
On the Miscollaboration of Congestion Control Mechanisms
at the Transport and the Network Layers

Ageliki Tsioliaridou, Christos V. Samaras, Vassilis Tsaoussidis

Department of Electrical and Computer Engineering,
Democritus University of Thrace, Greece

E-mail: {atsiolia, csamaras, vtsaousi}@ee.duth.gr

Abstract

Many sophisticated mechanisms have been

implemented at both the transport and the network
layers in order to estimate network conditions and
avoid overload of network links. We evaluate the
congestion control and avoidance scheme from a
cross-layer perspective. We conduct simulations to
investigate issues of miscollaboration between the
network and transport layers that have negative
impact on application performance. We identify
several such scenarios; we discuss the reasoning and
the extent of miscollaboration, and the appropriate
measures to resolve the problem. We conclude that the
common practise for evaluating research proposals
lacks the appropriate experimental diversity,
granularity or perspective and hence new mechanisms
may favor a particular set of targeted protocols but
damage some others. As a result, a portion of Internet
traffic flows is frequently favored at the cost of co-
existing traffic flows.

1. Introduction

Due to the layered architecture of computer
networks and the corresponding separation of
functionality, researchers have not investigated
thoroughly the interrelation among mechanisms of
different layers. For example, when a new algorithm is
proposed, it is common to compare it against similar
algorithms at the same level. Although a major design
principle for the layered architecture was the autonomy
of each layer, in practice, mechanisms of different
layers do interact, implicitly. This situation calls for
cross-layer evaluation schemes.

We investigate the impact of collaboration among
mechanisms at different layers. More precisely, we
focus on the network and the transport layers, and
investigate congestion management interaction of these
two layers. Many mechanisms have been proposed at
both layers in order to avoid or control congestion;

however, specific research results have not yet been
reported on the impact of mis-collaborative
mechanisms of these two layers.

Typically, for the evaluation of queue management
algorithms, researchers select an appropriate transport
protocol to exploit the router’s congestion notification
and demonstrate its performance gains. However, there
are other protocols in use that are not designed in a
manner suitable to exploit the router’s particular
congestion control signals. One cannot exclude the
possibility that a new, sophisticated mechanism may
deteriorate the performance of existing transport
protocols, which cannot take advantage of the changes.

Furthermore, protocols at the transport layer
respond differently at the presence of a congestion
signal, each following a more aggressive or
conservative recovery strategy than others. However,
router’s operating parameters are fixed and typically
do not differentiate incoming traffic based on the
responsiveness of the transport protocol. In such a
situation, it may be that some protocols are favored
more than others at the presence of a specific queuing
algorithm.

In this paper, we report initial results on the
miscollaboration among the congestion control
protocols and mechanisms. Through experiments, we
discover cases where the mis-interaction among
congestion control mechanisms results in system
performance degradation. For example, we show that
TCP Vegas cannot estimate well the available
bandwidth when the link implements the Random
Early Detection (RED) queue management algorithm.
Furthermore, it might be that RED penalizes
aggressive protocols more than it should and results in
a situation where a conservative protocol outperforms
an aggressive one in terms of goodput.

The rest of the paper is organized as follows. In
Sections 2 and 3, we discuss the background on
congestion avoidance and control at the transport and
the network layers and present related work. Next, in

 1

Section 4, we present a series of experiments, which
demonstrate the lack of collaboration or further the
miscollaboration among mechanisms of the two layers.
In Section 5, we discuss briefly important cross-layer
evaluation issues. Finally, in Section 6 we conclude the
paper.

2. Background
2.1. Network Layer

In traditional algorithms for queue management,
packets are dropped when the queue buffer becomes
full. The Drop-Tail is a widely deployed dropping
mechanism, which drops incoming packets when the
queue memory resources are completely utilized.
Although simplicity is a fundamental goal when
designing a router algorithm, Active Queue
Management (AQM) [2] was proposed presenting
more complex or sophisticated algorithms in order to
achieve better system performance.

One of the most popular active queue management
algorithms is Random Early Detection (RED) [20].
Rather than waiting for a congested queue to overflow,
arriving packets are dropped with some drop
probability whenever the average queue length exceeds
a minimum threshold, while they are all dropped when
it exceeds a maximum threshold. An extension of RED
is the Adaptive RED [13], which improves RED’s
performance by adjusting the maximum threshold
value to follow the network dynamics.

There exist many AQM algorithms, such as
Stabilized RED [22], Random Exponential Marking
[16], Blue [14], Stochastic Fair Blue [15] and
Weighted RED [19]. They all attempt to interact
implicitly with the transport protocols at the end-hosts
in order to control congestion avoid collapses. See the
corresponding links, for more details.

2.2. Transport Layer

Protocols at the transport layer are usually
responsible for end-to-end error recovery, ensuring
complete and reliable data transfer. Each of them
implements a different algorithm to adjust its sending
rate according to channel conditions.

 Authors of [3] survey congestion control
approaches, highlighting different mechanisms that
control and avoid congestion, depending on the
awareness of network conditions. Protocols of the first
category attempt to identify channel conditions,
blindly. TCP Tahoe, TCP Reno, TCP New-Reno [1]
and TCP Sack [24] are some protocols of this category.
Senders receive feedback implicitly through packet
drops, and adjust their congestion window based on
the AIMD algorithm [10].

In the second category, protocols aim to capture
network conditions in a more accurate way based on
measurements. For instance, TCP Vegas [4] relies on
RTT measurements, while TCP-Westwood [7] on the
rate of returning ACKs. There are also receiver-
oriented protocols, such as TCP Real [5, 6] and TFRC
[21], where receivers estimate the level of congestion
and inform sender about it.

In the third category, protocols receive information
from routers about the network conditions in an
explicit way. In VCP [17] routers estimate their output
link utilization and notify the senders accordingly.
While authors in [8], propose a mechanism by which
routers can calculate the fair-share of the available
bandwidth and inform the senders to adjust their
sending window accordingly.

3. Related Work

The issue of network- and transport-layer
miscollaboration has not been studied extensively in
the past. Some reports exist, however, where authors
highlight such cases of miscollaboration.

 Authors of [11], for example, investigate fairness
of TCP in the presence of different scheduling
algorithms. They show that the sending window size of
TCP Vegas doesn’t get influenced by the drop
probability of RED, rather than by its own mechanism,
despite the fact that RED is proposed to achieve
fairness among users of the same channel.

Furthermore, in [12] authors investigate the
performance of TCP Sack protocol in the presence of
RED queuing algorithm in heterogeneous environment
of wired and wireless links. On one hand, TCP Sack is
a sophisticated protocol that attempts to recover more
quickly from a wireless error; on the other hand, RED
is an algorithm which attempts to penalize aggressive
protocols. As a result, TCP Sack senders get often
penalized by the routers' queue management scheme.
In other words, the sophistication of the one algorithm
is cancelled by the sophistication of the other.

Finally, authors of [18] observed through
experiments that when RED algorithm is deployed, it
cannot guarantee fairness among TCP Reno and TCP
Vegas flows that co-exist at the same link. More
specifically, TCP Reno, due to its aggressive nature,
outperforms TCP Vegas at the presence of RED.

4. Simulation Results
4.1. Evaluation Plan and Performance Metrics

In order to evaluate how well mechanisms at the
transport and the network layers cooperate with each
other, we have selected various transport protocols in
our simulations such as TCP Tahoe, TCP Reno and

 2

TCP Vegas, and monitored their interaction with
network mechanisms for queue management and
network congestion avoidance such as Drop-Tail and
Random Early Detection (RED). We present cases of
miscollaboration between various congestion control
mechanisms, in which cases, network/end-system
performance deteriorates as far as throughput, goodput
and fairness are concerned.

We have conducted a number of experiments in
various network conditions using the ns-2 network
simulator [9]. The topology used is the dumbbell
topology as shown in Fig. 1. A set of TCP senders
(Source 1 through N) is connected with a set of TCP
receivers (Sink 1 through N). The number of flows
(N), the link’s bandwidth at the senders (bw_3), at the
receivers (bw_1), and the backbone link’s capacity
(bw_2) vary during the different simulated scenarios.
The simulation time was typically set to 200 seconds.

Figure 1. Simulation topology

We used traditional metrics for evaluating protocol
efficiency. For example:

System Goodput and Throughput are used to
measure the overall system efficiency in terms of
bandwidth utilization and are given by the following
formulas (where n is the number of flows):

==
∑
1

n

i
Original Data

System Goodput
Transmission Time

where Original Data is the number of bytes delivered
from a sender to the corresponding receiver during
their connection (Transmission Time), excluding the
size of retransmitted packets of this flow and the
overhead induced by packet headers.

==
∑
1

n

i
Total Data Sent

System Throughput
Transmission Time

where Total Data Sent is equal to the sum of original
data, retransmitted data and packets’ headers size (in
Bytes).

4.2. Miscollaboration between sophisticated
mechanisms at the transport and the network
layers

Since the first implementations of transport and
network protocols, several other mechanisms have
been proposed and often implemented and deployed, in
order to achieve better network/end-system
performance. Given the fact that those mechanisms at
both layers evolve in parallel and often in an
independent way, they frequently end up being
unaware of the presence of each other. Even worse, a
sophisticated mechanism in the network can cancel an
intelligent mechanism incorporated into a transport
protocol or vice versa. To strengthen our claim, we
show an example of how TCP Vegas, following a
more or less sophisticated congestion control strategy,
cannot cope that well with the increased functionality
at the network introduced by RED (see Fig. 2, 3, 4 and
5).

TCP Vegas’s congestion control mechanism is
proactive, that is, it attempts to sense incipient
congestion by observing changes in the throughput
rate. TCP Vegas compares the measured throughput to
its notion of expected throughput and adjusts its
window accordingly. On the other hand, RED is an
active queue management algorithm that detects
incipient congestion and discards packets before queue
overflows.

RED algorithm was designed to interact well with
AIMD-based protocols, as these protocols infer
congestion only after a packet has been lost. In
particular, AIMD-based protocols react to such packet
drops by reducing their congestion window. However,
since TCP Vegas senders do not back off sharply at the
presence of a packet drop and they also adjust their
transmission rate much more smoothly, RED algorithm
keeps dropping TCP Vegas packets in a high rate as
those packets continue to take up much space in the
RED queue buffers.

Our experiments below, explore the interaction
between TCP Vegas and RED. In our simulations,
bw_1, bw_2 and bw_3 are set to 10Mbps (Fig. 1),
delay_1 and delay_2 are set to 5ms while the value of
delay_3 is equal to 15ms; finally the queue buffer size
is set to 50 packets. The experimental results show that
due to incompatibility among TCP Vegas's and RED's
mechanisms, the system goodput is degraded
compared to the corresponding goodput when Drop-
Tail is used (Fig. 3). We see in (Fig. 2) that throughput
increase is justified only by packet retransmissions and
does not correspond to extra data transmission. This
situation is reflected by the significant deviation of the
graphs, which depict the amount of packets that is

 3

dropped and retransmitted (Fig. 4). Finally, Fig. 5
shows how the queuing algorithms affects TCP Vegas
packet drop rate as contention increases.

0
2
4
6
8

10
12
14
16

40 45 50 55 60 65 70

Number of flows

Th
ro

ug
hp

ut
 (M

bp
s) Drop-Tail

RED

Figure 2. System throughput

0
2
4
6
8

10
12
14
16

40 45 50 55 60 65 70

Number of flows

G
oo

dp
ut

 (M
bp

s) Drop-Tail
RED

Figure 3. System goodput

0

20000

40000

60000

80000

100000

120000

40 45 50 55 60 65 70
Number of flows

N
um

be
r

of
 p

ac
ke

ts

Drop-Tail
RED

Figure 4. Total number of retransmitted and

dropped packets

0
2
4
6
8

10
12
14
16
18
20

40 45 50 55 60 65 70

Number of flows

P
ac

ke
t o

f d
ro

p
ra

te
 (%

) Drop-Tail
RED

Figure 5. Packet drop rate

4.3. New mechanisms may not be interpreted
by existing protocols

Miscollaboration can occur when the functionality
of a relatively new mechanism cannot be well
interpreted by existing mechanisms that rely on a
different design philosophy. To reinforce our point by
being more specific, we evaluate the performance of a
conservative transport protocol, such as TCP Tahoe,
when a sophisticated active queue management
algorithm (namely, RED) is present at the network.
TCP Tahoe assumes a single packet drop as congestion
indication and backs off sharply by shrinking its
congestion window. By that time when TCP Tahoe
was designed, avoiding congestion collapses were of
high importance, and packet drops at the routers
occurred when there was no more buffer space
available at a queue. On the other hand, RED
algorithm does not drop packets just because its buffer
is out of space but rather it drops each incoming packet
with a certain probability, which depends on the
average queue size. Such network functionality cannot
be interpreted by TCP Tahoe and results in poor
performance even when network bandwidth is
available.

Next, we present a scenario of high contention
where 100 TCP Tahoe flows pass through a 50Mbps
bottleneck link (Fig. 1). The edge links’ bandwidth is
set to 1Mbps and the propagation delay for all links in
the topology equals 10ms. The simulation time is 200
seconds. However, after the 20th second a number of
flows abort data transmission and leave the channel,
thus freeing up network bandwidth (100 initial flows
are decreased to 10, 20, 30, 40 of 50 flows
respectively, Fig. 6). TCP Tahoe performance is
measured against two different queue management
algorithms, namely Drop-Tail and RED. As shown in
our experiments (Fig. 6), TCP Tahoe performance
deteriorates in the presence of RED: packet drops
result in abrupt reduction of the congestion window.
Even when a number of TCP connections end, RED
congestion avoidance mechanism insists on dropping
packets based on the average queue size, thus
preventing TCP Tahoe senders from exploiting the
available network capacity.

 4

0
5

10
15
20
25
30
35
40
45
50

100-10 100-20 100-30 100-40 100-50

Number of flows

G
oo

dp
ut

 (M
bp

s)

RED
Drop-Tail

 Figure 6. System goodput

4.4. Less functionality in the network can favor
greedy flows

One other interesting aspect to discuss about is that
incorporating no intelligence into the network can
actually empower greedy flows to obtain larger share
of network resources. On the contrary, putting more
functionality into the network can restrain aggressive
transport protocols from stealing bandwidth, and can
safeguard fairness. However, there exist situations
where aggressive protocols might significantly be
punished by the network, thus permitting smoother
transport protocols to achieve higher goodput.

In support of our claim, we evaluate the coexistence
of TCP Reno and TCP Tahoe, an aggressive and a
conservative protocol respectively when considered
together. In our experiments, an equal number of TCP
Reno and TCP Tahoe connections compete for the
same channel. The number of total connections varies
from 20 to 80 among different simulation runs, each of
which lasts for 200ms. Every link in the dumbbell
topology has a bandwidth of 10Mbps and the
propagation delay for the edge and the bottleneck links
are 3ms and 15ms, respectively. Also, the buffer size
for the bottleneck link is set to 50 packets. As
presented in our results (Fig. 7), when Drop-Tail is
used, TCP Reno flows achieve higher goodput by
means of behaving more aggressively than TCP Tahoe
connections. In the presence of RED though (Fig. 8),
TCP Reno gets punished by the congestion avoidance
mechanism of RED, thus permitting TCP Tahoe
protocol to utilize better the network capacity.

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

5
5,5

6

20 30 40 50 60 70 80

Number of flows

G
oo

dp
ut

 (M
bp

s)

TCP Reno
TCP Tahoe

Figure 7. System goodput (with Drop-Tail)

00,51
1,52
2,53
3,54
4,55
5,56

20 30 40 50 60 70 80

Number of flows

G
oo

dp
ut

 (M
bp

s)

TCP Reno
TCP Tahoe

Figure 8. System goodput (with RED)

5. Discussion

In this paper we highlight our observation that the
interaction of mechanisms, which lie in different
layers, may have significant impact on various network
performance metrics (such as network congestion and
fairness) as well as on end-system performance. We
demonstrate through experiments that congestion
control algorithms of the transport and network layers
implicitly interact with each other; furthermore, we
present cases of miscollaboration among these layers.

In [23] authors present an explicit cross-layer
interaction scheme. They refer to the various possible
types of explicit cross-layer signaling and present the
difficulties of deploying such a communication
between the end-hosts and the routers. We claim that
the interaction of these layers may also involve implicit
impact on some protocols and mechanisms. We
explore cases where implicit interaction of mechanisms
results in undesirable situations; indeed, implicit
schemes may deteriorate the performance of protocols
and mechanisms in both layers.

It becomes increasingly important to seek for
congestion control mechanisms that are compatible;
otherwise, we will arrive at a point where specific
mechanisms at one layer will only cooperate well with
specific ones at the other. Inevitably, the interaction
itself needs to become an integral part of the evaluation
procedure, which needs to be further refined.

 5

Furthermore, we argue that the impact of new
mechanisms or protocols on existing ones needs to be
quantified; the compatibility of interactive algorithms
needs to be verified; and the sophistication needs to be
justified in this context. Although we do not discuss it
in this paper, new metrics should be introduced, in
order to evaluate a mechanism in such perspective.

6. Conclusions

In this paper, we explore interactions between
widely used congestion avoidance mechanisms of the
transport and the network layers, and present cases of
miscollaboration. Sophisticated mechanisms may
cancel the functionality of each other. Existing
protocols may not be able to interpret the function and
collaborate with relatively newer mechanisms that are
deployed in the Internet. Less functionality in the
network may favor greedy flows, while certain
congestion control mechanisms in the network layer
might punish aggressive transport protocols and
facilitate more conservative ones. All these issues call
for cross-layer evaluation schemes.

Present work can be further extended: more
complex topologies can be used for our experiments,
interaction of transport and network mechanisms can
be elaborated in a more detailed manner under various
network conditions, presence of a larger number of
mechanisms and their collaboration or mis-interaction
can be tested. We essentially attempt to reconsider the
congestion control scheme in a more accurate way and
our initial work steps towards this direction. Our
ultimate goal is to lay the foundations of an implicit
cross-layer approach such that mechanisms in different
layers do not undermine or cancel each other but they
rather complement each other and allow for future
evolution and deployment of new protocols or
mechanisms in the Internet.

ACKNOWLEDGEMENT

This work was funded by the Europen Commission
and the project PENED 2003 of GSRT.

7. References
[1] S. Floyd and T. Henderson, “The NewReno Modification
to TCP's Fast Recovery Algorithm”, RFC 2582, 1999.
[2] B. Braden et al, "Recommendations on Queue
Management and Congestion Avoidance in the Internet",
RFC 2309, 1998.
[3] L. Mamatas, V. Tsaoussidis and Chi Zhang, "Approaches
to Congestion Control in Packet Networks”, available from
http://citeseer.ist.psu.edu/mamatas04approaches.html.

[4] L. Brakmo and L. Peterson, “TCP Vegas: End to End
Congestion Avoidance on a Global Internet”, IEEE JSAC,,
October 1995.
[5] C. Zhang and V. Tsaoussidis, “TCP Real: Improving
Real-time Capabilities of TCP over Heterogeneous
Networks”, in Proc. of the 11th IEEE/ACM NOSSDAV 2001,
NY, 2001.
[6] C. Zhang and V. Tsaoussidis, “The interrelation of TCP
responsiveness and smoothness in heterogeneous networks”,
in Proc. 7th IEEE Symposium on Computers and
Communications (ISCC 2002), Italy, 2002.
[7] S. Mascolo, C. Casetti, M. Gerla, M. Sanadidi and R.
Wang, “TCP Westwood: Bandwidth Estimation for
Enhanced Transport over Wireless Links”, in Proc. of ACM
MOBICOM, pp. 287-297, 2001.
[8] P. C. Attie, A. Lahanas, and V. Tsaoussidis, “Beyond
AIMD: Explicit fair-share calculation”, in Proccedings of the
8th IEEE ISCC 2003, 2003.
[9] The Network Simulator, ns-2, www.isi.edu/nsnam/ns.
[10] Dah-Ming Chiu and Raj Jain, “Analysis of the Increase
and Decrease Algorithms for Congestion Avoidance in
Computer Networks”, Computer Networks and ISDN
Systems, pp. 1-14, 1989.
[11] G. Hasegawa, T. Matsuo, M. Murata, and H. Miyahara,
"Comparisons of packet scheduling algorithms for fair
service among connections on the Internet," in Proc. of IEEE
INFOCOM 2000, March 2000.
[12] C. Zhang, M. Khanna and V. Tsaoussidis,
"Experimental Assessment of RED in Wired/Wireless
Networks", International Journal of Communication
Systems, pp. 287-302, Wiley, 2004.
[13] S. Floyd, R. Gummadi, S. Shenker, “Adaptive RED: An
Algorithm for Increasing the Robustness of RED’s Active
Queue Management”, 2001.
[14] W. Feng, D. Kandlur, D. Saha, K. Shin, “Blue: A New
Class of Active Queue Management Algorithms”, UM CSE-
TR-387-99, 1999.
[15] W. Feng, D. Kandlur, D. Saha, and K. Shin, “Stochastic
Fair Blue: A Queue Management Algorithm for Enforcing
Fairness”, in Proc. of IEEE INFOCOM, 2001.
[16] S. Athuraliya, S. H. Low,V. H. Li, and Q.Yin, “REM:
Active queue management”, IEEE Network Magazine, pp.
48–53, 2001.
[17] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman,
“One More Bit Is Enough”, in SIGCOMM 2005, 2005.
[18] J. Mo, R. J. La, V. Anantharam, and J. C. Walrand,
“Analysis and comparison of TCP Reno and Vegas”, in Proc.
of IEEE INFOCOM '99, New York, 1999.
[19] Technical Specification from Cisco, “Distributed
Weighted Random Early Detection”, URL:
http://www.cisco.com/univercd/cc/td/doc/product/software/io
s111/cc111/wred.pdf.
[20] Sally Floyd and Van Jacobson, “Random Early
Detection Gateways for Congestion Avoidance”, IEEE/ACM
ToN, V.1 N.4, p. 397-413, August 1993.
[21] M. Handley, S. Floyd, et al., “TCP Friendly Rate
Control (TFRC): Protocol Specification”, RFC 3448, January
2003.
[22] T. J. Ott, T. V. Lakshman, and L. H. Wong, “SRED:
Stabilized RED”, in Proc. of INFOCOM’99, 1999.

 6

[23] P. Sarolahti and S. Floyd, “Cross-layer Indications for
Transport Protocols”, Internet draft, work in progress,
October 2006, http://www.icir.org/floyd/papers.html.
[24] Mathis, M., Mahdavi, J., Floyd, S., and Romanow, A.,
“TCP Selective Acknowledgement Options”, RFC 2018,
April 1996.

 7

http://www.icir.org/floyd/papers.html
ftp://ftp.isi.edu/in-notes/rfc2018.txt

	1. Introduction
	2. Background
	2.1. Network Layer
	2.2. Transport Layer

	3. Related Work
	4. Simulation Results
	4.1. Evaluation Plan and Performance Metrics
	4.2. Miscollaboration between sophisticated mechanisms at the transport and the network layers
	4.3. New mechanisms may not be interpreted by existing protocols
	4.4. Less functionality in the network can favor greedy flows

	5. Discussion
	6. Conclusions
	7. References

