
A New Service Differentiation Scheme: Size Based Treatment

Stylianos Dimitriou, Vassilis Tsaoussidis
Dept. of Electrical and Computer Engineering, Democritus University, Greece

{sdimitr, vtsaousi}@ee.duth.gr

Abstract

1
The increase of real–time applications as well as

the vast usage of portable wireless devices has led to a
corresponding increase of real–time traffic with strict
bandwidth and delay requirements. In order to satisfy
the requirements of various applications we typically
use Service Differentiation. However, as new real–time
applications are created, their portion of the total
traffic increases, thus making more and more difficult
to satisfy completely their requirements. In this paper
we propose a new scheme, which is based on the axiom
that ‘different types of applications typically utilize
different packet sizes’. With Size Based Treatment
(SBT) different packet sizes are dropped with different
probability by the queue. Small sized packets can
benefit and transmit on higher rates, increasing the
total system fairness.

Keywords – Active Queue Management, Dropping

Algorithms, Fairness, Service Differentiation

1. Introduction

In the early years of the Internet, data transmission
involved either bulk data transfer (FTP) or small data
transfer with minor time constraints (HTTP, SMTP,
Telnet). Today, with the introduction of streaming
technologies, we have applications that require timely
data delivery and low loss ratio. The demand for real–
time data has increased not only because of these
emerging technologies, by also because there are a lot
of portable wireless devices that connect to the Internet
and support multimedia content, such as new
generation mobile phones and PDAs. Applications like
VoIP and instant messaging demand fast and lossless
data delivery. On the other side, bulk data transfer is
the biggest part of Internet traffic, not only due to FTP,
but also due to new protocols such as BitTorrent [1]
that facilitate big data transfer among peer stations.
The need for Service Differentiation is more emerging

978-1-4244-2036-0/08/$25.00 ©2008 IEEE

today than the past years. The DiffServ [2] architecture
defined a general framework for service differentiation,
which included satisfying applications needs for
throughput, delay, jitter and packet loss. Applications
with different characteristics have different
requirements and their packets should be treated
differently. In DiffServ, packets are marked to receive
different – per hop – treatment, thus we need to mark
each packet with the applications requirements.
However, we know that most real–time applications
and protocols use small packet sizes (ATM uses 53
byte packets and VoIP 60–170 byte packets).
Moreover, protocols that deal with messaging and
signaling, such as ICMP, use small packet sizes.
Furthermore the majority of control packets (SYN,
FIN, ACK) for TCP and other protocols are also small
packets and vary from 20 to 40 bytes. Their timely
delivery is critical and multiple losses result
occasionally in severe quality degradation. Due to their
small size, they do not contribute significantly, in
general, to network contention and they usually have
constant sending rates. Applications that use FTP and
BitTorrent use packets whose size is bigger than 1KB.
Their payload to overhead ratio is high and we can
tolerate small losses and out–of–order delivery, since
they are not delay–sensitive. From now on, we will
refer to flows that generate small packet sizes as ‘small
flows’ and to flows that generate big packet sizes as
‘big flows’. This discrimination has nothing to do with
the duration of the connections or the total amount of
data transmitted, only with the size of packets
generated by the flow.

In this paper we propose a technique to differentiate
service based on packet size. However, setting a single
or multiple static thresholds and treating differently the
packets that fall among these thresholds would result in
undesirable behavior. The binary classification among
‘big’ and ‘small’ packets should be relative to the size
of packets that already have been served by the router.
That means that a 500 byte packet is considered small
from a router that recently served 1KB packets and big
from a router that recently served 100 byte packets.
Moreover, our ability to satisfy the bandwidth needs of

different packets varies as the proportion of small and
big packets in a buffer changes. A buffer almost full of
big packets should be able to accommodate and serve a
small packet; however, as more small packets arrive,
less small packets should be favored at the expense of
the bigger packets. Another point to consider is that in
real life, differentiation is not binary; we cannot
consider only small and big packets. Both 100 and 800
byte packets are smaller than a 1000 byte packet, yet
we should not favor equally these two packets over the
bigger one. Last, it is important to create an algorithm
that would not affect end–nodes and prevent
misbehaving flows from claiming more bandwidth
than their fair share.

A packet dropping method appears appropriate to
implement a size based algorithm. We deploy a new
paradigm by modifying RED’s dropping algorithm in a
manner that favors small packets over bigger. Size
Based Treatment will cause drops less frequently for
packets that are smaller by the average size of the
packets served by the queue. The dropping probability
will be higher for packets that are close to the average,
but smaller than packets that are much bigger than the
average. In our experiments we evaluate SBT’s and
demonstrate its ability to significantly increase fairness
among different packet sizes by prioritizing small
packets. We show that smaller packets have more
opportunities to survive in high contention
environments than before, causing minor impact on the
bigger packets.

Section 2 presents the work that has been done over
service differentiation schemes. In section 3 we
describe the desirable behavior of a service
differentiation scheme and present our proposal. In
section 4 we evaluate experimentally SBT and in
section 5 we conclude and set the framework for future
work.

2. Related Work

Service differentiation has been developed on the
basis of resource reallocation in order to satisfy the
requirements of applications with different
characteristics. Bandwidth and buffer space are
distributed based on each applications specific needs.
The need for service differentiation has arised from the
increasing demand for real–time applications, like
multimedia streaming and IP telephony. These
applications have strict delay, jitter and loss constraints
which can be satisfied usually by prioritizing real–time
data over bulk data transfers.

Although the DiffServ architecture proposes
marking a packet with the service it should receive,
many proposals have been made in the basis of

modifying dropping and scheduling mechanisms of the
router in order to support service differentiation
without affecting the end–nodes. In [7], Floyd and Fall
introduced mechanisms based on the identification of
high bandwidth flows from the drop–history of RED.
In [4] the authors propose an explicit allocation of
bandwidth to various flows based on their respective
needs and determine this allocation by modifying
accordingly the dropping probability. Weighted RED
with Thresholds (WDT) [3] calculates a separate
average length for the higher–priority packets,
preventing starvation for the lower–priority traffic.
Flow RED (FRED) [8] uses per–active–flow
accounting to impose on each flow a loss rate that
depends on the flow’s buffer use. Unfortunately,
extended memory and processor power is required for
a big number of flows. On the other hand RED–PD
(Preferential Dropping) [9] maintains a state only for
the high–bandwidth flows and drops their packets more
frequently than packets from low–bandwidth flows.

Fair Queuing [5] maintains equal queues for each
flow and in Weighted Fair Queuing the queues can
have different length. Core–Stateless Fair Queuing [13]
uses two types of routers; edge and core. Edge routers
compute per–flow rate estimates and label the packets
with these estimates, whereas core routers drop the
packets probabilistically based on these labels. The
CHOKe mechanism [11] tries to identify flows that
occupy highly the queue by matching every incoming
packet against a random packet in the queue and either
drop both, if they belong to the same flow, or accept
them with a certain probability. Stochastic Fair BLUE
[6] and ERUF [12] aim to identify and rate–limit non–
responsive flows. Last, NCQ [10] distinguishes data
into congestive and non–congestive queuing (minimal–
size packets) and favours non–congestive packets over
congestive during scheduling. We depart from the
same idea, however we emphasize on the dropping
strategy of the router.

3. Size Based Treatment

Small packets require small transmission times,
occupy less buffer space and may receive better service
against bigger packets. In cases of maximum queue
utilization this advantage becomes more significant
since it is more probable that a bigger packet overflows
the queue.

In Figure 1, we can see that, in general, small
packets are favored by DropTail’s dropping, as they
participate less in buffer overflows.

0

20000

40000

60000

80000

100000

120000

10 20 30 40 50 60 70 80 90 100

big flows=# small flows

pa
ck

et
s

re
ce

iv
ed

140B packets
1040B packets

Figure 1. 140B vs 1040B packets in a DropTail
queue

However, RED’s proactive dropping minimizes
buffer overflows and the aforementioned advantage
becomes less significant. In RED all packets are treated
the same; they are dropped with the same probability
regardless of their size. Even though the number of
packets sent may be bigger for the small flows, the
actual Throughput will be less. Eventually, the smaller
flows will starve for resources.

Before presenting our proposal, we should outline
the desirable behavior for SBT.

We highlight the following scenarios;
1. The queue is occupied only by big packets; a

much smaller packet arrives. In this case we want to be
sure that the small packet has maximum priority over
big packets and would not be dropped. As the number
of small packets increases, we should increase the
dropping probability of smaller packets, since they
now consist a significant proportion of the router’s
traffic.

2. The queue is occupied only by small packets; a
big packet arrives. In this case, since traffic consists
mostly from small packets, we want the big packet to
have similar treatment as the rest. If more big packets
arrive, the queue should gradually decrease small
packets dropping probability and serve them better
over big packets.

3. The queue is occupied by big packets; a medium
packet arrives. The packet in this case would have
better treatment than the rest, nevertheless worse
compared to the service a much smaller packet would
receive from the router.

Furthermore, we would like to make sure that we

avoid misbehaving flows;
1. The avg_size is not known a priori. Fragmenting

the packets to smaller segments may result in increased
overhead. A 1000 byte packet has 40 bytes (4%)
overhead, whereas a fragmented 1000 byte packet into
100 byte packets will have 400 bytes (40%) overhead.
In this way, any benefits on Throughput from

fragmenting would be canceled by the increased
overhead.

2. SBT is based on the fact that packets may have
any size. As more flows start to misbehave, the
avg_size will lower and the prioritizing scheme will
become obsolete. The same increased overhead result
will affect all flows. A flow that will not misbehave
will achieve the same service as misbehaving flows
with less overhead.

Figure 2. SBT’s dropping probability

Based on these remarks we form SBT’s algorithm.
We consider an avg_size, which is a moving average
of the incoming packet sizes. Packets whose size is
bigger than avg_size will be treated as usual. Packets
which are smaller than avg_size will be dropped with
smaller probability, depending on their difference from
avg_size. P_red indicates the dropping probability
calculated by the original RED algorithm, and p_drop
indicates the dropping probability of SBT. We have,

pkt_size

p_drop = p red
avg_size

_ , if pkt_size < avg_size

p_drop = p red_ , if ≥pkt_size avg_size and

()⋅ ⋅avg_size = α pkt_size + 1 - α avg_size , where α
takes small values usually between 0.1 and 0.2.

As we can deduce from Figure 2 and from the

formula above, the dropping probability for a small
packet will be determined not only by its size, but also
by the difference of its size from avg_size. A buffer
occupied with equal number of small packets (140
bytes) and big packets (1040 bytes) will serve a 540
byte packet with almost no special priority, even
though there are bigger packets in the buffer.

4. Simulations

We demonstrate SBT's ability to achieve better
fairness among packets of different sizes, and

avg_size pkt_size

p_red

p_drop

consequently services. We consider a simple dumbbell
topology with varying proportions of small and big
packets (Figure 3).

Figure 3. The Dumbbell Topology used

For the first set of simulations we use 140 and 1040

byte packets and for the second set 540 and 1040 byte
packets. We first consider 10 big flows and we
increase the number of small flows, then we consider
10 small flows and we increase the number of big
flows and last we consider equal numbers of small and
big flows. Both small and big flows use TCP Newreno.
The simulations where done in ns–2.

4.1. Small flows: 140B packets

In this first case we consider 140 byte small packets
and 1040 byte big packets. We observe a significant
increase in fairness for each of the three scenarios,
especially for the first scenario, where ‘small’ flows
are more than ‘big’ flows and can achieve fair
bandwidth share. In the second scenario, the fairness
increase is smaller, yet as we can see from Fig. 7, even
when we have 100 big flows and 10 small flows, small
flows will not starve. The third scenario is the most
interesting, because we see that with SBT, small flows
can increase dramatically their throughput as more
small flows participate in contention, whereas with
RED, they were let to starve.

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 100

of small flows

fa
irn

es
s

RED
SBT

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

0 10 20 30 40 50 60 70 80 90 10
0

of small flows

pa
ck

et
s small-RED

big-RED
small-SBT
big-SBT

Figures 4,5. 10 big flows

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 100

of big flows
fa

irn
es

s

RED
SBT

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

10 20 30 40 50 60 70 80 90 100

of big flows

pa
ck

et
s small-RED

big-RED
small-SBT
big-SBT

Figures 6,7. 10 small flows

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90 100

of small and big flows

fa
irn

es
s

RED
SBT

N
rcvrs

100b, 8ms

10Mb
1ms

N
sndrs

10Mb
1ms

0

10000

20000

30000

40000

50000

60000

70000

80000

10 20 30 40 50 60 70 80 90 100

of small and big flows

pa
ck

et
s small-RED

big-RED
small-SBT
big-SBT

Figures 8,9. Equal number of small flows and
big flows

4.2. Small flows: 540B packets

The results we get from the second case are not as
significant as before, indicating that SBT prioritizes
packets depending on how smaller the packets are from
the average size, not only by they fact that they are
smaller. However there is an interesting point; Figure
12 shows that fairness is decreased. This is caused by
the increased priority small flows have over bigger, to
the point that the router becomes “unfair” over big
flows. At the first scenario we observe that small
packets have no special treatment over big. Many small
packets cause a small avg_size, which in turn gives
them almost the same dropping probability as big
packets, thus the difference on performance is minor,
yet capable of an almost 15% increase on fairness.

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 100

of small flows

fa
irn

es
s

RED
SBT

0

5000

10000

15000

20000

25000

0 10 20 30 40 50 60 70 80 90 100

of small flows

pa
ck

et
s small-RED

big-RED
small-SBT
big-SBT

Figures 10,11. 10 big flows

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 100

of big flows

fa
irn

es
s

RED
SBT

0

2000

4000

6000

8000

10000

12000

14000

10 20 30 40 50 60 70 80 90 100

of big flows
pa

ck
et

s small-RED
big-RED
small-SBT
big-SBT

Figures 12,13. 10 small flows

0

0.2

0.4

0.6

0.8

1

1.2

10 20 30 40 50 60 70 80 90 100

of small and big flows

fa
irn

es
s

RED
SBT

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

10 20 30 40 50 60 70 80 90 100

of small and big flows

pa
ck

et
s small-RED

big-RED
small-SBT
big-SBT

Figures 14,15. Equal number of small and big
flows

5. Conclusion and future work

We have proposed a new Service Differentiation
technique that corresponds service to packet size. The
first results are encouraging since we could
significantly increase the system fairness and prioritize
small over big packets with minor cost for the latter.
Unlike other similar proposals, SBT is easily
deployable, since it doesn’t require end–user
modifications, and uses only one state variable for each
router. In the future we would extend this work to more
complex topologies which would involve multiple
routers in a row. In would be interesting to see if big
TCP flows and small UDP (constant rate) flows would
result in link underutilization. Additionally, we could
examine if there are other characteristics for a packet,
apart from size, that are easily extracted without much
computational cost, like the ACK flag. These would
help us classify more accurately the incomings packet
and serve them more fairly than now. Finally, an
analytical result for evaluating the performance of SBT
is also under development.

6. References

[1] BitTorrent, http://www.bittorent.com

[2] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss, “RFC2475 – An Architecture for Differentiated
Services”, December 1998

[3] U. Bodin, O. Schelen, and S. Pink, “Load–tolerant
Differentiation with Active Queue Management”, CCR, July,
2000

[4] D.D. Clark and W. Fang, “Explicit Allocation of Best–
Effort Packet Delivery Service”, IEEE/ACM Transactions on
Networking, August 1998

[5] A. Demers, S. Keshav, and S. Shenker, “Analysis and
Simulation of a Fair Queueing Algorithm”, Proceedings of
SIGCOMM 1989, September 1989

[6] W.C. Feng, D.D. Kandlur, D. Saha, and K.G. Shin,
“Stochastic Fair Blue: A Queue Management for Enforcing
Fairness”, INFOCOM 2001, April 2001

[7] S. Floyd and K. Fall, “Promoting the use of end–to–end
congestion control in the Internet”, IEEE/ACM Transactions
on Networking, May 1999

[8] D. Lin, and R. Morris, “Dynamics of Random Early
Detection”, SIGCOMM 1997, September 1997

[9] R. Mahajan, and S. Floyd, “Controlling High Bandwidth
Flows at the Congested Router”, ICNP 2001, November
2001

[10] L. Mamatas, and V. Tsaoussidis, “A new approach to
Service Differentiation: Non–Congestive Queueing”,
CONWIN 2005, July 2005

[11] R. Pan, B. Prabhakar, and K. Psounis, “CHOKe: a
stateless AQM scheme for approximating fair bandwidth
allocation”, INFOCOM 2000, March 2000

[12] A. Rangarajan, and A. Acharya, “ERUF: Early
Regulation of Unresponsive Best–Effort Traffic”, ICNP
1999, November 1999

[13] I. Stoica, S. Shenker, and H. Zhang, “Core–Stateless
Fair Queueing: A Scalable Architecture to Approximate Fair
Bandwidth Allocations in High Speed Networks”,
IEEE/ACM Transactions on Networking, February 2003

