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Abstract 

 
Window-based congestion control is typically 

based on exhausting bandwidth capacity, which 
occasionally leads to transient congestion. Moreover, 
flow synchronization may deteriorate conditions 
further, leading to persistent or more severe 
congestion, which is experienced by flows through 
increasing queuing delays and packet retransmission. 
Head-to-Tail is a new approach to queue scheduling 
that aspires to alleviate this problem. When 
conditions at the router’s buffer indicate high risk for 
congestion, Head-to-Tail delays packets intentionally 
to fabricate the senders’ impression about the 
network load. This implicit signal to reduce the 
transmission rate allows for a responsive behavior 
prior to congestion. In this paper, we evaluated 
Head-to-Tail with TCP Vegas and compared it with 
RED and other TCP variants. The initial results 
indicate that congestion events and retransmissions 
can be significantly eliminated. 
 
1. Introduction 
 

The Transmission Control Protocol has powerful 
mechanisms for detecting congestion and for 
recovering after congestion happens. Recovery 
typically depends on the characteristics of congestion 
itself: severe congestion, which is detected by 
timeout triggers a radical transmission rate decrease, 
while transient congestion, which is detected by 3 
DACKs, triggers a milder reaction. Several TCP 
versions employ also congestion avoidance 
mechanisms. Such mechanisms monitor the network 
load by measuring the Round Trip Time (RTT) per 
window, the inter-packet gap, the buffer occupancy 
or a combination of the above. This mechanism of 
detecting network conditions allows for a new 
mechanism to implicitly report network over-
utilization. That is, increasing the queuing delay of 
selected packets intentionally will cause an increase 
of the measured load at the corresponding senders, 
which could trigger a reduction of the transmission 

rate. Clearly, the intentional delay increase seems to 
collaborate well with the transport protocols that do 
employ measurement-based congestion avoidance. 
Additionally, the mechanism has the potential to 
work well also with congestion control instead of 
avoidance, since the RTT measurements are central 
to all protocol variations. For example, in standard 
TCP Reno the RTT sets the timeout values, which in 
turn, determines the scheduling of retransmitted 
packets. Furthermore, the RTT determines the pace 
of received acks, which in turn determine the pace of 
packet transmission. 

The proposal to increase delay intentionally is 
associated with two main issues. 
 

1. How much and in what occasions shall we 
increase packet delay in the queue? The increase 
should be significant enough in order to be measured; 
and small enough to avoid a spurious timeout at the 
sender. If the granularity of measurement is not 
appropriate, the increase will go wasted. 

2. Delay increase cannot apply to all queued 
packets – an overflow in that case cannot be avoided. 
Since the mechanism will apply to selected packets 
only, a set of packets will be favored at the expense 
of others. What is the impact of such policy on 
fairness? 
 

Departing from the two aforementioned issues, we 
investigate the desired properties of a Rearrange 
Probability Function. In section 2 we provide the 
necessary background and discuss the related work. 
In section 3 we detail the Head-to-Tail algorithm and 
in section 4 we determine the experimental scenarios. 
In section 5 we evaluate the performance of various 
Rearrange Probability Functions using TCP Vegas as 
a representative measurement-based protocol. We 
extend our evaluation further in section 6, with more 
TCP versions and Active Queue Management 
schemes. In section 7 we conclude with some main 
remarks. 
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2. Background and Related Work 
 

There are two main policies at the router that 
impact flow performance: (i) the dropping policy and 
(ii) the scheduling policy. Scheduling typically 
manages priorities of packets. Dropping is focused on 
penalizing high-bandwidth-consuming flows. In [3] 
Floyd and Fall identify high-bandwidth flows by 
using RED’s [5] drop-history. The RED-PM 
(Preferential Dropping) algorithm [8] uses per-flow 
preferential dropping mechanisms. Per-flow 
preferential dropping with FIFO scheduling also use 
Core-Stateless Fair Queuing (CSFQ) [13] and Flow 
Random Early Detection (FRED) [7]. CSFQ marks 
packets with an estimate of their current sending rate. 
The router uses this information in conjunction with 
the flow’s fair share estimation in order to decide 
whether a packet needs to be dropped. FRED 
maintains a state only for the flows which have 
packets in the queue. More packets buffered equals to 
increased dropping probability. 

The CHOKe mechanism [12] matches every 
incoming packet against a random packet in the 
queue. If they belong to the same flow, both packets 
are dropped. Otherwise, the incoming packet is 
admitted with a certain probability. The Stochastic 
Fair Blue (SFB) [2] uses multiple levels of hashing in 
order to identify high-bandwidth flows and ERUF 
[11] uses source quench to have undeliverable 
packets dropped at the edge routers. On the other 
hand, SRED [10] caches the recent flows in order to 
determine the high-bandwidth flows. 

Although HtT cannot be classified as a clear 
dropping or scheduling scheme, it has a common 
property with the aforementioned mechanisms, which 
is to implicitly indicate congestion status. In this 
context, HtT can be viewed as a new mechanism for 
Active Queue Management. 

 
Prior to analyzing HtT, we highlight some major 

differences of various TCP variations for controlling 
congestion. We classify TCP into two major 
categories: (i) the AIMD-based standard versions 
such as Reno [6], New Reno [4] and SACK [9] and 
(ii) the measurement-based approaches such as Vegas 
[1], Real [15] and Westwood [14]. The first category 
mainly assumes that network is a black box. Each 
packet loss triggers homogeneous responses from all 
senders, which adjust their transmission windows 
multiplicatively at a fixed rate β. The increase rate is 
pre-determined by parameter α. Most measurement-
based protocols, instead, complement the AIMD-
based control with adjustments of the transmission 
window that correspond to detected network 
conditions. Such conditions are detected by 

measuring the RTT, the inter-packet gap, the packet 
loss rate, etc. 

It is important to highlight a main difference in the 
design of the two approaches. The first category is 
responsive to packet losses, while the second 
category is also responsive to other events as well, 
such as, for example, the detected network load. Of 
course, the first category is also somewhat responsive 
to RTT measurements, since those affect the timeout. 
However, a single RTT increase will not trigger in 
that case any transmission window reduction but it 
will cause a small rate reduction due to further delays 
of acks. 

 
3. Head-to-Tail description and 
justification 
 

Departing from the aforementioned observation, 
we design HtT to cause intentional delays and hence 
indicate implicitly to the corresponding senders the 
urgency to reduce their rate. The indication causes 
clearly different reactions at the senders, depending 
on their congestion avoidance and control 
mechanism; however, all types of mechanisms are 
more or less reactive to the additional delay. 

The proposed scheme can work well with standard 
scheduling schemes such as FIFO and also with 
standard dropping schemes, such as DropTail. After 
the arrival of a new packet, the router decides 
whether or not to change the existing order 
(rearrange) of some packets based on two criteria: (i) 
the current queue length and (ii) the selected 
Rearrange Probability Function (RPF). Note that the 
RPF determines the probability that corresponds to 
some particular length of the queue. 

When a new packet arrives, the router generates a 
pseudo-random number between 0 and 1. If it is 
smaller than the probability that corresponds to the 
queue’s length, the queue shifts backwards the 
position of selected packets. Those packets cannot be 
randomly chosen, but instead they have to be selected 
in order to maximize the delay impact and increase 
the probability of informing the sender. That said, 
packets are moved from Head to Tail. However, our 
policy is not biased: the time and probability of 
selection is associated with the queue length, the 
random number generation and the RPF. In this 
context, randomness is also associated with the 
packets selected and hence our design is not expected 
to degrade system fairness. Also note that the 
diversity of flows that are implicitly informed about 
the network conditions is increased in proportion to 
flow contention. 
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By and large, the importance of the Rearrange 
Probability Function becomes obvious. RPF depicts 
the probability for the rearrange to occur at each 
corresponding length of the queue. It may be a 
constant function, a pulse, a first grade polynomial, 
or it may be composed by more than one functions of 
any type (see Figure 1). 

 
Figure 1. Example of a Rearrange 

Probability Function 
 

On the x-axis we depict the length of the queue 
where 0% is an empty queue and 100% is a full 
queue. On the y-axis we depict the rearrange 
probability. The maximum probability is 1, meaning 
that each time the router reaches this length, it 
rearranges some packets. Every position in the queue 
has its own probability; however we avoid 
rearranging for packets at both empty and full 
queues. Empty queues need no supportive 
mechanisms while full queues may be handled better 
with drops. Hence, our approach intends to mainly 
regulate traffic during the normal operational phases 
of the queue – not the extreme ones. 
 
4. Determining RPF Shape 
 

Our initial target was to determine an appropriate 
RPF using TCP Vegas flows. We made five sets of 
simulations with five different types of RPF: constant 
functions, pulse functions, two first and two fourth 
grade polynomials convex with one peak and two 
fourth grade polynomials concave. We can see 
indicative forms of the functions in Figure 2. 
For the (3), (4) and (5) RPF we chose to have one 
peak. This was deemed appropriate but also 
convenient since otherwise, we had to search for 
twice more peaks and because we decided that 
maximum probability should correspond to a single 
point. Variables yv, xv, xv1, xv2 by definition take 
values from 0 to 1. During the simulations and in 
order to control the computational time, we used a 
0.1increase step for the above variables. Simulations 
were done with ns-2. We used a Dumbbell topology 

with two routers, N senders and N receivers, as we 
see in Figure 3. 

 
Figure 2. The 5 types of RPF that we 
examined during our simulations 
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Figure 3. The Dumbbell topology used 

 
Every simulation’s duration was 70 seconds. 

Every 10 seconds the number of flows changes 
taking values from 10 to 500, representing both the 
dynamics of contention increase and contention 
decrease. The first time we simulated the scenario 
without HtT and in the following phase we tried all 5 
RPFs with all the possible values for their variables 
(step 0.1) by setting the number of packets to 
rearrange pv=6. Note that this number itself can be a 
subject of research and optimization; however, 
presently, we have used a fixed number of packets. 

Since a comparative advantage of HtT is the 
reduction of packet drops, we mainly focused on 
reducing retransmissions even at the same levels of 
Goodput, Throughput and System Fairness. Hence, 
retransmission overhead was a major performance 
evaluation metric. 

We also considered very important to show that 
the proposed scheme does not harm existing AIMD-
based versions in favor of measurement-based flows. 

 
5. On the Choice of the RPF 
 

In order to examine thoroughly the form of the 
RPF we simulated the above scenario for every 
possible value of the variables, with step 0.1 (apart 
from the first, where we used smaller steps). This 
way, we performed a total of about 900 simulations: 
30 of them were for the constant RPF, 550 of them 
were for the pulse-shaped RPF and for each of the 
(3), (4) and (5) RPF we performed 110 simulations. 
The results of each RPF are depicted in increasing 
order. The y-axis depicts the number of the 
retransmitted packets. Without HtT, the number of 
RetPacks was 66320. This can be seen on the graphs 
with the transparent circle. The black circle in Figure 
10 is the point which we choose as the best RPF and 
possibly will be used for further implementation and 
evaluation of the algorithm. For the third and fourth 
RPF, we give diagrams depicting the areas where we 
have improvement of the number of Retransmitted 
Packets (RetPacks). Since we had three variables for 
the second RPF, we couldn’t display a similar 
diagram. Area diagrams for the first and last RPF 
weren’t necessary as we couldn’t achieve any 
amelioration. The blue (light gray) areas indicate the 

points where the total number of the retransmitted 
packets is reduced. 

 
5.1. Constant and Fourth Grade Concave 
RPFs 
 

As we can see in Figures 4 and 5, all the 
simulations produced worse results than the original 
algorithm. Even when we used 0.001 constant 
rearrange probability, packet losses were slightly 
greater. 
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Figure 4. Constant RPF 
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Figure 5. Fourth Grade concave RPF 
 

The reason for this behavior is that rearranging 
packets near the end of the queue, at least doubles 
their queuing delay. This raises the total delay of the 
packet, exceeding the factor 2·RTT (which equals 
usually to the RTO) in fast links, and causes the 
sender to consider the packet lost and retransmit it. 

We should notice that all the results for the Fourth 
Grade concave RPF were almost identical, around 
11000 packets. Because of the form of this RPF, 
altering the peak point among neighboring points will 
not alter the probabilities in different percentages of 
the queue length. This leads to the conclusion, that 
the value of probability isn’t very important when we 
examine the rearrange probabilities for each queue’s 
length. Great fluctuations of the results are observed 
when probability approaches 0 and departs from 0. 
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5.2. First Grade and Fourth Grade convex 
RPFs 
 

For those two RPFs, 36% and 73% of their peaks 
gave lower RetPacks than 66320 packets. What we 
can see in Figures 6 and 8 is that the results are being 
divided in two clusters, leading to the conclusion that 
some values of yv and xv can lead to an extraordinary 
number of congestion events and retransmissions. 
This calls for self-adaptive systems that make 
judgments, based on measurements, in case a specific 
Rearrange Probability Function mitigates the 
network’s load, or causes unnecessary delays. 
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Figure 6. First Grade RPF 
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Low performance of the First Grade RPF renders it 
practically useless. Instead, the Fourth Grade convex 
RPF had the highest performance among all RPFs 
evaluated. In Figure 9, we can see the areas where 
Fourth Grade convex RPF succeeds in producing 
better results, system-wise. First, it becomes clear, 
why someone should avoid rearranging packets near 
the head or near the tail of the queue. Second, the red 
(dark gray) and blue (light gray) areas are not mixed: 
the blue area rests in the middle of the graph and the 
red area occupies the top and the bottom of the graph. 
Picking a peak is easy, since any point with yv greater 
than 0.2 and smaller than 0.8 will work. This means 

that traffic regulation appears to be manageable with 
certain, well-known guidelines. 
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Figure 8. Fourth Grade convex RPF 
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Figure 9. Area Graph for Fourth Grade 

convex RPF 
 
5.3. Pulse RPF 
 

Due to the nature of Pulse RPF, which is 
associated with a wide range of values, we cannot 
easily display results and proper conclusions. 
However, pulses with xv2 equal to 1, generate 
congestion and packet losses; again, we exclude 
extreme cases of empty and full queue. 

By and large, 66% of the simulations of Pulse 
RPF were positive, rendering the function 
comparable to the Fourth Grade convex RPF and 
hence, a good alternative. Because of the fact that 
Pulse is the only function that can have zero 
probability near the end of the queue, we can choose 
this function for calibrating Head-to-Tail further. 
Specifically, the point where xv1=0.1, xv2=0.9 and 
yv=0.1 and RetPacks=50927, presents over 23% 
reduction of retransmitted packets. This point can be 
seen on Figure 10 with the black circle. Pulse RPF 
has an advantage over Fourth Grade convex RPF 
since it does not require complicated calculations for 
each probability. 
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Figure 10. Pulse RPF 
 
6. Examining different versions of TCP 
 

Using the same topology as previously, we 
simulated Tahoe, Reno, NewReno, Westwood and 
Real flows, using RED, Droptail with FIFO, and 
Droptail with HtT. The results of these simulations 
are depicted in Figure 11. 
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Figure 11. Different TCP versions simulations 
with RED, FIFO Droptail and HtT Droptail 

 
HtT does not exhibit, comparatively, a behavior 

that harms Reno-like flows, more than RED and 
Droptail-FIFO. Instead, it appears clearly as the 
algorithm of choice, since in most cases it reduces 
further the amount of retransmitted packets. Note that 
all other metrics (e.g. goodput, fairness) do not 
exhibit any statistically significant difference. We do 
not present those figures here due to space 
limitations. Also note that, by altering the RPF (or its 
parameters), we can adjust the flows behavior 
further. 
 
 
7. Conclusions and Future Work 
 

We have shown that there are alternative ways to 
regulate queue traffic, without marking or dropping 
packets in the queue. HtT is an algorithm towards 
proactive congestion management and allows for 
designing sophisticated protocols that detect the 

network load. The information passed by HtT is, by 
and large, similar for all flows. However, different 
types of protocols interpret it differently. Hence, the 
impact on different versions of protocols is also 
different. Clearly, the granularity of measurements is 
also important. In this context, enhanced protocols 
and sophistication could promote the proposed 
scheme further. 
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