig. 7. Cross-traffic topology

We should note that although all flows have the same

propagation delay, the system is very unfair, due to the fact
that the flows S2-R2 establish connection faster than the flows
S1-R1.

In the first part of the experiments we vary the unforced-to-
forced ratio with fixed number of flows using EQU-RED. In
the second part we vary the number of flows and compare
EQU-RED with Droptail and RED. Both of these sets of
simulations were done with TCP Vegas and Newreno. In the
third part we adjust the unforced-to-forced ratio with different
flows and in the final fourth part we compare different AQM
mechanisms.

VI. CONNECTION OF DROPPING PROBABILITY AND NETWORK
METRICS

Using the function described in Fig 6, we examine EQU-
RED’s behavior when we alter gradually the unforced-to-
forced ratio from 5-1 to 1-5. We present (1/Badput)-to-
Fairness diagrams for each protocol.

100 flows, Newreno

1-4

1-2
1-3

1-5

1-1

5-1

3-1
2-14-1

0,65
0,7

0,75
0,8

0,85
0,9

0,95
1

2,6 2,8 3 3,2 3,4 3,6 3,8

1/Badput

Fa
ir

ne
ss

Unforced-to-Forced ratio

`

Fig. 8. 100 Newreno flows

 5

100 flows, Vegas

4-1
2-13-1

5-1

1-1

1-5

1-31-2
1-4

0,65
0,7

0,75
0,8

0,85
0,9

0,95

2,9 3,1 3,3 3,5 3,7 3,9 4,1

1/Badput

Fa
ir

ne
ss

Unforced-to-Forced ratio

Fig. 9. 100 Vegas flows

Generally, a remarkable result is that the decrease of the

unforced-to-forced ratio is combined with a decrease of
Fairness and increase of 1/Badput (Badput is decreased). An
unforced-to-forced ratio 1-1 gives an equilibrium point, where
we have a fair trade-off between Fairness and Badput.
However, this equilibrium point is not stable as it shifts left
for TCP Vegas flows. As we move to extreme high and low
values of unforced-to-forced ratio the results of the
simulations seem close to each other, and this is due to the
fact that either the algorithm was not fast enough to reach the
expected equilibrium point, or that after some point, such
small divergences from the equilibrium point may make no
difference to the network behavior.

We should point out that Fig. 8,9 above capture an average
case. In some cases there is no trade-off, since the increase of
fairness due to RED dropping mechanism is accompanied
with decrease of Badput. In these cases setting this ratio equal
to 1 will result in a worse solution than RED, but in a better
solution than Droptail.

VII. MEASURING THE EFFECT OF UNFORCED DROPPING
During the second part of the experiments we compare

side-by-side Droptail, RED and EQU-RED. We increase the
number of flows from 2 to 200 and we measure Retransmitted
Packets and Fairness. We omit Goodput, since the differences
among the various AQM mechanisms are minor. The results
we get are indicative of the compromise EQU-RED does to
achieve good metrics. EQU-RED tends to follow the high-
fairness behavior of RED, whereas it has a significant gain
over network overhead. This is more apparent with TCP
Vegas, where we observe extensive unfairness. EQU-RED
manages to achieve 20% less retransmitted packets than RED,
with only 2% decrease of fairness.

We should note that for specific number of flows, EQU-
RED achieves better results than Droptail in means of
RetPacks, showing the dynamic nature of the protocol. Yet,
EQU-RED has a stable behavior, contrary to RED, thanks to
the adjusting probability mechanism that allows it to follow
network dynamics.

Retransmitted Packets

0
10000
20000

30000
40000
50000

2 20 40 60 80 100 120 140 160 180 200

flows

R
et

Pa
ck

s Droptail

RED

EQU-RED

Fig. 10. Retransmitted packets – Newreno

Fairness

0
0.2
0.4
0.6
0.8

1
1.2

2 20 40 60 80 100 120 140 160 180 200

flows

Fa
irn

es
s Droptail

RED

EQU-RED

Fig. 11. Fairness – Newreno

Retransmitted Packets

0
10000
20000
30000
40000
50000
60000

2 20 40 60 80 100 120 140 160 180 200

flows

R
et

P
ac

ks Droptail

RED

EQU-RED

Fig. 12. Retransmitted packets – Vegas

Fairness

0
0.2
0.4
0.6
0.8

1
1.2

2 20 40 60 80 100 120 140 160 180 200

flows

Fa
irn

es
s Droptail

RED

EQU-RED

Fig. 13. Cross-traffic topology – Vegas

Modifying the target unforced-to-forced ratio alters EQU-

RED behavior the way we demonstrated in Section 6
Depending on the application or the type of network, we may
want to favor either fairness or performance, e.g. in cases of
networks of battery-supplied devices performance is more
important than fairness. We compare three variations of EQU-
RED with 1-2, 1-1, and 2-1 unforced-to-forced ratio and we
show that by adjusting the ratio we can balance the Badput-
Fairness to the desired level. We only present results for
Newreno (Fig. 14,15). Same things apply for TCP Vegas.

 6

Retransmitted Packets

0
5000

10000
15000
20000
25000
30000
35000
40000

2 20 40 60 80 100 120 140 160 180 200

RetPacks

flo
w

s 1-2
1-1
2-1

Fig. 14. Cross-traffic topology – Newreno

Fairness

0.6
0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

1.05

2 20 40 60 80 100 120 140 160 180 200

flows

Fa
ir

ne
ss 1-2

1-1
2-1

Fig. 15. Cross-traffic topology – Newreno

In order to prove our initial hypothesis, that is that most

AQM mechanisms favor either fairness or performance, we
made additional simulations with 200 flows and BLUE, PI
and REM gateways. We illustrate the results in Fig. 16,17. We
see that each technique tends to follow a specific Badput-
Fairness trade-off pattern. Droptail, BLUE and PI provide less
retransmissions with small fairness, while RED, REM and
EQU-RED high fairness with more retransmissions.

TCP Newreno

0,5

0,55
0,6

0,65

0,7

0,75
0,8

0,85

30000 32000 34000 36000 38000 40000

RetPacks

Fa
ir

ne
ss

BLUE

PI
Droptail

EQU-RED
RED

REM

Fig. 16. Cross-traffic topology – Vegas

TCP Vegas

0,25

0,35

0,45

0,55

0,65

0,75

0,85

19000 24000 29000 34000 39000 44000 49000

RetPacks

Fa
ir

ne
ss

REDEQU-RED
REM

PI
DroptailBLUE

Fig. 17. Cross-traffic topology – Vegas

VIII. CONCLUSION AND FUTURE WORK
We have examined the distinctive impact of unforced and

forced drops on various performance metrics. The next step
was to propose a protocol that exploited forced and unforced
dropping in order to achieve the trade-off among these
metrics. However, at present, we omitted to evaluate protocols
that have a different reaction to transient drops, such as TCP
Westwood. Multiple backbone topologies are also a matter of
concern as they favor unfairness and represent more real-life
applications. Further extension should also concern the
granularity issue and include high-speed networks.

REFERENCES
[1] S. Athuraliya, V. H. Li, S. H. Low, and Q. Yin, “REM: Active Queue

Management”, IEEE Network Magazine, May 2001
[2] Brakmo et al, “TCP Vegas: New Techniques for Congestion Detection

and Avoidance”, SIGCOMM, August 1994
[3] W.C. Feng, D. Kandlur, D. Saha, and K. Shin, “A Self-Configuring

RED Gateway”, Infocom, March 1999
[4] W. Feng, D. Kandlur, D. Saha, and K. Shin, “BLUE: A New Class of

Active Queue Management Algorithms”, U. Michigan CSE-TR-387-99,
April 1999

[5] S. Floyd, R. Gummadi, and S. Shenker, “Adaptive RED: An Algorithm
for Increasing the Robustness of RED’s Active Queue Management”,
August 2001

[6] S. Floyd, T. Henderson, and A. Gurtov, “RFC3782 – The NewReno
modification to TCP’s fast recovery algorithm”, April 2004

[7] S. Floyd, and V. Jacobson, “Random Early Detection gateways for
Congestion Avoidance”, IEEE/ACM Transactions on Networking,
August 1993

[8] C. Hollot, V. Misra, D. Towsley, and W. Gong, “On Designing
Improved Controllers for AQM Routers Supporting TCP Flows,”
Infocom, April 2001

[9] D. Lin, and R. Morris R, “Dynamics of Random Early Detection”,
SIGCOMM, September 1997

[10] S. Liu, T. Basar, and R. Srikant, “Exponential-RED: A Stabilizing AQM
Scheme for Low- and High-Speed TCP Protocols”, IEEE/ACM
Transactions on Networking, October 2005

[11] R. Mahajan, and S. Floyd, “Controlling High Bandwidth Flows at the
Congested Router”, ICNP, November 2001

[12] L.Mamatas and V.Tsaoussidis, “Protocol Behavior: More Effort, More
Gains?”, PIMRC, September 2004

[13] K. Ramakrishnan, and S. Floyd, “RFC2481 – A Proposal to Add
Explicit Congestion Notification (ECN) to IP”, January 1999

[14] Technical Specification from Cisco, Distributed Weighted Random
Early Detection, URL: http://www.cisco.com/univercd/cc/td/doc/
product/software/ios111/cc111/wred.pdf

[15] The Network Simulator, http://nsnam.isi.edu/nsnam
[16] C. Wang, B. Li, Y. Hou, K. Sohraby, and Y. Lin, “LRED: A Robust

Active Queue Management Scheme Based on Packet Loss Ratio”,
Infocom, March 2004

[17] V. Tsaoussidis, and C. Zhang, “TCP-Real: Receiver-oriented
Congestion Control”, The Journal of Computer Networks, November
2002

