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Abstract 

 
Many sophisticated mechanisms have been 

implemented at both the transport and the network 
layers in order to estimate network conditions and 
avoid overload of network links. We evaluate the 
congestion control and avoidance scheme from a 
cross-layer perspective. We conduct simulations to 
investigate issues of miscollaboration between the 
network and transport layers that have negative 
impact on application performance. We identify 
several such scenarios; we discuss the reasoning and 
the extent of miscollaboration, and the appropriate 
measures to resolve the problem. We conclude that the 
common practise for evaluating research proposals 
lacks the appropriate experimental diversity, 
granularity or perspective and hence new mechanisms 
may favor a particular set of targeted protocols but 
damage some others. As a result, a portion of Internet 
traffic flows is frequently favored at the cost of co-
existing traffic flows. 
 
1. Introduction 

Due to the layered architecture of computer 
networks and the corresponding separation of 
functionality, researchers have not investigated 
thoroughly the interrelation among mechanisms of 
different layers. For example, when a new algorithm is 
proposed, it is common to compare it against similar 
algorithms at the same level. Although a major design 
principle for the layered architecture was the autonomy 
of each layer, in practice, mechanisms of different 
layers do interact, implicitly. This situation calls for 
cross-layer evaluation schemes. 

We investigate the impact of collaboration among  
mechanisms at different layers. More precisely, we 
focus on the network and the transport layers, and 
investigate congestion management interaction of these 
two layers. Many mechanisms have been proposed at 
both layers in order to avoid or control congestion; 

however, specific research results have not yet been 
reported on the impact of mis-collaborative 
mechanisms of these two layers. 

Typically, for the evaluation of queue management 
algorithms, researchers select an appropriate transport 
protocol to exploit the router’s congestion notification 
and demonstrate its performance gains. However, there 
are other protocols in use that are not designed in a 
manner suitable to exploit the router’s particular 
congestion control signals. One cannot exclude the 
possibility that a new, sophisticated mechanism may 
deteriorate the performance of existing transport 
protocols, which cannot take advantage of the changes.  

Furthermore, protocols at the transport layer 
respond differently at the presence of a congestion 
signal, each following a more aggressive or 
conservative recovery strategy than others. However, 
router’s operating parameters are fixed and typically 
do not differentiate incoming traffic based on the 
responsiveness of the transport protocol. In such a 
situation, it may be that some protocols are favored 
more than others at the presence of a specific queuing 
algorithm. 

In this paper, we report initial results on the 
miscollaboration among the congestion control 
protocols and mechanisms. Through experiments, we 
discover cases where the mis-interaction among 
congestion control mechanisms results in system 
performance degradation. For example, we show that 
TCP Vegas cannot estimate well the available 
bandwidth when the link implements the Random 
Early Detection (RED) queue management algorithm. 
Furthermore, it might be that RED penalizes 
aggressive protocols more than it should and results in 
a situation where a conservative protocol outperforms 
an aggressive one in terms of goodput. 

The rest of the paper is organized as follows. In 
Sections 2 and 3, we discuss the background on 
congestion avoidance and control at the transport and 
the network layers and present related work. Next, in 
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Section 4, we present a series of experiments, which 
demonstrate the lack of collaboration or further the 
miscollaboration among mechanisms of the two layers. 
In Section 5, we discuss briefly important cross-layer 
evaluation issues. Finally, in Section 6 we conclude the 
paper. 
 
2. Background 
2.1. Network Layer 

In traditional algorithms for queue management, 
packets are dropped when the queue buffer becomes 
full. The Drop-Tail is a widely deployed dropping 
mechanism, which drops incoming packets when the 
queue memory resources are completely utilized. 
Although simplicity is a fundamental goal when 
designing a router algorithm, Active Queue 
Management (AQM) [2] was proposed presenting 
more complex or sophisticated algorithms in order to 
achieve better system performance.  

One of the most popular active queue management 
algorithms is Random Early Detection (RED) [20]. 
Rather than waiting for a congested queue to overflow, 
arriving packets are dropped with some drop 
probability whenever the average queue length exceeds 
a minimum threshold, while they are all dropped when 
it exceeds a maximum threshold. An extension of RED 
is the Adaptive RED [13], which improves RED’s 
performance by adjusting the maximum threshold 
value to follow the network dynamics.   

There exist many AQM algorithms, such as 
Stabilized RED [22], Random Exponential Marking 
[16], Blue [14],  Stochastic Fair Blue [15] and 
Weighted RED [19]. They all attempt to interact 
implicitly with the transport protocols at the end-hosts 
in order to control congestion avoid collapses. See the 
corresponding links, for more details. 
 
2.2. Transport Layer 

Protocols at the transport layer are usually 
responsible for end-to-end error recovery, ensuring 
complete and reliable data transfer. Each of them 
implements a different algorithm to adjust its sending 
rate according to channel conditions. 

 Authors of [3] survey congestion control 
approaches, highlighting different mechanisms that 
control and avoid congestion, depending on the 
awareness of network conditions. Protocols of the first 
category attempt to identify channel conditions, 
blindly. TCP Tahoe, TCP Reno, TCP New-Reno [1] 
and TCP Sack [24] are some protocols of this category. 
Senders receive feedback implicitly through packet 
drops, and adjust their congestion window based on 
the AIMD algorithm [10].  

In the second category, protocols aim to capture 
network conditions in a more accurate way based on 
measurements. For instance, TCP Vegas [4] relies on 
RTT measurements, while TCP-Westwood [7] on the 
rate of returning ACKs.  There are also receiver-
oriented protocols, such as TCP Real [5, 6] and TFRC 
[21], where receivers estimate the level of congestion 
and inform sender about it. 

In the third category, protocols receive information 
from routers about the network conditions in an 
explicit way. In VCP [17] routers estimate their output 
link utilization and notify the senders accordingly. 
While authors in [8], propose a mechanism by which 
routers can calculate the fair-share of the available 
bandwidth and inform the senders to adjust their 
sending window accordingly. 
 
3. Related Work 

The issue of network- and transport-layer 
miscollaboration has not been studied extensively in 
the past.  Some reports exist, however, where authors 
highlight such cases of miscollaboration. 

 Authors of [11], for example, investigate fairness 
of TCP in the presence of different scheduling 
algorithms. They show that the sending window size of 
TCP Vegas doesn’t get influenced by the drop 
probability of RED, rather than by its own mechanism, 
despite the fact that RED is proposed to achieve 
fairness among users of the same channel. 

Furthermore, in [12] authors investigate the 
performance of TCP Sack protocol in the presence of 
RED queuing algorithm in heterogeneous environment 
of wired and wireless links. On one hand, TCP Sack is 
a sophisticated protocol that attempts to recover more 
quickly from a wireless error; on the other hand, RED 
is an algorithm which attempts to penalize aggressive 
protocols. As a result, TCP Sack senders get often 
penalized by the routers' queue management scheme. 
In other words, the sophistication of the one algorithm 
is cancelled by the sophistication of the other. 

Finally, authors of [18] observed through 
experiments that when RED algorithm is deployed, it 
cannot guarantee fairness among TCP Reno and TCP 
Vegas flows that co-exist at the same link. More 
specifically, TCP Reno, due to its aggressive nature, 
outperforms TCP Vegas at the presence of RED. 
 
4. Simulation Results 
4.1. Evaluation Plan and Performance Metrics 

In order to evaluate how well mechanisms at the 
transport and the network layers cooperate with each 
other, we have selected various transport protocols in 
our simulations such as TCP Tahoe, TCP Reno and 
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TCP Vegas, and monitored their interaction with 
network mechanisms for queue management and 
network congestion avoidance such as Drop-Tail and 
Random Early Detection (RED). We present cases of 
miscollaboration between various congestion control 
mechanisms, in which cases, network/end-system 
performance deteriorates as far as throughput, goodput 
and fairness are concerned. 

We have conducted a number of experiments in 
various network conditions using the ns-2 network 
simulator [9]. The topology used is the dumbbell 
topology as shown in Fig. 1. A set of TCP senders 
(Source 1 through N) is connected with a set of TCP 
receivers (Sink 1 through N). The number of flows 
(N), the link’s bandwidth at the senders (bw_3), at the 
receivers (bw_1), and the backbone link’s capacity 
(bw_2) vary during the different simulated scenarios. 
The simulation time was typically set to 200 seconds. 

 

 
 

Figure 1. Simulation topology 
 

We used traditional metrics for evaluating protocol 
efficiency. For example: 

System Goodput and Throughput are used to 
measure the overall system efficiency in terms of 
bandwidth utilization and are given by the following 
formulas (where n is the number of flows): 

==
∑
1

n

i
Original Data

System Goodput
Transmission Time  

where Original Data is the number of bytes delivered 
from a sender to the corresponding receiver during 
their connection (Transmission Time), excluding the 
size of retransmitted packets of this flow and the 
overhead induced by packet headers. 

==
∑
1

n

i
Total Data Sent

System Throughput
Transmission Time

 

where Total Data Sent is equal to the sum of original 
data, retransmitted data and packets’ headers size (in 
Bytes). 
 

4.2. Miscollaboration between sophisticated 
mechanisms at the transport and the network 
layers 

Since the first implementations of transport and 
network protocols, several other mechanisms have 
been proposed and often implemented and deployed, in 
order to achieve better network/end-system 
performance. Given the fact that those mechanisms at 
both layers evolve in parallel and often in an 
independent way, they frequently end up being 
unaware of the presence of each other. Even worse, a 
sophisticated mechanism in the network can cancel an 
intelligent mechanism incorporated into a transport 
protocol or vice versa. To strengthen our claim, we 
show an example of how TCP Vegas, following a 
more or less sophisticated congestion control strategy, 
cannot cope that well with the increased functionality 
at the network introduced by RED (see Fig. 2, 3, 4 and 
5). 

TCP Vegas’s congestion control mechanism is 
proactive, that is, it attempts to sense incipient 
congestion by observing changes in the throughput 
rate. TCP Vegas compares the measured throughput to 
its notion of expected throughput and adjusts its 
window accordingly. On the other hand, RED is an 
active queue management algorithm that detects 
incipient congestion and discards packets before queue 
overflows.  

RED algorithm was designed to interact well with 
AIMD-based protocols, as these protocols infer 
congestion only after a packet has been lost. In 
particular, AIMD-based protocols react to such packet 
drops by reducing their congestion window. However, 
since TCP Vegas senders do not back off sharply at the 
presence of a packet drop and they also adjust their 
transmission rate much more smoothly, RED algorithm 
keeps dropping TCP Vegas packets in a high rate as 
those packets continue to take up much space in the 
RED queue buffers. 

Our experiments below, explore the interaction 
between TCP Vegas and RED. In our simulations, 
bw_1, bw_2 and bw_3 are set to 10Mbps (Fig. 1), 
delay_1 and delay_2 are set to 5ms while the value of 
delay_3 is equal to 15ms; finally the queue buffer size 
is set to 50 packets. The experimental results show that 
due to incompatibility among TCP Vegas's and RED's 
mechanisms, the system goodput is degraded 
compared to the corresponding goodput when Drop-
Tail is used (Fig. 3). We see in (Fig. 2) that throughput 
increase is justified only by packet retransmissions and 
does not correspond to extra data transmission. This 
situation is reflected by the significant deviation of the 
graphs, which depict the amount of packets that is 
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dropped and retransmitted (Fig. 4). Finally, Fig. 5 
shows how the queuing algorithms affects TCP Vegas 
packet drop rate as contention increases. 
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Figure 2. System throughput 
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Figure 3. System goodput 

0

20000

40000

60000

80000

100000

120000

40 45 50 55 60 65 70
Number of flows

N
um

be
r 

of
 p

ac
ke

ts

Drop-Tail
RED

 
Figure 4. Total number of retransmitted and 

dropped packets 
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Figure 5. Packet drop rate 

 
 

4.3. New mechanisms may not be interpreted 
by existing protocols 

Miscollaboration can occur when the functionality 
of a relatively new mechanism cannot be well 
interpreted by existing mechanisms that rely on a 
different design philosophy. To reinforce our point by 
being more specific, we evaluate the performance of a 
conservative transport protocol, such as TCP Tahoe, 
when a sophisticated active queue management 
algorithm (namely, RED) is present at the network. 
TCP Tahoe assumes a single packet drop as congestion 
indication and backs off sharply by shrinking its 
congestion window. By that time when TCP Tahoe 
was designed, avoiding congestion collapses were of 
high importance, and packet drops at the routers 
occurred when there was no more buffer space 
available at a queue. On the other hand, RED 
algorithm does not drop packets just because its buffer 
is out of space but rather it drops each incoming packet 
with a certain probability, which depends on the 
average queue size. Such network functionality cannot 
be interpreted by TCP Tahoe and results in poor 
performance even when network bandwidth is 
available. 

Next, we present a scenario of high contention 
where 100 TCP Tahoe flows pass through a 50Mbps 
bottleneck link (Fig. 1). The edge links’ bandwidth is 
set to 1Mbps and the propagation delay for all links in 
the topology equals 10ms. The simulation time is 200 
seconds. However, after the 20th second a number of 
flows abort data transmission and leave the channel, 
thus freeing up network bandwidth (100 initial flows 
are decreased to 10, 20, 30, 40 of 50 flows 
respectively, Fig. 6). TCP Tahoe performance is 
measured against two different queue management 
algorithms, namely Drop-Tail and RED. As shown in 
our experiments (Fig. 6), TCP Tahoe performance 
deteriorates in the presence of RED: packet drops 
result in abrupt reduction of the congestion window. 
Even when a number of TCP connections end, RED 
congestion avoidance mechanism insists on dropping 
packets based on the average queue size, thus 
preventing TCP Tahoe senders from exploiting the 
available network capacity.  
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  Figure 6. System goodput 

 
4.4. Less functionality in the network can favor 
greedy flows 

One other interesting aspect to discuss about is that 
incorporating no intelligence into the network can 
actually empower greedy flows to obtain larger share 
of network resources. On the contrary, putting more 
functionality into the network can restrain aggressive 
transport protocols from stealing bandwidth, and can 
safeguard fairness. However, there exist situations 
where aggressive protocols might significantly be 
punished by the network, thus permitting smoother 
transport protocols to achieve higher goodput. 

In support of our claim, we evaluate the coexistence 
of TCP Reno and TCP Tahoe, an aggressive and a 
conservative protocol respectively when considered 
together. In our experiments, an equal number of TCP 
Reno and TCP Tahoe connections compete for the 
same channel. The number of total connections varies 
from 20 to 80 among different simulation runs, each of 
which lasts for 200ms. Every link in the dumbbell 
topology has a bandwidth of 10Mbps and the 
propagation delay for the edge and the bottleneck links 
are 3ms and 15ms, respectively. Also, the buffer size 
for the bottleneck link is set to 50 packets. As 
presented in our results (Fig. 7), when Drop-Tail is 
used, TCP Reno flows achieve higher goodput by 
means of behaving more aggressively than TCP Tahoe 
connections. In the presence of RED though (Fig. 8), 
TCP Reno gets punished by the congestion avoidance 
mechanism of RED, thus permitting TCP Tahoe 
protocol to utilize better the network capacity. 
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Figure 7. System goodput (with Drop-Tail) 
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Figure 8. System goodput (with RED) 

 
5. Discussion 

In this paper we highlight our observation that the 
interaction of mechanisms, which lie in different 
layers, may have significant impact on various network 
performance metrics (such as network congestion and 
fairness) as well as on end-system performance. We 
demonstrate through experiments that congestion 
control algorithms of the transport and network layers 
implicitly interact with each other; furthermore, we 
present cases of miscollaboration among these layers.  

In [23] authors present an explicit cross-layer 
interaction scheme. They refer to the various possible 
types of explicit cross-layer signaling and present the 
difficulties of deploying such a communication 
between the end-hosts and the routers. We claim that 
the interaction of these layers may also involve implicit 
impact on some protocols and mechanisms. We 
explore cases where implicit interaction of mechanisms 
results in undesirable situations; indeed, implicit 
schemes may deteriorate the performance of protocols 
and mechanisms in both layers. 

It becomes increasingly important to seek for 
congestion control mechanisms that are compatible; 
otherwise, we will arrive at a point where specific 
mechanisms at one layer will only cooperate well with 
specific ones at the other. Inevitably, the interaction 
itself needs to become an integral part of the evaluation 
procedure, which needs to be further refined. 
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Furthermore, we argue that the impact of new 
mechanisms or protocols on existing ones needs to be 
quantified; the compatibility of interactive algorithms 
needs to be verified; and the sophistication needs to be 
justified in this context. Although we do not discuss it 
in this paper, new metrics should be introduced, in 
order to evaluate a mechanism in such perspective. 
 
6. Conclusions 

In this paper, we explore interactions between 
widely used congestion avoidance mechanisms of the 
transport and the network layers, and present cases of 
miscollaboration. Sophisticated mechanisms may 
cancel the functionality of each other. Existing 
protocols may not be able to interpret the function and 
collaborate with relatively newer mechanisms that are 
deployed in the Internet. Less functionality in the 
network may favor greedy flows, while certain 
congestion control mechanisms in the network layer 
might punish aggressive transport protocols and 
facilitate more conservative ones. All these issues call 
for cross-layer evaluation schemes. 

Present work can be further extended: more 
complex topologies can be used for our experiments, 
interaction of transport and network mechanisms can 
be elaborated in a more detailed manner under various 
network conditions, presence of a larger number of 
mechanisms and their collaboration or mis-interaction 
can be tested. We essentially attempt to reconsider the 
congestion control scheme in a more accurate way and 
our initial work steps towards this direction. Our 
ultimate goal is to lay the foundations of an implicit 
cross-layer approach such that mechanisms in different 
layers do not undermine or cancel each other but they 
rather complement each other and allow for future 
evolution and deployment of new protocols or 
mechanisms in the Internet. 
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