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Abstract 

1 
The increase of real–time applications as well as 

the vast usage of portable wireless devices has led to a 
corresponding increase of real–time traffic with strict 
bandwidth and delay requirements. In order to satisfy 
the requirements of various applications we typically 
use Service Differentiation. However, as new real–time 
applications are created, their portion of the total 
traffic increases, thus making more and more difficult 
to satisfy completely their requirements. In this paper 
we propose a new scheme, which is based on the axiom 
that ‘different types of applications typically utilize 
different packet sizes’. With Size Based Treatment 
(SBT) different packet sizes are dropped with different 
probability by the queue. Small sized packets can 
benefit and transmit on higher rates, increasing the 
total system fairness. 
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1. Introduction 
 

In the early years of the Internet, data transmission 
involved either bulk data transfer (FTP) or small data 
transfer with minor time constraints (HTTP, SMTP, 
Telnet). Today, with the introduction of streaming 
technologies, we have applications that require timely 
data delivery and low loss ratio. The demand for real–
time data has increased not only because of these 
emerging technologies, by also because there are a lot 
of portable wireless devices that connect to the Internet 
and support multimedia content, such as new 
generation mobile phones and PDAs. Applications like 
VoIP and instant messaging demand fast and lossless 
data delivery. On the other side, bulk data transfer is 
the biggest part of Internet traffic, not only due to FTP, 
but also due to new protocols such as BitTorrent [1] 
that facilitate big data transfer among peer stations. 
The need for Service Differentiation is more emerging 
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today than the past years. The DiffServ [2] architecture 
defined a general framework for service differentiation, 
which included satisfying applications needs for 
throughput, delay, jitter and packet loss. Applications 
with different characteristics have different 
requirements and their packets should be treated 
differently. In DiffServ, packets are marked to receive 
different – per hop – treatment, thus we need to mark 
each packet with the applications requirements. 
However, we know that most real–time applications 
and protocols use small packet sizes (ATM uses 53 
byte packets and VoIP 60–170 byte packets). 
Moreover, protocols that deal with messaging and 
signaling, such as ICMP, use small packet sizes. 
Furthermore the majority of control packets (SYN, 
FIN, ACK) for TCP and other protocols are also small 
packets and vary from 20 to 40 bytes. Their timely 
delivery is critical and multiple losses result 
occasionally in severe quality degradation. Due to their 
small size, they do not contribute significantly, in 
general, to network contention and they usually have 
constant sending rates. Applications that use FTP and 
BitTorrent use packets whose size is bigger than 1KB. 
Their payload to overhead ratio is high and we can 
tolerate small losses and out–of–order delivery, since 
they are not delay–sensitive. From now on, we will 
refer to flows that generate small packet sizes as ‘small 
flows’ and to flows that generate big packet sizes as 
‘big flows’. This discrimination has nothing to do with 
the duration of the connections or the total amount of 
data transmitted, only with the size of packets 
generated by the flow. 

In this paper we propose a technique to differentiate 
service based on packet size. However, setting a single 
or multiple static thresholds and treating differently the 
packets that fall among these thresholds would result in 
undesirable behavior. The binary classification among 
‘big’ and ‘small’ packets should be relative to the size 
of packets that already have been served by the router. 
That means that a 500 byte packet is considered small 
from a router that recently served 1KB packets and big 
from a router that recently served 100 byte packets. 
Moreover, our ability to satisfy the bandwidth needs of 



different packets varies as the proportion of small and 
big packets in a buffer changes. A buffer almost full of 
big packets should be able to accommodate and serve a 
small packet; however, as more small packets arrive, 
less small packets should be favored at the expense of 
the bigger packets. Another point to consider is that in 
real life, differentiation is not binary; we cannot 
consider only small and big packets. Both 100 and 800 
byte packets are smaller than a 1000 byte packet, yet 
we should not favor equally these two packets over the 
bigger one. Last, it is important to create an algorithm 
that would not affect end–nodes and prevent 
misbehaving flows from claiming more bandwidth 
than their fair share. 

A packet dropping method appears appropriate to 
implement a size based algorithm. We deploy a new 
paradigm by modifying RED’s dropping algorithm in a 
manner that favors small packets over bigger. Size 
Based Treatment will cause drops less frequently for 
packets that are smaller by the average size of the 
packets served by the queue. The dropping probability 
will be higher for packets that are close to the average, 
but smaller than packets that are much bigger than the 
average. In our experiments we evaluate SBT’s and 
demonstrate its ability to significantly increase fairness 
among different packet sizes by prioritizing small 
packets. We show that smaller packets have more 
opportunities to survive in high contention 
environments than before, causing minor impact on the 
bigger packets. 

Section 2 presents the work that has been done over 
service differentiation schemes. In section 3 we 
describe the desirable behavior of a service 
differentiation scheme and present our proposal. In 
section 4 we evaluate experimentally SBT and in 
section 5 we conclude and set the framework for future 
work. 
 
2. Related Work 
 

Service differentiation has been developed on the 
basis of resource reallocation in order to satisfy the 
requirements of applications with different 
characteristics. Bandwidth and buffer space are 
distributed based on each applications specific needs. 
The need for service differentiation has arised from the 
increasing demand for real–time applications, like 
multimedia streaming and IP telephony. These 
applications have strict delay, jitter and loss constraints 
which can be satisfied usually by prioritizing real–time 
data over bulk data transfers. 

Although the DiffServ architecture proposes 
marking a packet with the service it should receive, 
many proposals have been made in the basis of 

modifying dropping and scheduling mechanisms of the 
router in order to support service differentiation 
without affecting the end–nodes. In [7], Floyd and Fall 
introduced mechanisms based on the identification of 
high bandwidth flows from the drop–history of RED. 
In [4] the authors propose an explicit allocation of 
bandwidth to various flows based on their respective 
needs and determine this allocation by modifying 
accordingly the dropping probability. Weighted RED 
with Thresholds (WDT) [3] calculates a separate 
average length for the higher–priority packets, 
preventing starvation for the lower–priority traffic. 
Flow RED (FRED) [8] uses per–active–flow 
accounting to impose on each flow a loss rate that 
depends on the flow’s buffer use. Unfortunately, 
extended memory and processor power is required for 
a big number of flows. On the other hand RED–PD 
(Preferential Dropping) [9] maintains a state only for 
the high–bandwidth flows and drops their packets more 
frequently than packets from low–bandwidth flows. 

Fair Queuing [5] maintains equal queues for each 
flow and in Weighted Fair Queuing the queues can 
have different length. Core–Stateless Fair Queuing [13] 
uses two types of routers; edge and core. Edge routers 
compute per–flow rate estimates and label the packets 
with these estimates, whereas core routers drop the 
packets probabilistically based on these labels. The 
CHOKe mechanism [11] tries to identify flows that 
occupy highly the queue by matching every incoming 
packet against a random packet in the queue and either 
drop both, if they belong to the same flow, or accept 
them with a certain probability. Stochastic Fair BLUE 
[6] and ERUF [12] aim to identify and rate–limit non–
responsive flows. Last, NCQ [10] distinguishes data 
into congestive and non–congestive queuing (minimal–
size packets) and favours non–congestive packets over 
congestive during scheduling. We depart from the 
same idea, however we emphasize on the dropping 
strategy of the router. 
 
 
 
3. Size Based Treatment 
 

Small packets require small transmission times, 
occupy less buffer space and may receive better service 
against bigger packets. In cases of maximum queue 
utilization this advantage becomes more significant 
since it is more probable that a bigger packet overflows 
the queue. 

In Figure 1, we can see that, in general, small 
packets are favored by DropTail’s dropping, as they 
participate less in buffer overflows. 
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Figure 1. 140B vs 1040B packets in a DropTail 
queue 
 

However, RED’s proactive dropping minimizes 
buffer overflows and the aforementioned advantage 
becomes less significant. In RED all packets are treated 
the same; they are dropped with the same probability 
regardless of their size. Even though the number of 
packets sent may be bigger for the small flows, the 
actual Throughput will be less. Eventually, the smaller 
flows will starve for resources. 

Before presenting our proposal, we should outline 
the desirable behavior for SBT. 

We highlight the following scenarios; 
1. The queue is occupied only by big packets; a 

much smaller packet arrives. In this case we want to be 
sure that the small packet has maximum priority over 
big packets and would not be dropped. As the number 
of small packets increases, we should increase the 
dropping probability of smaller packets, since they 
now consist a significant proportion of the router’s 
traffic. 

2. The queue is occupied only by small packets; a 
big packet arrives. In this case, since traffic consists 
mostly from small packets, we want the big packet to 
have similar treatment as the rest. If more big packets 
arrive, the queue should gradually decrease small 
packets dropping probability and serve them better 
over big packets. 

3. The queue is occupied by big packets; a medium 
packet arrives. The packet in this case would have 
better treatment than the rest, nevertheless worse 
compared to the service a much smaller packet would 
receive from the router. 

 
Furthermore, we would like to make sure that we 

avoid misbehaving flows; 
1. The avg_size is not known a priori. Fragmenting 

the packets to smaller segments may result in increased 
overhead. A 1000 byte packet has 40 bytes (4%) 
overhead, whereas a fragmented 1000 byte packet into 
100 byte packets will have 400 bytes (40%) overhead. 
In this way, any benefits on Throughput from 

fragmenting would be canceled by the increased 
overhead. 

2. SBT is based on the fact that packets may have 
any size. As more flows start to misbehave, the 
avg_size will lower and the prioritizing scheme will 
become obsolete. The same increased overhead result 
will affect all flows. A flow that will not misbehave 
will achieve the same service as misbehaving flows 
with less overhead. 

 

 
Figure 2. SBT’s dropping probability 
 

Based on these remarks we form SBT’s algorithm. 
We consider an avg_size, which is a moving average 
of the incoming packet sizes. Packets whose size is 
bigger than avg_size will be treated as usual. Packets 
which are smaller than avg_size will be dropped with 
smaller probability, depending on their difference from 
avg_size. P_red indicates the dropping probability 
calculated by the original RED algorithm, and p_drop 
indicates the dropping probability of SBT. We have, 

 
pkt_size

p_drop = p red
avg_size

_ , if pkt_size < avg_size  

p_drop = p red_ , if ≥pkt_size avg_size  and 

( )⋅ ⋅avg_size = α pkt_size + 1 - α avg_size , where α 
takes small values usually between 0.1 and 0.2. 

 
As we can deduce from Figure 2 and from the 

formula above, the dropping probability for a small 
packet will be determined not only by its size, but also 
by the difference of its size from avg_size. A buffer 
occupied with equal number of small packets (140 
bytes) and big packets (1040 bytes) will serve a 540 
byte packet with almost no special priority, even 
though there are bigger packets in the buffer. 

 
4. Simulations 
 

We demonstrate SBT's ability to achieve better 
fairness among packets of different sizes, and 

avg_size pkt_size 

p_red 

p_drop 



consequently services. We consider a simple dumbbell 
topology with varying proportions of small and big 
packets (Figure 3). 

 

 
Figure 3. The Dumbbell Topology used 

 
For the first set of simulations we use 140 and 1040 

byte packets and for the second set 540 and 1040 byte 
packets. We first consider 10 big flows and we 
increase the number of small flows, then we consider 
10 small flows and we increase the number of big 
flows and last we consider equal numbers of small and 
big flows. Both small and big flows use TCP Newreno. 
The simulations where done in ns–2. 
 
4.1. Small flows: 140B packets 
 

In this first case we consider 140 byte small packets 
and 1040 byte big packets. We observe a significant 
increase in fairness for each of the three scenarios, 
especially for the first scenario, where ‘small’ flows 
are more than ‘big’ flows and can achieve fair 
bandwidth share. In the second scenario, the fairness 
increase is smaller, yet as we can see from Fig. 7, even 
when we have 100 big flows and 10 small flows, small 
flows will not starve. The third scenario is the most 
interesting, because we see that with SBT, small flows 
can increase dramatically their throughput as more 
small flows participate in contention, whereas with 
RED, they were let to starve. 
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Figures 4,5. 10 big flows 
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Figures 6,7. 10 small flows 
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Figures 8,9. Equal number of small flows and 
big flows 
 
4.2. Small flows: 540B packets 
 

The results we get from the second case are not as 
significant as before, indicating that SBT prioritizes 
packets depending on how smaller the packets are from 
the average size, not only by they fact that they are 
smaller. However there is an interesting point; Figure 
12 shows that fairness is decreased. This is caused by 
the increased priority small flows have over bigger, to 
the point that the router becomes “unfair” over big 
flows. At the first scenario we observe that small 
packets have no special treatment over big. Many small 
packets cause a small avg_size, which in turn gives 
them almost the same dropping probability as big 
packets, thus the difference on performance is minor, 
yet capable of an almost 15% increase on fairness. 
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Figures 10,11. 10 big flows 

 

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 100

# of big flows

fa
irn

es
s

RED
SBT

 

0

2000

4000

6000

8000

10000

12000

14000

10 20 30 40 50 60 70 80 90 100

# of big flows
pa

ck
et

s small-RED
big-RED
small-SBT
big-SBT

 
Figures 12,13. 10 small flows 
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Figures 14,15. Equal number of small and big 
flows 
 
 
 



5. Conclusion and future work 
 

We have proposed a new Service Differentiation 
technique that corresponds service to packet size. The 
first results are encouraging since we could 
significantly increase the system fairness and prioritize 
small over big packets with minor cost for the latter. 
Unlike other similar proposals, SBT is easily 
deployable, since it doesn’t require end–user 
modifications, and uses only one state variable for each 
router. In the future we would extend this work to more 
complex topologies which would involve multiple 
routers in a row. In would be interesting to see if big 
TCP flows and small UDP (constant rate) flows would 
result in link underutilization. Additionally, we could 
examine if there are other characteristics for a packet, 
apart from size, that are easily extracted without much 
computational cost, like the ACK flag. These would 
help us classify more accurately the incomings packet 
and serve them more fairly than now. Finally, an 
analytical result for evaluating the performance of SBT 
is also under development. 
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