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Abstract

We argue that the design principles of the TCP timeout algorithm are based solely on RTT estimations and may lead to
flow synchronization, unnecessary retransmission effort and unfair resource allocation. We present a new Window-Based
Retransmission Timeout algorithm (WB-RTO) for TCP, which exhibits two major properties: (i) it cancels retransmission
synchronization, which dominates when resource demand exceeds resource supply and (ii) it reschedules flows on the basis
of their contribution to congestion. WB-RTO achieves better fairness and slightly better goodput with significant less
retransmission effort.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The retransmission timeout policy of standard-
TCP [1] is governed by the rules of RFC 2988 [2].
The algorithm is based solely on RTT measure-
ments, trying to capture dynamic network condi-
tions by measuring the variation of the RTT
samples. In particular, the Retransmission Timeout
is calculated upon each ACK arrival after smooth-
ing out the measured samples, and weighting the
recent history. This way the timeout reflects the
weighted average delay currently in the network,
rather than the instantaneous network delay [3].
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Furthermore, the timeout takes into account the
RTT variation measured during the previous trans-
mission rounds. More precisely, upon each ACK
arrival, the sender:

• updates the RTT Variation

RTTVAR ¼ 3=4�RTTVAR þ 1=4

� SRTT�RTTSAMPLEj j; ð1Þ

• smooths the expected RTT, prior to calculating
the timeout

SRTT ¼ 7=8� SRTT þ 1=8�RTTSAMPLE ð2Þ

• and finally, calculates the Retransmission Time-
out value

RTO ¼ SRTT þmaxðG; 4�RTTVARÞ; ð3Þ
.
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Fig. 1. Sequence number progress.
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where, RTTVAR holds the RTT variation and
SRTT the smoothed RTT. In Eq. (3), G denotes
the timer granularity, which is incorporated in order
to assign a lower bound for the retransmission time-
out to protect it against spurious expirations (i.e.,
when RTT equals the timer granularity) [4].

Although the design of the timeout algorithm
has been studied extensively in the past (e.g [5–
7,3,8,2,9,10]), the association with its inherent
scheduling properties has not really been evaluated
adequately. Instead, much attention has been paid
on its ability to reflect network delay accurately
(e.g. [11–16]), allowing for speedy retransmission
when conditions permit and avoiding double sub-
mission due to early expiration. However, network
delay as it is captured by measuring the RTT alone,
cannot always reflect the level of network conten-
tion [17,18]. We note that there is no strict bi-direc-
tional association between network contention and
network delay. That is, high contention may lead
to large delay, but large delay is not always the
result of high contention. Consider, for example, a
high-contended link where many flows compete
for network resources. Timeout events will happen
frequently and many flows may experience timeout
expirations simultaneously. Hence, immediately
after retransmission, contention may prevail again.
Alternatively, congestion caused by the increasing
rates of just two flows will result in lower demand
after timeout expiration. Thus, the level of conten-
tion, after retransmission, is high when contention
is high. A timeout that incorporates the level of con-
tention has the potential to administer that link
better.

The problem of scheduling as it is associated with
timeout has another dimension as well. When flows
enter synchronously, or become synchronized due
to a congestion event, the timeout is adjusted
accordingly for all participating flows. Since the
buffers, during congestion, are more or less occu-
pied, queuing delay approaches similar values for
most packets. Thus, the sample RTT measurements
may leave little space for timeout differentiation
among the participating flows, leading to possibly
synchronized retransmissions. Therefore, fairness
cannot be guaranteed: flows are not randomly
scheduled, but instead, are possibly partitioned into
two groups: the one consisted of a number of flows
that suffice to exploit available resources (link, buf-
fer) and the other consisted of the remaining flows
that continuously attempt to transmit unsuccess-
fully. As a result, flows that enter a system simulta-
neously will be ordered in the queue and possibly
follow the same order throughout the upcoming
transmission rounds. Furthermore, flows that enter
the system when the buffer is fully utilized, may also
be excluded in the next rounds as well, for the same
reason. Current timeout scheduling may become
very deterministic, allowing only a particular set of
participating flows to utilize the link.

We evaluate this hypothesis experimentally. Our
scenario involves five high-demanding sessions over
a low Delay · Bandwidth product link of 10 packets.
Buffers are set in accordance, to hold up to 10 pack-
ets. Due to limited resource supply, the demand
should be adjusted to an average of 2 packets per
window per flow. In Fig. 1, we monitor the sequence
numbers to capture the progress in time. We high-
light the interval between 500 and 515 s, out of a
simulation run that lasts 1500 s. We observed,
though, that the sequence number progress is simi-
lar throughout the whole simulation. TCP-RTO
scheduling policy results in multiple simultaneous
transmissions/retransmissions (see for example, cir-
cled packets in Fig. 1). Fig. 2 depicts the measured
RTT and the associated timeout adjustments,
within the same sample timeslot.

In the current scenario all flows experience the
same propagation delay (Fig. 4(a)); due to high level
of flow contention the bottleneck buffer (i.e., Router
1) is always full, leading to the same, maximum
queuing delay for all flows, as well. Hence, we
observed similar RTTs for all flows (Fig. 2(a)) and
consequently identical RTOs (Fig. 2(b)), which
resulted in flow synchronization. We also observed
the impact of propagation delay variations. We
have experimentally evaluated groups of flows,
where each group corresponds to propagation delay
paths, which differ from the propagation delay
paths of other groups. However, since they all



Fig. 2. Reno behavior: (a) Round trip time (in seconds), (b) Retransmission timeout (in seconds).
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transmit through the same bottleneck buffer, we
noticed that RTOs tend to equalize for flows within
the same group.

Although we do not present it here, we observed
the sequence number progress for the entire dura-
tion of the experiment: for the last 300 s, the third
flow did not advance its sequence number, resulting
in unfair system behavior. This is further explained
by Fig. 2(b), where we see that flow 3 makes wrong
RTO estimation, which results in an extraordinary
long timeout wait, during the last 300 s of the exper-
iment. We present the Goodput performance and
the retransmission effort of TCP-Reno in Table 1.
We observe that: (i) the Goodput performance of
TCP is 10 packets per second and (ii) TCP triggers
retransmissions twice per second, resulting in
16.6% retransmission overhead.

We argue that flow synchronization is responsi-
ble for the system response; we seek to address the
retransmission scheduling properties of the trans-
port protocol. Our results show that there exists a
lot of space for improvement on the scheduling
properties of the TCP-RTO, which we exploit
through the current proposal.

We have studied further details and reported
problems on the efficiency of the TCP retransmis-
sion policy in [17]. In the current paper, we extend
our study with a new algorithm, to fix the reported
Table 1
TCP-RTO performance

Goodput Retransmissions

1st flow 1.95 KB/s 600 packets
2nd flow 2.2 KB/s 620 packets
3rd flow 1.8 KB/s 550 packets
4th flow 2.0 KB/s 600 packets
5th flow 2.05 KB/s 620 packets

Total 10.0 KB/s 2990 packets
problems. We call our algorithm Window-Based
Retransmission Timeout (WB-RTO), due to the fact
that its calculation mainly depends on the transmis-
sion window. Using this information, the algorithm
captures how contention evolves with time and
makes a judgment on the contribution of the flow
to congestion, presently. Furthermore, the algo-
rithm schedules retransmissions in a randomized
manner, to avoid link capture effects. The afore-
mentioned mechanisms are coupled with RTT mea-
surements in order to guarantee a lower bound
against spurious timeouts. Our results demonstrate
that WB-RTO cancels TCP’s inability to administer
simultaneous retransmissions and consequently
WB-RTO achieves higher goodput, better fairness
and less retransmission overhead.
2. Related work

Several researchers have reported problems
regarding the TCP-RTO [5,7,19–21,8,17,9,22,23,
10]. Lixia Zhang, in [10], identifies several draw-
backs of the TCP retransmission timer and reports
its intrinsic limitations. The paper concludes that
mainly external events should trigger retransmis-
sions and timers should be used only as a last noti-
fication about packet loss. Although WB-RTO
departs from a different point, it also alleviates
problems reported in [10], due to the fact that these
problems are mainly caused by the exclusive rela-
tion of the timers with the RTT.

The Eifel Algorithm [7,8,6] focuses on spurious
timeouts. A spurious timeout happens in case of a
sudden delay spike on the link, where the round-trip
delay exceeds the expected value calculated for the
retransmission timeout. As a result, all data in flight
are falsely considered lost and are being retransmit-
ted. The Eifel algorithm uses the TCP timestamp
option [24] to detect spurious timer expirations.



1 The procedure is called every time the RTO is calculated for a
specific TCP flow.
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Once a spurious timeout is detected, the sender does
not back-off, but instead, it restores the transmis-
sion rate to the recorded rate, prior to the timeout
event.

The Forward RTO algorithm [9] targets the detec-
tion of spurious timeouts too. The algorithm, instead
of using timestamp options, checks the ACK packets
that arrive at the sender after the timer’s expira-
tion. F-RTO observes whether the ACKs advance
the sequence number or not, concludes whether the
timeout was spurious or not and determines the
appropriate recovery policy, accordingly.

Both the above algorithms (Eifel [8] and F-RTO
[9]) improve TCP’s performance [25,26] significantly
and are currently in the standardization process of
the Internet Engineering Task Force [27–29]. How-
ever, none of them really solves the problems stated
in [10], due to the fact that they do not modify the
retransmission timeout algorithm itself, but instead
they only change the response of the transport pro-
tocol after a timeout has occurred. More precisely,
both algorithms ([8,9]) take into consideration out-
standing data packets only after the timer expires,
while the nature of the problem calls for design
modifications of the timeout algorithm itself.

Recently, authors in [30] investigated the prob-
lem of TCP flow synchronization too and identified
anomalies in TCP’s transmission policy. More pre-
cisely, they report TCP performance problems in
terms of fairness (i.e., TCP treats unfairly flows
which experience higher RTTs) and window syn-
chronization. They attempt to break flow synchro-
nization by randomizing the sending times in TCP.
Randomized TCP attempts packet transmissions
with a time interval D = RTT(1 + x)/cwnd, where
x is a zero mean random number drawn from a uni-
form distribution. The proposed scheme guarantees
better fairness and reduced window synchroniza-
tion. In the current work we target similar achieve-
ments (i.e., flow de-synchronization), but focus on
the retransmission rather than on the transmission
strategy of standard-TCP.

In [17], we have shown that timeout adjustments,
based solely on RTT estimations, do not always cor-
respond to the level of flow contention. We investi-
gated the behavior of TCP in high-contention
scenaria and confirmed that it is possible for the
timeout to decrease when contention increases. We
concluded that this anomaly is due to flow synchro-
nization. Our analysis called for a new design that
incorporates an estimation of the ‘‘degree’’ of con-
tention, along with a mechanism to cancel synchro-
nization. We exploit those directives in the present
work.
3. WB-RTO: The proposed algorithm

We propose a new timeout algorithm which:
(i) estimates the contribution of each flow to conges-
tion (Section 3.1) and practically approximates the
current level of network contention (Section 3.2)
and (ii) allows for asynchronous retransmissions,
ordered in time in reverse proportion to their contri-
bution to congestion (Section 3.3). We note that (i)
and (ii) form a collaborative detect/respond scheme
to increase efficiency of the system response, i.e., not
to optimize each flow’s response: if all flows calcu-
late a single accurate time for retransmission, the
system will fail to provide efficient service when con-
tention is high, due to flow synchronization. In our
case, we detect the current network conditions (i.e.,
the level of flow contention) through mechanism (i)
and schedule retransmissions accordingly through
mechanism (ii), to provide the appropriate system
response.
3.1. Proportional timeout

During high contention, it is possible for all flows
to operate with minimal windows, in which case
randomization guarantees timeout diversity. How-
ever, it is also possible for the contending flows to
operate with different window sizes. In that case,
we attempt to adjust the timeout according to the
degree of the flow’s contribution to congestion.
Consequently, we introduce a methodology for esti-
mating the contribution of each flow to congestion
whenever some sender times out. In particular, we
initially classify the flow depending on its current
transmission window, charge it with an appropriate
penalty, and hold the corresponding value in
parameter c, according to Eq. (4):

c ¼ f ðcwnd ;max cwnd Þ; ð4Þ

where the current congestion window (cwnd_) is
compared with the maximum congestion window
(max_cwnd_) that the flow has reached, since the
last timeout expiration.1 Frequent updates of the
max_cwnd_ (here each time a timeout happens)
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allow for better capturing of the network dynamics
(i.e., joining and leaving flows).

• In case the cwnd_ is smaller than half of the max-
imum congestion window, the flow is marked
with the minimal charge (c = 1).

• If the flow’s cwnd_ belongs to the interval
½1
2
�max cwnd ; 3

4
�max cwnd Þ, the penalty is

higher (c = 1,5).
• Finally, if the current cwnd_ lies in the remaining

area (i.e., ½3
4
�max cwnd ;max cwnd �), the flow is

given a major penalty (c = 2).

The justification for the above policy is as fol-
lows: the RTO is extended in proportion to the
charge and, in turn, the flow waiting time to service
is extended in proportion to its window. By the
same token, flows that operated with small windows
are rewarded with faster retransmission.
3.2. Contention estimation

Next, we further classify each flow according to
its (recent) congestion window history (average win-
dow, denoted as awnd_). We define four different
thresholds2 (Threshold 1–4) that trigger different
response upon a timeout event and classify each
flow according to its awnd_ value, which further
corresponds to the current level of flow contention.
Threshold1 corresponds to very high contention
(here set to 5 packets), while Threshold4 refers to
congestion events that happen sparsely (here set to
50 packets).

We assign four weights (a1 to a4) that correspond
to the four predetermined intervals (0, Threshold1)
to (Threshold3, Threshold4):

ai ¼ gðawnd ; ThresholdiÞ; ð5Þ

where ai < ai�1. Next, ai multiplies c in order to set
the penalty and consequently the RTO, based on
both the window and its history. In conclusion,

parameter c determines the contribution of each

flow to contention, while the four predetermined

Thresholds provide a rough categorization of the level

of flow contention, currently, in the network. Both
2 Note that both the thresholds and the parameters discussed in
this work are determined based on experiments and they
constitute subject of further investigation (see Section 5). Results
presented in this paper are based on the values discussed below,
unless it is explicitly stated otherwise.
estimations are needed since none of them alone could

guarantee both efficient link utilization and fair trans-

mission scheduling: the first lacks the generic context

of flow contention estimation, while the second cannot
associate penalty policy with previous behavior.

3.3. Timeout adjustments

We randomly select a value from the interval (rtt,
c · ai), where the lower bound, rtt, guarantees that
the timeout will not expire prior to the RTT, pre-
venting the algorithm from becoming too aggres-
sive. Each flow executes the following steps:

1. compares cwnd_ with max_cwnd_ and assigns a
penalty accordingly (Eq. (4)).

2. estimates the level of contention, according to the
flow’s awnd_ (Eq. (5)).

3. finally, calculates the Window-Based Retrans-
mission Timeout.

WB-RTO ¼ randomðrtt; c� aiÞ ð6Þ

or

WB-RTO ¼ randomðrtt; f ðcwnd ;max cwnd Þ
� gðawnd ; ThresholdiÞÞ:

ð7Þ

Although sophisticated mechanisms, like band-

width estimators, may provide self-adjustable val-
ues, we note that in the present work both the
Thresholds and the corresponding a values are set
experimentally.

3.4. Behavior of the algorithm

In Fig. 3, we present the behavior of WB-RTO
for a wide range of average transmission windows.
Three plots are presented in this figure. Each line
plot represents the response of WB-RTO in rele-
vance with the average transmission window for
the three possible penalties. There are three salient
points to make: (i) the highest values (in average)
for the retransmission timeout correspond to the
highest penalties, (ii) it is possible for a flow to cal-
culate a small RTO even when it operates with large
windows, (iii) timeout settles to smaller values as the
average window increases. Note that in all cases, we
prevent the algorithm from calculating a timeout
value smaller than the round trip time, avoiding
an aggressive behavior, which would negatively
impact system performance.



Fig. 3. WB-RTO vs. awnd_.
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4. Performance evaluation plan

We have implemented our evaluation plan on the
ns-2 network simulator [31]. We implemented the
Window-Based Retransmission Timeout in TCP-
Reno and thus, we use the same congestion control
and error recovery algorithms as in TCP-Reno (i.e.,
slow-start, fast retransmit and fast recovery). We
expect that, with the exception of Tahoe, which
lacks the Fast Recovery mechanism, other TCP ver-
sions (e.g. SACK [32]) yield similar comparative
results, as well.

Our evaluation plan involves the following three
steps:

1. In the first step (Section 5), we evaluate the
impact of the pre-determined values (i.e., a1, a2,
a3, a4) that correspond to different Thresholds
(i.e., Threshold1 to Threshold4), where the Thresh-

olds are set to 5, 10, 30 and 50, respectively and
the corresponding parameters (a1, a2, a3, a4) are
set to 10, 5, 3 and 2, respectively.

2. At the second step (Section 6), we discuss the sta-
tistical validity of results produced by a ran-
domly generated, uniformly distributed seed,
which corresponds to timeout values chosen by
the flows (Eq. (6)). Hence, we choose a different
random seed for each flow, repeat the experiment
30 times and present the variation of the results.
Since this is proved to be insignificant, we used
the same seed for all flows throughout the
experiments.

3. At the third step (Section 7), we evaluate the per-
formance of the proposed algorithm. For that
purpose, we choose scenarios which correspond
to:
• different propagation delay (e.g. wired vs.
satellite, lossy links, see Section 7.1).

• Active Queue Management schemes (e.g.
RED, see Section 7.2).

• traffic diversity (e.g. mice together with ele-
phants, see Section 7.3.1 and dynamic network
conditions, see Section 7.3.2).
Apart from the simulations presented in Sections
7.3 and 7.1.2, all others last for 1500 s, a time-period
that deemed appropriate to allow all protocols dem-
onstrate their potential. In addition, all flows enter
the system randomly within the first two seconds
of the simulation, in order to avoid initial flow syn-
chronization. We use the topologies shown in Fig. 4,
where the buffer size is set to be equal to the Delay-
Bandwidth Product (DBP) of the outgoing link.
Furthermore, in case of RED [33] we set the mini-
mum and maximum thresholds to 1/10th and
3/10ths of the buffer size respectively, in accordance
with [33].

We use two traditional performance metrics:

• the system Goodput, defined as:

Goodput ¼ Original Data
Connection time

; ð8Þ

where Original_Data is the number of Bytes
delivered to the high-level protocol at the receiver
(i.e., excluding the retransmitted packets and the
TCP header overhead) and Connection_time is
the amount of time required for the data delivery.

• the system fairness, measured by the Fairness
Index [34], defined as:

Fairness ¼
P
ðThroughputiÞ

2

n
P
ðThroughput2

i Þ
; ð9Þ

where Throughputi is the Throughput of the ith
flow and n is the number of the participating
flows.

Throughout the experiments we also measure (i)
the goodput achieved per flow, in order to justify
the fairness performance of the protocols, (ii) the
number of retransmitted packets, in order to weight
the overhead produced by each participating flow
and (iii) the queue length, which indicates how effi-
ciently the two algorithms exploit network
resources. Whenever deemed necessary, we use the
sequence number progress as a criterion to charac-
terize the responsiveness of each algorithm.



Table 2
Simulation parameters

Satellite scenario setup

Topology Dumbbell

bw_src = bw_sink 10 Mbps
delay_src = delay_sink 10 ms
bw_backbone 5 Mbps
delay_backbone 350 ms
Queue policy RED
Buffer size 200 pkts
Number of flows 150
Simulation time 1500 s

Table 3
Simulation results

Fig. 4. Simulation topologies: (a) Dumbbell network topology, (b) Cross-traffic network topology, (c) Extended cross-traffic network
topology.
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5. Impact of pre-determined values

We present two significantly different scenarios (a
satellite and a wired scenario) to evaluate the fixed
values assignment of parameters a1, a2, a3 and a4.
For this purpose, we choose three sets of values,
which correspond to three distinct scales called
Small Scale,3 Medium Scale4 (this is also the default
set of parameters presented in Section 3 and is used
in the rest of the paper) and Wide Scale,5 respec-
tively. It is obvious that the larger the values of
the parameters assigned to the WB-RTO, the larger
the possibility of an extended retransmission time-
out value, since the interval (rtt, c · ai) becomes
larger.
Protocol Performance

Goodput
(KBytes/s)

Fairness Retransmitted
packets

TCP-RTO 571.248 0.999 97,816
WB-RTO
Small scale 587.275 0.997 61,155
Medium

scale
588.686 0.995 53,878

Wide scale 587.738 0.991 45,570
5.1. Satellite scenario

We have observed that (see Tables 2 and 3 for
scenario setup and simulation results, respectively)
by assigning large values (i.e., Wide Scale modifica-
tion) to the retransmission timeout a flow is possibly
forced to continuously wait for long periods before
it tries to re-enter the channel. On the contrary, the
Small Scale modification, leads to aggressive
3 a1 = 5, a2 = 3, a3 = 2 and a4 = 1.5.
4 a1 = 10, a2 = 5, a3 = 3 and a4 = 2.
5 a1 = 20, a2 = 10, a3 = 5 and a4 = 3.
retransmission attempts without improving the
overall system performance.

We notice that the default parameters (Medium
Scale) achieve higher Goodput performance and
reduced retransmission overhead compared to the



Table 5
Simulation results

Protocol Performance

Goodput
(KBytes/s)

Fairness Retransmitted
packets

TCP-RTO 598.187 0.634 223,411
WB-RTO
Small scale 598.103 0.793 88,042
Medium

scale
590.835 0.828 68,370

Wide scale 581.958 0.852 53,407
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TCP-RTO. The Small Scale modification results in
more timeout expirations and consequently retrans-
mits approximately 9% more packets than the Med-
ium Scale does (i.e., 7500 packets), without
improving Goodput. On the contrary, the Wide
Scale modification retransmits even less packets
than the default WB-RTO (i.e., Medium Scale),
but results in unfairer behavior than the Medium
Scale modification, although one would expect
fairer behavior instead, especially in case of high
contention. However, there is a fragile balance
between timeout values and fairness, which Wide
Scale does not seem to always administer well. Spe-
cifically, a sender that is waiting for long time prior
to retransmitting may end up having a small(er)
window at the next congestion event. According to
WB-RTO algorithm, the misinterpreted situation
calls for long timeouts again, and repeatedly,
may lead to actual exclusion from utilizing the link.
We conclude that the Medium Scale modifica-
tion provides both fair and efficient transmission
scheduling.

5.2. Wired scenario

The scenario setup for the next experiment is
shown in Table 4 and the results in Table 5. Again,
we observe that the Small Scale modification, as
well as the standard TCP-RTO result in aggressive
retransmission attempts and in turn in unfair
retransmission scheduling. The Wide Scale modifi-
cation now exhibits better fairness but reduced
retransmission effort in the cost of system Goodput
performance.

WB-RTO with the Medium Scale modification
transmits successfully approximately 8 packets
(8KB) per second (2% of the overall Goodput) less
than TCP-RTO or WB-RTO with the Small Scale
Table 4
Simulation parameters

High congestion scenario setup

Topology Dumbbell

bw_src = bw_sink 5 Mbps
delay_src = delay_sink 10 ms
bw_backbone 5 Mbps
delay_backbone 30 ms
Queue policy Drop tail
Buffer size 19 pkts
Number of flows 150
Simulation time 1500 s
modification. However, both the above algorithms
appear to be relatively unfair (5–20%). The unfair
behavior is caused by the aggressive retransmission
policy, which entails a large number of unnecessary
retransmissions (see number of retransmitted pack-
ets in Table 5). For example, standard-TCP trans-
mits 100 packets per second more than the
Medium Scale WB-RTO.

Using the ratio Successful Transmissions
Retransmissions

as a criterion of
the appropriateness of our settings, we conclude
that the Medium Scale modification is a better
choice for a default setting.

However, sophisticated mechanisms for band-
width estimation (e.g. FAST-TCP [35]) may be used
to dynamically adjust the Scale according to partic-
ular scenarios.
6. Statistical observations

The Window-Based RTO algorithm includes
execution of a function, which randomly chooses
values for the retransmission timeout. In this section
we evaluate the contribution of the seed (i.e., ran-
domly selected) to the statistical deviation of the
mean and we find it to be insignificant (less than
1%). We repeated our experiments 30 times and cap-
tured the corresponding maximum, minimum and
mean values, for each one of the metrics (goodput,
fairness, retransmitted packets). The details of the
statistical data for the Satellite and the Wired sce-
nario are shown in Tables 6 and 7, respectively.

Each table includes also the corresponding
results of TCP-RTO and WB-RTO using the same
seed (Raw Seed). The Difference field presented in
the tables is calculated according to Eq. (10):

Difference ¼ Raw Seed Value�Random Seed Valuej j
Raw Seed Value

� 100:

ð10Þ



Table 6
Simulation results

Protocol Performance

Goodput
(KBytes/s)

Fairness Retransmitted
packets

TCP-RTO 571.248 0.999 97,816
WB-RTO
Raw seed 588.686 0.995 53,878
Random seed
Minimum 587.460 0.994 53,804
Difference

(%)
0.208 0.1 0.137

Maximum 588.539 0.995 54,418
Difference

(%)
0.024 0 0.992

Mean 587.932 0.995 54,115.4
Difference

(%)
0.128 0 0.438

Table 7
Simulation results

Protocol Performance

Goodput
(KBytes/s)

Fairness Retransmitted
packets

TCP-RTO 598.187 0.634 223,411
WB-RTO
Raw seed 590.835 0.828 68,370
Random seed
Minimum 588.767 0.787 64,853
Difference

(%)
0.35 4.95 5.144

Maximum 592.949 0.885 72,147
Difference

(%)
0.35 6.44 5.235

Mean 590.689 0.839 68488.3
Difference

(%)
0.024 1.311 0.172

6 According to [36] a large percentage of Internet flows have
very low transmission rate (less than 100 KB/s). We try to
capture such conditions in the current scenario.
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7. Results

We evaluate the performance of WB-RTO under
the following circumstances:

• In Section 7.1 we change link propagation delay:
we use scenarios with wired and satellite links,
respectively.

• In Section 7.2 we apply the RED queuing policy.
We investigate the response of WB-RTO, when
Active Queue Management is present.

• In Section 7.3 we, initially, mix mice with ele-
phants and then apply dynamic network condi-
tions (i.e., joining and leaving flows).
7.1. Performance of WB-RTO over wired and over

satellite backbone links

7.1.1. Performance evaluation over a wired backbone
link

The Delay-Bandwidth Product (D · B) of the
backbone link (see Fig. 4(a)) equals 10 packets
and the router’s Drop Tail buffer can hold up to
50 packets.6 The simulation is repeated 10 times,
increasing each time the number of participat-
ing flows (10,20, . . . , 100). We have intentionally
designed the simulated conditions so that resource
supply does not suffice for what users demand.
The purpose is to give the timeout algorithm the
ultimate role of the transmission scheduler for the
link. In our case, the main target of the retransmis-
sion timer is to distribute flows in time and permit
all flows to utilize the network resources, instead
of rejecting some flows for the benefit of the rest.
Consequently, we expect improvement in terms of
fairness.

Fig. 5 summarizes the performance of the two
algorithms. WB-RTO slightly outperforms TCP-
RTO in all cases, in terms of Goodput (Fig. 5(a)).
The retransmission effort of the two protocols, how-
ever, differs dramatically.

One may naively think that the difference in
Goodput performance achieved by WB-RTO is neg-
ligible compared to the traditional TCP-RTO.
However, we point out that the Retransmission

Timeout Algorithm is responsible for the Retrans-

mission effort of the protocol, rather than for the
actual Goodput performance of the protocol.
Hence, we pay more attention on the combination
of the retransmission effort spent by the protocol
in order to achieve the measured Goodput perfor-
mance, rather than on the Goodput performance
alone.

In this context, we notice that WB-RTO outper-
forms TCP-RTO significantly in terms of fairness
(see Fig. 5(c)); when contention increases (e.g. more
than 60 flows) the scheduling property of the
timeout becomes dominant. In effect, TCP-RTO
behaves unfairly to some flows, since it continuously
fails to provide a time scale for the whole system of
flows, which could guarantee efficient link utiliza-
tion. To strengthen our claims, we analyze the
achieved Goodput per flow in Fig. 5(d), in case of



Fig. 5. Protocol performance in the dumbbell topology: (a) Goodput (in KBytes/s), (b) Retransmitted packets, (c) Fairness, (d) Goodput
per flow (in Bytes/s).
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100 participating flows. We observe that the same
group of flows always (re-)transmits successfully
(flows 1–60), while the rest of the flows (flows 61–
100) repeatedly get rejected and achieve zero Good-
put. On the contrary, WB-RTO guarantees
resources to most of the participating flows (only
10 flows get rejected) and therefore distributes
capacity in accordance with the demand.
(Fig. 5(d)). We note that WB-RTO exhibits one sig-
nificant property. It occasionally behaves aggres-
sively and occasionally more conservatively,
adjusting to the level of flow contention.

In order to verify our statements further, we pres-
ent the bottleneck queue behavior for the above
simulation. In case of TCP-RTO (Fig. 6(a)), we
observe that although only 60 out of 100 flows com-
pete for the backbone link (the rest get rejected), the
buffer is always full. Hence, we conclude that the
TCP retransmission policy is, in this case, rather
aggressive: the time-slot allocated for retransmis-
sions is too short. On the contrary, the conservative
adjustments of the Window-Based RTO, which
reflect a larger time scale for retransmissions, lead
to more efficient buffer utilization (Fig. 6(b)).

7.1.2. Performance evaluation with a satellite

backbone link

In this section we evaluate the performance of the
Window-Based Retransmission Timeout in satellite
environments. We use the topology of Fig. 4(b)
where the satellite link has a propagation delay of
300 ms, and 20 Mbps bandwidth capacity (see
Fig. 4(b)). All buffers use DropTail, except for the
bottleneck buffer, which uses RED and holds up
to 200 packets, with the min and max thresholds

set at 20 and 60 packets, respectively and in accor-
dance with [33]. All flows enter the system randomly
within the first two seconds of the experiment.

The scenario involves also a 10�4 packet error
rate and we additionally include occasional black-
outs which impact the comparative Goodput perfor-
mance of the algorithms (see Fig. 7). This is justified
as follows: due to low contention, WB-RTO does
not extend its scale much, permitting the TCP flows
to exploit bandwidth faster (see progress of sequence
number in Fig. 8) once it becomes available (i.e.,
right after the blackout). TCP-RTO instead, does
not incorporate contention and hence its response
corresponds to a falsely interpreted situation of con-
gestion, extending the timeout unnecessarily. We
explore the details of this scenario in Fig. 8. The
arrow in Fig. 8(a) denotes the point in time where
bandwidth becomes available but TCP-RTO fails
to exploit it. The extra delay results in less Goodput
(26,6% in case of 12 flows, see Fig. 7(b)).

More precisely, in Fig. 8, we notice that stan-
dard-TCP successfully transmits its last packet
(before the blackout) and timeouts approximately
one second later (because of ACK loss during the
blackout). At this point it retransmits unsuccess-
fully, but this time it increases its timeout value
exponentially, misinterpreting the timeout event as



Fig. 8. Convergence time after the blackout: (a) TCP-RTO, (b) WB-RTO.

Fig. 7. Goodput performance: (a) No blackout, (b) After three blackouts in 150 s.

Fig. 6. Queue behavior: (a) TCP-RTO, (b) WB-RTO.
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a signal of high contention. On the contrary, WB-
RTO times out only once (because of ACK loss),
but it does not extend the timeout further, since
Eqs. (4) and (5) did not indicate high level of flow
contention. Hence, we observe that WB-RTO
resumes transmission almost immediately after the
end of the blackout and successfully proceeds to
the next transmission rounds, while TCP-RTO still
waits for the second timeout to occur, due to false
estimation of high contention.

7.2. WB-RTO with RED

The bandwidth of the backbone link is set to
10 Mbps and the propagation delay is set to 30 ms
(Fig. 4(a)). We set the capacity of the RED gateway
to 36 packets, according to the DBP, and configure
the min and max thresholds to 4 and 12 packets,
respectively.

Fig. 9 summarizes the performance of the two
protocols. Although the Goodput performance
(Fig. 9(a)) of TCP-RTO balances with WB-RTO,
the associated effort spent by the protocols differs
significantly. In particular, we observe in Fig. 9(c)
that TCP-RTO retransmits 50% more packets than
WB-RTO. For example, in case of 100 flows, TCP-
RTO retransmits approximately 135 packets per
second more, which is twice the effort expended by
WB-RTO. We observe that the failure of TCP-
RTO becomes more serious as contention grows.
This observation is supportive to our argument
that TCP needs to adjust its timeout to network



Fig. 9. Performance over high congested dumbbell backbone link: (a) Goodput (in Bytes/s), (b) Fairness, (c) Retransmitted packets,
(d) Number of timeouts occurred.
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contention. WB-RTO adjusts its scale progressively
to network contention, widening the difference from
standard-TCP. Consequently, in the worst case
reported in Fig. 9(d), contention caused by 100
flows results in 66% less timeouts for WB-RTO.

Figs. 10 and 11 justify the same argument from
another perspective. That is, the aggressive policy
of TCP-RTO causes inefficient queue utilization,
even when Active Queue Management schemes,
namely RED, are present. More precisely, Fig. 10
shows that the queue length, in case of TCP-RTO,
fluctuates a lot, overcomes the maximum threshold
of the RED gateway and results in forced packet
drops. We observe this behavior from the plot of
the average queue length of the RED gateway in
Fig. 11. Note that the average queue length for
TCP-RTO is always above the maximum threshold,
Fig. 10. Queue behavior: (a) T
which in this experiment is set to 12 packets. On the
contrary, WB-RTO rarely exceeds the maximum
threshold of the RED gateway, (see Fig. 11(b)).

7.3. Traffic diversity

7.3.1. Mice together with elephants

We investigate the possibility of negative impact
of WB-RTO on short flows. Due to the policy of
‘‘punishing’’ further flows that operate with smaller
windows, one may consider that short flows (mice,
such as Web-applications), which traditionally oper-
ate with small windows, may suffer further (e.g.
‘‘World-Wide-Wait’’ [37]). However, as we show
in Fig. 12, the results do not support this claim. It
appears that the dominant behavior of the WB-
RTO algorithm is its capability to reduce the num-
CP-RTO, (b) WB-RTO.



Fig. 12. Performance including mice: (a) Goodput (KB/s), (b) Fairness, (c) Retransmitted packets, (d) Goodput per flow (KB/s).

Fig. 11. Average queue length: (a) TCP-RTO, (b) WB-RTO.
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ber of timeouts. The impact of less timeouts is
clearly more beneficial to mice than to elephants
since the timeout, as a value, constitutes a larger
portion of unexploited communication time for
short flows. Hence, whatever side-effect may be of
concern, it is canceled by the reduction of the time-
out events.

According to [38], most of the traffic accommo-
dated in Internet links is generated by a small num-
ber of long flows (elephants), while the vast majority
of Internet connections carry short flows (mice),
which occupy the rest of the Internet capacity.

We set up the scenario as follows: each time 70%
of the participating flows run Web applications (i.e.,
they represent short flows), while the remaining 30%
of the connections belong to long FTP applications.
This means that in case of 15 participating flows, for
example, only 4 sessions perform bulk data transfer.
The DBP of the backbone link (see Fig. 4(a)) equals
40 packets, while its buffer, which acts according to
the RED queuing policy, has a capacity of 40 pack-
ets as well. The short sessions are configured to
transmit a 10 KB file (e.g. a text-based Web page),
every second.

In Fig. 12 we see that WB-RTO greatly outper-
forms TCP-RTO both in terms of Goodput
(Fig. 12(a)) and in terms of retransmission effort
(Fig. 12(c)). In case of 14 participating flows, for
instance, we see that WB-RTO transmits approxi-
mately 150 KB/s more than standard-TCP, and at



Fig. 13. Timeout events: (a) TCP-RTO, (b) WB-RTO.

Fig. 14. Entering–leaving times.
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the same time retransmits 80 packets (per second)
less than standard-TCP, making a great amount of
network resources available to possible incoming
flows. In this context, we argue that the degraded
goodput performance of standard-TCP is due to
bad retransmission scheduling, which results in flow
synchronization.

We observe simultaneous timeout expirations
experienced by different TCP-RTO flows (see circled
dots in Fig. 13(a)). With TCP-RTO, all 10 flows
timeout simultaneously during the Slow-Start phase
(first circle in Fig. 13(b)) and most of the timeouts
experienced by TCP-RTO are spurious (WB-RTO
does not expire in the same deterministic scenario).
Although both the Forward RTO [9] and the Eifel
[8] algorithms may detect the spurious timeout expi-
ration and recover appropriately, they do not man-
age to de-synchronize TCP flows.

More interestingly, we notice that the last 3 short
flows (i.e., flows 7, 8, 9) timeout simultaneously 10
times during the experiment (see circled dots in
Fig. 13(a)). In addition, long standard-TCP flows
time out quite frequently, unlike WB-RTO which
timeouts sparsely and at random times. In particu-
lar, we count 83 timeout expirations for the short
TCP-RTO flows, but only 50 for the WB-RTO.
The situation gets even worse if we count the long
flows’ timeout expirations. That is, standard-TCP
long flows timeout 46 times in total, while WB-
RTO flows timeout only 12. This leaves more space
to the long flows and minimizes the impact on the
short flows’ performance (Fig. 12).

7.3.2. Dynamic network conditions

We evaluate the performance of the proposed
algorithm in case of dynamically changing network
conditions. We use the topology of Fig. 4(c) and
define five different groups of flows (four TCP and
one UDP): TCP_SNDi,j nodes send endless data
to TCP_RCVi,j nodes, where i, j = (1,2); 10
UDP_SND nodes send a 500 Bytes data packet
every 10 ms to 10 UDP_RCV nodes. Each TCP
group of flows consists of n

4
flows; we repeat the

experiment ten times, increasing each time the num-
ber of TCP flows (i.e., n = 10,20, . . . , 100). All links
in Fig. 4(c) have 100 Mbit/s bandwidth capacity,
apart from the bottleneck link, which has 5 Mbit/s
bandwidth capacity. The entering and leaving times
of the respective groups of flows are shown in
Fig. 14.

We observe (see Fig. 15) that although, occasion-
ally, TCP-RTO slightly outperforms WB-RTO in
terms of Goodput performance, it appears to be
rather inefficient in terms of retransmission schedul-
ing. See for example, the case of 20 flows in
Fig. 15(a). TCP transmits successfully 3 KB/s more
than WB-RTO, but expends effort for retransmitting
20 KB/s more than WB-RTO (Fig. 15(c)). As con-
tention increases, however, we see that WB-RTO
outperforms TCP both in terms of Goodput perfor-
mance and retransmission overhead. When 80 flows
compete, for example, WB-RTO transmits success-
fully 3 KB/s more than TCP-RTO and retransmits
50 KB/s less than TCP-RTO. Furthermore, WB-
RTO improves fairness in all cases (Fig. 15(b)).



Fig. 15. Protocol Performance, Dynamic Scenario: (a) Goodput (Bytes/s), (b) Fairness, (c) Retransmitted packets.
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We have also traced the sequence number
progress for the flows of the above experiment,
although we do not present it here, due to space lim-
itations. We observed that WB-RTO, in accord to
its design principles (see Eqs. (4) and (5)), assigns
longer retransmission timeout penalties to flows
with higher transmission rates. That is, the cwnd_
of flows with higher transmission rate will fluctuate
closer to the max_cwnd_ value and hence, Eq. (4)
will assign greater penalty to such flows. In particu-
lar, WB-RTO extended the timeout of the TCP2,j

group of flows canceling somewhat the TCP1,j

group’s comparative disadvantage due to larger
propagation delay.
8. Conclusions

We designed WB-RTO, based on the following
principles:

1. When contention is high, the timeout algorithm
becomes the scheduler for the link and, hence,
it has to adjust its scale accordingly.

2. A flow should schedule its retransmission early or
late, depending on its contribution to current
contention.

3. Randomization of timers should be designed in a
manner that the link is fully utilized but synchro-
nization is avoided.

We evaluated the performance of the proposed
algorithm and found that our design principles
match well our simulation results. We observed sig-
nificant improvement in retransmission effort and
fairness. We have shown that WB-RTO applies to
various network conditions, such as different net-
work delays, link heterogeneity (lossy links, occa-
sional blackouts), Active Queue Management
schemes and traffic diversity.
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