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Abstract— RED is an Active Queue Management technique 

that has been around for many years. Contrary to the Droptail 
algorithm, RED manages to increase fairness dramatically, 
although occasionally against network performance. RED's 
efficiency is due to a dropping mechanism that, based on a 
function of average queue length, drops probabilistically packets 
from the queue. Unlike RED, Droptail may favor performance 
over fairness. In this paper we analyze RED's dropping 
algorithm and based on the results we attempt to create a RED 
variant for maximum performance and fairness: Equilibrium-
RED. We present results that demonstrate EQU-RED’s ability to 
balance the trade-off between Droptail and classic RED 
behaviors. 

I. INTRODUCTION 

ED [7] is an AQM technique used by routers to avoid 
buffer overflows, which cause bursts of drops. It uses 
proactive packet dropping: RED drops probabilistically 

packets from the queue, before it reaches its maximum 
capacity, in order to notify the senders that a congestion event 
is imminent. As more packets are dropped, more flows detect 
packet losses and retreat. However, retreating has a cost: lost 
packets have to be retransmitted, resulting in additional 
energy consumption; a critical matter for battery-supplied 
devices. Therefore, RED has two main characteristics: a lot of 
retransmissions and high fairness. On the other hand, Droptail 
has no proactive dropping. It accepts packets as long as there 
is buffer space available and rejects all the incoming packets 
after the router has reached its maximum capacity. Unlike 
RED, in Droptail, only a small percentage of flows is notified 
of the occurrence of a congestion event and thus only few 
flows detect lost data and retreat. Thus, retransmissions will 
be minimized leading, however, to unfair distribution of 
resources. 

Although the above remarks are not by law, there are many 
cases where Fairness and Badput (packet retransmissions) are 
related to the number of packets proactively dropped. In this 
work we investigate this correlation; we show that the level of 
this correlation depends on the portion of forced (drops 
caused by buffer limitations) and unforced (proactive drops 
caused by the AQM mechanism) drops and that in many cases 
fairness and network overhead are inversely related. We then 
propose Equilibrium-RED, a tunable RED variant which aims 

to offer maximum fairness and minimum retransmissions by 
adjusting the dropping probability in order to achieve equal 
numbers of unforced and forced drops. Contrary to RED, the 
dropping probability is constant, almost for the entire length 
of the queue and equals to pEQU. For a given time period, 
EQU-RED measures the number of forced and unforced drops 
made by the router. If unforced drops are more than forced 
drops then it decreases the pEQU, otherwise it increases it. 

We demonstrate through simulations that EQU-RED can 
achieve good performance with only a small loss in fairness. 
Moreover, we show that most AQM methods, although they 
may work better under specific conditions (networks with 
real-time flows or small-lived flows), they tend to follow this 
Badput-Fairness trade-off. While some manage to maintain 
high fairness with many retransmissions (RED, REM), others 
cause less retransmissions and weak fairness. Only EQU-
RED, however, can be tuned in order to lean towards the first 
or the second approach. 
 

In section 2, we present the modifications that have been 
proposed towards the improvement of the original RED, as 
well as the various RED-derived protocols. In section 3, we 
review RED’s algorithm and emphasize on the analysis of the 
dropping mechanism. Section 4 is focused on the EQU-RED 
proposal and its experimental evaluation. In section 5, we 
define the simulation scenarios and in section 6, we analyze 
the relevance between dropping probability and network 
metrics. In section 7 we measure the effect of different 
dropping schemes. Section 8 concludes and sets the 
framework for future work. 

II. RELATED WORK 
In [7] S. Floyd and V. Jacobson proposed the RED 

algorithm. The original RED scheme proposed a dropping 
mechanism based on average queue length. RED sets a 
maximum threshold for the average queue length, beyond 
which it discards all incoming packets. The gentle RED 
modification extends this threshold to double the previous 
value, making full exploitation of the buffer space. However, 
some applications that generate a small amount of critical 
data, like Telnet, do not exit from slow start and may delay 
from packet drops. In [13] the authors propose for the first 
time ECN (Explicit Congestion Notification). In ECN packets 
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are not dropped, but are marked by the router instead, and 
their marking will have the same effect on senders as packet 
loss. 

One more issue of RED gateways is the lack of adaptability 
on different traffic levels. Adaptive RED [3], [5] avoids link 
underutilization by maintaining the average queue length 
among the two thresholds by adjusting pmax. Weighted RED 
(WRED) [14] is designed to serve Differentiated Services 
based on IP precedence. Packets with a higher IP precedence 
are less likely to be dropped, thus high priority traffic will be 
delivered with higher probability than low priority. Flow RED 
(FRED) [9] uses per-active-flow accounting to impose on 
each flow a loss rate that depends on the flow’s buffer use. 
Unfortunately, extended memory and processor power is 
required for a big number of flows. On the other hand RED-
PD (Preferential Dropping) [11] maintains a state only for the 
high-bandwidth flows. Loss Ratio based RED (LRED) [16] 
measures the latest packet loss ratio, and uses it as a 
complement to queue length in order to dynamically adjust 
packet drop probability and decrease response time. Lastly, 
Exponential-RED (E-RED) [10] sets the packet marking 
probability to be an exponential function of the length of a 
virtual queue whose capacity is slightly smaller than the link 
capacity. 

In section 7, during our simulations we will use three well 
known techniques, REM, BLUE and the PI controllers. 
REM’s [1] main characteristic is that it matches user rates to 
network capacity by sending the right signal to the senders. 
BLUE [4] manages dropping, based on packet loss and link 
idle events; if the queue drops packets due to buffer 
overflows, BLUE increases the dropping probability, whereas 
if the queue becomes empty or idle, BLUE decreases the 
dropping. Last, the Proportional-Integral (PI) controller [8] is 
a robust controller that outperforms the RED controller. 

III. ANALYZING RED DROPPING POLICIES 
Instead of using queue's actual length, RED uses a 

weighted moving average of the queue’s length. We have 
( )= ⋅ + − ⋅sampleavg p q 1 p avg  

where the p variable takes small values, usually around 
0.002. RED also uses two thresholds, minimum and maximum 
threshold, which are determined by the buffer size. We have 
three distinct cases: 

1. If the average length is less than the minimum threshold 
then no packet is dropped. 

2. If the average length is greater than the maximum 
threshold or if the queue is full, then the last packet of the 
queue is definitively dropped (forced drop). 

3. If the average length is between these two thresholds 
then the last packet is dropped with a given probability 
(unforced drop), which increases as the average length 
approaches maximum threshold. The dropping probability 
function for the original RED algorithm is shown in Fig. 1. 

 

 
Fig. 1. RED’s Dropping Probability Function 

 
Thus, when the flow traffic exploits the available buffer 

space, RED causes some unforced and some forced drops. 
The number of unforced drops is typically much higher than 
the number of forced drops; however, this is determined by 
the number of flows and the thresholds. Unlike RED, the 
original Droptail causes forced drops only when the queue 
exceeds buffer’s capacity. These two types of drops have 
some specific characteristics. 

 
Forced Dropping: Forced dropping occurs when the 

queue’s length exceeds a threshold, either user-defined 
(maxthresh in RED) or physical (buffer’s capacity). Forced 
drops occur in bursts and most times they involve a small 
number of participating flows. The arising problem is 
twofold; some flows will not be aware of the occurrence of a 
congestion event and they will continue to increase their 
sending rates, whereas the rest will be synchronized. 
However, as contention increases, more flows will be notified 
of the congestion event. In many cases the system could reach 
better performance since the packets will be rejected only 
when it is “absolutely necessary”. Unfortunately, in cases of 
TCPs that create stable queue lengths, as TCP Vegas or TCP 
Real [17], a threshold set too low would result in an average 
length practically equal to the physical capacity of the queue, 
and hence buffer underutilization will be inevitable. 

 
Unforced Dropping: Unforced dropping is a proactive 

measure to avoid buffer overflow. The dropped packets 
typically belong to various flows, thus notifying more senders 
about high contention. This enhanced diversity of notifying 
receivers may result in wide transmission retreat which causes 
inevitably underutilization. Moreover, some highly-
sophisticated TCP versions might conceive these drops as 
corrupted data caused by wireless links and might maintain 
the same sending rate. For the protocol senders the 
unbalanced forced/unforced dropping policy may be 
experienced as a paradox: More transmission effort may not 
result in higher throughput gains [12]. An interesting 
characteristic of unforced drops is their location 
independence. The reaction of the sender on a packet drop, is 
based on the way it perceives the loss (multiple DACKs or 
timeout), not on the buffer state the time the drop occurred. 
This leads to the conclusion that the router could be more 
aggressive even for low level of queue utilization. 
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From Fig. 1 we can deduce that the parameters that 
determine the dropping probability of RED are minthresh, 
maxthresh and pmax; in order to adjust the number of dropped 
packets each time, we should alter one or more of these 
parameters. Minimum and maximum threshold are 
inappropriate for this purpose, since they may lead to queue 
underutilization for protocols that generate stable queue 
lengths. Thus, pmax is the only parameter left that seems to 
have a direct connection with packet drops. However, 
experiments show that increasing pmax may lead to less 
unforced dropping than with a lower value. These results 
indicate that maybe the current dropping probability function 
is inadequate to balance the two types of drops. 
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Fig. 2. Retransmitted packets vs pmax using gentle RED 
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Fig. 3. Fairness vs pmax using gentle RED 
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Fig. 4. Types of drops vs pmax using gentle RED and TCP Vegas flows 
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Fig. 5. Types of drops vs pmax using gentle RED and TCP Newreno flows 
 
In order to justify our claims we made some experiments 

with the current gentle RED scheme. We used a dumbbell 
topology with 100 flows and we ran some ns-2 [15] 
simulations with different values of pmax. We can observe, that 
even with gentle RED, pmax increase does not necessarily 
correspond to more unforced drops. Moreover, even for the 
cases where there is an increase in retransmitted packets, this 
is increase is not linear; significant increase in pmax doesn’t 
necessarily result in a significant increase of RetPacks, thus 
adjusting pmax to modify the number of drops, might lead to 
oscillation and slow convergence. 

IV. EQUILIBRIUM RED 
To achieve the desired balance we propose a modified 

dropping function. In order to decrease complexity we use a 
constant function where the dropping probability is the same 
for almost the entire of the queue length (apart from 0-10% 
because of low link utilization in this area). The proposed 
function can be seen in Fig. 6. The rest of RED’s functionality 
still applies. 

 

 
Fig. 6. The EQU-RED dropping probability function 

 
Minimum and maximum threshold should be extended in 

order to occupy the available buffer space. The functionality 
of EQU-RED gateways includes measurement and 
adjustment. First they measure the number of forced and 
unforced dropped packets for a predetermined period of time 
(e.g. one second). If the number of forced drops is greater 
than the number of unforced drops, pEQU will be 
multiplicatively increased, otherwise decreased. We adjust 
multiplicatively pEQU to achieve faster convergence. After 
some seconds the router will adjust to an equilibrium state 
where the number of forced and unforced drops will be equal. 
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Using only one point of control (pEQU) and choosing the 
equilibrium point equally between forced and unforced drops, 
we achieve three goals: 

 
1. We avoid buffer underutilization. In many cases RED 

leads to buffer underutilization since the dropping probability 
is so high that the queue never reaches its full capacity. Our 
proposed scheme imposes forced dropping leading to a more 
efficient buffer use. 

 
2. We ensure adaptability on various network conditions. 

Every second the router will recalculate the dropping 
probability to capture the current network conditions. 

 
3. We achieve full control of the dropping function. 

Although the gentle RED proposal gives better results over 
original RED, the connection between pEQU and drops is not 
explicit. Using our function we establish a corresponding 
relation between pEQU and the amount of packet drops. 

 
EQU-RED’s algorithm is simple. The differences from the 

original RED algorithm are the modification of the dropping 
probability function and the addition of two more counters: 
total_forced (the total number of forced drops in a second) 
and total_unforced (the total number of unforced drops in a 
second). 
 
if(forced_dropping_occurs()) total_forced++; 
if(unforced_dropping_occurs()) total_unforced++; 
 
every_second() { 

if(total_forced>total_unforced) p_equ=p_equ*1.1; 
else p_equ=p_equ/1.1; 
total_forced=0; 
total_unforced=0; 

} 
 

The time interval between measurements and the factor we 
use to adjust pEQU should be dynamically modified to reflect 
network conditions; however, in this first approach we will 
consider them constant throughout the transmission, 1sec and 
1.1 respectively. 

By and large, our algorithm can be further adjusted in order 
to give weight either to fairness or performance, by altering 
the Forced to Unforced proportion appropriately. The choice 
depends on the network topology and the requirements of the 
specific applications e.g. battery-powered devices might 
tolerate unfair treatment for less retransmissions. 

Having defined the EQU-RED scheme we demonstrate 
through simulations that the proposed function can adjust the 
unforced-to-forced ratio better; let alone that EQU-RED 
combines effectively the desired properties of both Droptail 
and RED. 

V. NETWORK TOPOLOGY AND SCENARIOS 
We conducted simulations with ns-2 on a cross-traffic 

topology (Fig. 7). The topology was designed in the way that 

all flows have the same propagation delay in order to allow 
for direct, accurate measurements of fairness. In both cases 
the number of flows varies from 2 to 200 and the simulation 
time is 100sec. R1_1 to R1_N/2 and R2_1 to R2_N/2 are the 
receiving nodes for the S1_1 to S1_N/2 and S2_1 to S2_N/2 
sending nodes, respectively. 
 

 
Fig. 7. Cross-traffic topology 

 
We should note that although all flows have the same 

propagation delay, the system is very unfair, due to the fact 
that the flows S2-R2 establish connection faster than the flows 
S1-R1. 

In the first part of the experiments we vary the unforced-to-
forced ratio with fixed number of flows using EQU-RED. In 
the second part we vary the number of flows and compare 
EQU-RED with Droptail and RED. Both of these sets of 
simulations were done with TCP Vegas and Newreno. In the 
third part we adjust the unforced-to-forced ratio with different 
flows and in the final fourth part we compare different AQM 
mechanisms. 

VI. CONNECTION OF DROPPING PROBABILITY AND NETWORK 
METRICS  

Using the function described in Fig 6, we examine EQU-
RED’s behavior when we alter gradually the unforced-to-
forced ratio from 5-1 to 1-5. We present (1/Badput)-to-
Fairness diagrams for each protocol. 
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Fig. 8. 100 Newreno flows 
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100 flows, Vegas
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Fig. 9. 100 Vegas flows 

 
Generally, a remarkable result is that the decrease of the 

unforced-to-forced ratio is combined with a decrease of 
Fairness and increase of 1/Badput (Badput is decreased). An 
unforced-to-forced ratio 1-1 gives an equilibrium point, where 
we have a fair trade-off between Fairness and Badput. 
However, this equilibrium point is not stable as it shifts left 
for TCP Vegas flows. As we move to extreme high and low 
values of unforced-to-forced ratio the results of the 
simulations seem close to each other, and this is due to the 
fact that either the algorithm was not fast enough to reach the 
expected equilibrium point, or that after some point, such 
small divergences from the equilibrium point may make no 
difference to the network behavior. 

We should point out that Fig. 8,9 above capture an average 
case. In some cases there is no trade-off, since the increase of 
fairness due to RED dropping mechanism is accompanied 
with decrease of Badput. In these cases setting this ratio equal 
to 1 will result in a worse solution than RED, but in a better 
solution than Droptail. 

VII. MEASURING THE EFFECT OF UNFORCED DROPPING 
During the second part of the experiments we compare 

side-by-side Droptail, RED and EQU-RED. We increase the 
number of flows from 2 to 200 and we measure Retransmitted 
Packets and Fairness. We omit Goodput, since the differences 
among the various AQM mechanisms are minor. The results 
we get are indicative of the compromise EQU-RED does to 
achieve good metrics. EQU-RED tends to follow the high-
fairness behavior of RED, whereas it has a significant gain 
over network overhead. This is more apparent with TCP 
Vegas, where we observe extensive unfairness. EQU-RED 
manages to achieve 20% less retransmitted packets than RED, 
with only 2% decrease of fairness. 

We should note that for specific number of flows, EQU-
RED achieves better results than Droptail in means of 
RetPacks, showing the dynamic nature of the protocol. Yet, 
EQU-RED has a stable behavior, contrary to RED, thanks to 
the adjusting probability mechanism that allows it to follow 
network dynamics. 
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Fig. 10. Retransmitted packets – Newreno 

 

Fairness

0
0.2
0.4
0.6
0.8

1
1.2

2 20 40 60 80 100 120 140 160 180 200

flows

Fa
irn

es
s Droptail

RED

EQU-RED

 
Fig. 11. Fairness – Newreno 
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Fig. 12. Retransmitted packets – Vegas 
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Fig. 13. Cross-traffic topology – Vegas 

 
Modifying the target unforced-to-forced ratio alters EQU-

RED behavior the way we demonstrated in Section 6 
Depending on the application or the type of network, we may 
want to favor either fairness or performance, e.g. in cases of 
networks of battery-supplied devices performance is more 
important than fairness. We compare three variations of EQU-
RED with 1-2, 1-1, and 2-1 unforced-to-forced ratio and we 
show that by adjusting the ratio we can balance the Badput-
Fairness to the desired level. We only present results for 
Newreno (Fig. 14,15). Same things apply for TCP Vegas. 
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Fig. 14. Cross-traffic topology – Newreno 
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Fig. 15. Cross-traffic topology – Newreno 

 
In order to prove our initial hypothesis, that is that most 

AQM mechanisms favor either fairness or performance, we 
made additional simulations with 200 flows and BLUE, PI 
and REM gateways. We illustrate the results in Fig. 16,17. We 
see that each technique tends to follow a specific Badput-
Fairness trade-off pattern. Droptail, BLUE and PI provide less 
retransmissions with small fairness, while RED, REM and 
EQU-RED high fairness with more retransmissions. 
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Fig. 16. Cross-traffic topology – Vegas 
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Fig. 17. Cross-traffic topology – Vegas 

VIII. CONCLUSION AND FUTURE WORK 
We have examined the distinctive impact of unforced and 

forced drops on various performance metrics. The next step 
was to propose a protocol that exploited forced and unforced 
dropping in order to achieve the trade-off among these 
metrics. However, at present, we omitted to evaluate protocols 
that have a different reaction to transient drops, such as TCP 
Westwood. Multiple backbone topologies are also a matter of 
concern as they favor unfairness and represent more real-life 
applications. Further extension should also concern the 
granularity issue and include high-speed networks. 
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