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Abstract

The Internet Engineering Task Force (IETF) specified in RFC 2988 the Minimum

TCP-RTO and recommended that the TCP Retransmission Timeout (RTO) should

not be smaller than 1 second. According to RFC 2988, there are two main limitations

that call for a lower bound to protect TCP from spurious timeouts: i) the OS clock

granularity (500ms for most OSs at the time of RFC 2988 publication) and ii) the

Delayed Acknowledgments (usually set to 200ms).

We evaluate the correctness of the suggested policy and investigate the impact

of the conservative 1-second Minimum TCP-RTO under modern networking condi-

tions. We define a Cost Function to capture the impact of the extra waiting time,

due to the conservative IETF specification. Our experimental analysis reveals that

the OS clock granularity should not be a matter of concern for modern OSs; we

carefully design a mechanism to deal with Delayed ACKs. We call the proposed

mechanism Adaptive MINRTO (AdMINRTO) to reflect its operational properties.

In particular, the mechanism identifies the packets whose ACKs are (possibly) going

to be delayed and applies extended Minimum RTO to these packets only, in order
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to avoid spurious timeout expirations; otherwise, the Minimum RTO is adjusted to

smaller values in order to avoid extensive idle periods.

We show, through simulations, that the Adaptive MINRTO improves TCP per-

formance significantly, especially in case of next generation’s high-speed, wireless-

access networks. The impact of the proposed mechanism, performance-wise, depends

on several network conditions. For example, the impact of the Adaptive MINRTO

increases i) with the Packet Error Rate (PER), ii) when the path Round Trip Time

is short and iii) for fast transmission links (i.e., high-speeds).

Key words: TCP, Congestion Control, Retransmission Timeout, Flow Contention,

Packet Scheduling

1 Introduction

The Retransmission Timeout policy of standard TCP is governed by the rules

defined in RFC 2988 [11]. The TCP-RTO is calculated upon each ACK arrival

after smoothing out the measured samples, and weighting the recent RTT-

variation history:

RTO = SRTT + 4 × RTTV AR (1)

where, RTTVAR holds the RTT variation and SRTT the smoothed RTT. The

same RFC also specifies that the TCP-RTO should not be smaller than 1

second [11]. This value is known as the Minimum RTO and constitutes the

subject of interest in the present paper.
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Currently, there exists no explicit official instruction to address the setting of

the Minimum RTO value for TCP. Based on the analysis in [1], RFC 2988 [11]

concludes that the TCP Retransmission Timeout should not be smaller than

1 second. Allman and Paxson in [1] investigated the impact of the Minimum

RTO and found that TCP results in lower Throughput performance for Min-

imum RTO values smaller than 1 second. According to RFC 2988 [11], there

are two main limitations that call for a lower bound to protect TCP from

spurious timeouts:

(1) the Clock Granularity (500ms for most OSs at that time): if the RTT

equals the clock granularity, then the timeout may falsely expire before

the ACK’s arrival at the server.

(2) the Delayed Acknowledgments (usually set to 200ms) [3]: in case an ACK

is delayed for more than the current TCP-RTO, the timer will spuriously

expire.

We study each of the above limitations in turn and show that, in fact, there is

a lot of space for improvement in the Minimum RTO setting to improve TCP

performance. In Section 2, we provide details regarding the clock granularity

of modern OSs and find that it is far below the 500ms threshold assumed in

[11]. We define a Cost Function to capture the impact of the Minimum RTO

setting on TCP’s performance. We conclude that the timer granularity does

not constitute a limitation for setting the Minimum RTO, in modern OSs.

In Section 3, we investigate the limitation of the TCP Delayed ACK mecha-

nism on the Minimum TCP-RTO. We propose a mechanism that makes the

TCP server aware of whether the next ACK to be received will possibly be

delayed or not. Based on that, we assign a Minimum RTO value to each outgo-

ing packet: a longer Minimum RTO to packets whose ACKs may be delayed
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and no Minimum RTO, otherwise. The proposed algorithm is called Adap-

tive MINRTO (AdMINRTO). We present our performance evaluation plan in

Section 4. Section 5 includes our extensive performance evaluation, which is

divided in three main parts. More precisely, in Section 5.1, we observe that

several OSs implement different values for the lower bound of the TCP-RTO,

leading to communication inconsistencies. In Section 5.2, we simulate last-mile

wireless users, where losses happen due to fading channels; we present simu-

lation results for web flows (Section 5.2.1), short FTP flows (e.g., small file

transfers, Section 5.2.2) and long FTP flows (Section 5.2.3). Finally, in Sec-

tion 5.3, we investigate the impact of the Minimum RTO value on Goodput,

when losses happen due to buffer overflow (i.e., congestion losses). Simulation

results reveal that the proposed algorithm improves significantly TCP perfor-

mance especially in case of wireless losses. In Section 6 we discuss deployability

issues; we conclude the paper in Section 7.

2 Clock Granularity

We define a Cost Function (Equation 2) to capture the extra time a sender has

to wait before retransmitting, due to the conservative Minimum RTO value.

C(f) =
RTOmin

RTOcurrent

(2)

If C(f) < 1, then the Minimum RTO value adds no extra waiting time, in case

of packet loss, since the TCP-RTO value is larger than the Minimum RTO.

Otherwise, the Minimum RTO value will negatively impact TCP Throughput

performance, by forcing the TCP sender to wait the Minimum RTO timer

expiration, before retransmitting.
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We set (both the client’s and the server’s) clock granularity to 500ms and

simulate one flow over a 500ms round-trip propagation delay path (Fig. 6(b)),

to observe: i) the rationale behind the conservative 1-second Minimum RTO

setting [11], [1] and ii) the impact of the Minimum RTO value relatively with

the actual TCP-RTO value. We find (see Fig. 1) that: i) the TCP-RTO al-

gorithm adjusts to values higher than 1 second, hence, C(f) < 1 and ii) the

Minimum RTO value is only needed as a security setting against spurious

retransmissions (i.e., in case the round-trip propagation delay or the client’s

clock granularity equals the server’s clock granularity and at the same time,

the TCP-RTO adjusts to a smaller value, the sender will spuriously timeout).

 10

 12

 14

 16

 18

 20

 22

 24

 9.5  10  10.5  11  11.5  12  12.5  13  13.5  14

S
eq

ue
nc

e 
N

um
be

r

Time (s)

DATA pkt
ACK

RTO
min RTO

Fig. 1. Granularity = 500ms, Round-Trip Propagation Delay = 500ms

We reduce the round-trip propagation delay to 6ms and repeat the previous

experiment (see Fig. 2). Again, we observe that C(f) < 1. We conclude that

in case of coarse-grained clocks the Minimum RTO does not have negative

impact on TCP Throughput, since the TCP-RTO adjusts to values higher

than the Minimum RTO. The Minimum RTO, instead, is only needed as a

security setting against spurious timeouts.

In Table 1, we present details regarding some of the most popular OSs,

presently; we observe that the clock granularity is always set to a value below
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Fig. 2. Granularity = 500ms, Round-Trip Propagation Delay = 6ms

(or equal to) 25ms. We run the above experiment using, this time, a finer-

grained clock of 10ms.

Table 1

Details on Modern OSs
OS Clock Granularity Delayed ACK

Windows 15 − 16ms 200ms

Solaris 10ms 50 − 100ms

Linux ≤ 25ms Dynamically Set

Figure 3 uncovers the significant difference between the TCP-RTO values and

the Minimum RTO limitation. In contradiction to the coarser-grained clocks,

simulated previously, we observe that the C(f) is now far above 1, obviously

leading to severe performance degradation, in case of packet losses.
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Fig. 3. Granularity = 10ms, Round-Trip Propagation Delay = 6ms
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For the sake of simplicity, we assume the time interval between the ACK

arrival and the RTO value, in Fig. 3, to be negligible and we modify the Cost

Function (Equation 2) accordingly:

C(f) ≈
RTOmin

T (ACK Arr)
≤

RTOmin

RCG + RTPD + TD + QD
(3)

where T (ACK Arr) holds the ACK Arrival Time, RCG the Receiver’s Clock

Granularity, RTPD the Round-Trip Propagation Delay, TD the Transmission

Delay and QD the Queuing Delay. Since we simulate only one flow, we also

consider the Queuing Delay to be insignificant. Hence, from Equation 3, we

derive that C(f) ≈ 62.5. Of course, the cost of extra waiting time due to a

high Minimum RTO value will decrease as the Round-Trip Propagation and

Queuing Delay increase. On the contrary, faster transmission links (i.e., high-

speeds) will reduce the Transmission Delay, leading to Cost Function increase.

We conclude that: i) the clock granularity should not be a matter of concern

for setting the Minimum RTO, and ii) the conservative 1-second Minimum

RTO will have major (negative) impact on TCP’s performance, in case of

packet loss.

3 Dealing with Delayed ACKs

The Delayed ACK mechanism [3] is quite popular among the vast majority of

the OSs, currently. According to that mechanism, the TCP client will delay

sending an ACK for an incoming packet, for as long as the Delayed ACK

timer suggests (see Table 1), unless another packet needs to be sent on that

connection (piggybacking). In other words, if a stream of packets arrive at

the TCP client, the latter will generate one ACK for every other packet.
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Otherwise, if one packet arrives at the TCP client, without being followed

by any subsequent packet, then an ACK will be generated only after the

Delayed ACK timer expiration. The Minimum RTO will prevent spurious

RTO expiration in the latter case.

We propose a mechanism, called Adaptive MINRTO (AdMINRTO), to identify

the packets whose ACKs are (possibly) going to be delayed; the Minimum RTO

is extended accordingly, for those packets only, to prevent spurious TCP-RTO

expirations. Our mechanism is based on the following observations:

– TCP’s Sending Window Management and ACK Processing [2] specifies that

the TCP server should send D back-to-back packets, upon each new-ACK

arrival (ACK-clocking), according to Equation 4:

D = snd.una + min(cwnd, rwnd) - snd.nxt (4)

where snd.una holds the oldest unacknowledged sequence number, cwnd

and rwnd the congestion and advertised window, respectively and snd.nxt

the next sequence number to be sent.

– At the time when D back-to-back packets are generated, TCP does not know

if the application has more data to send, and if it does have, we do not know

after how long.

– Since the D packets ”travel” back-to-back, only the ACK of the last packet

of the ”train” of packets may be delayed, iff the server’s application stops

generating new data.

– Every 2nd packet will always be ACKed.

Consider that at time t0 all previously transmitted packets are already ACKed

and D = 4 (or, generally, D is even). The TCP client will sent ACKs for
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the 2nd and 4th packets. In this case, the client will not delay ACKing any

packets and consequently, there is no need for an extended Minimum RTO.

Hence, we do not apply any Minimum RTO limitation and leave the TCP-

RTO deal with the outgoing packets’ timeout value. Now, consider that at

time t0, D = 3 (or, generally, D is odd). The TCP client will immediately ACK

the 2nd packet and will trigger the Delayed ACK timer for the 3rd packet. If the

server’s application does not generate any other packet (within the Delayed

ACK’s timer interval minus the forward channel propagation delay), then

the 3rd packet will experience delayed ACK response. In this case, we need

to extend the Minimum RTO, for the 3rd packet only, to prevent spurious

timeout expiration.

We extend the above considerations to cover all possible back-to-back sending

patterns; we use one variable, which we call set odd and is initially set to

false. The Adaptive MINRTO operates in one of the following States:

– State 1: ”noMINRTO”. Do not apply extended Minimum RTO to any out-

going packet (i.e., the receiver will always ACK the last packet of the back-

to-back train of packets); set set odd to false.

– State 2: ”extended MINRTO”. Apply extended Minimum RTO to the last

packet of the next train of back-to-back packets; set set odd to true.

According to the following steps, the proposed mechanism applies an extended

Minimum RTO value only if needed (State 2). Otherwise, the TCP-RTO al-

gorithm is applied (State 1). The flow-diagram of the proposed mechanism is

presented in Fig. 4.

– Step 1: Extend the Minimum RTO for the first packet sent in the Slow-Start

phase and proceed to step 2 or 3, depending on the value of D.
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– Step 2: If, and for as long as, D is even and set odd is false, keep on to State

1.

– Step 3: Once D becomes odd, go to State 2.

– Step 4: If, and for as long as, D is even and set odd is true, keep on to State

2.

– Step 5: When D becomes odd again, go to State 1 (i.e., the sum of two odd

numbers is always even and hence, the ACK for the last packet of the next

train will not be delayed).

– Step 6: Proceed to step 2, if D is even, or to step 3, otherwise.

1st packet of the Slow-Start phase

extend MINRTO
set_odd:false

noMINRTO
set_odd:false

extend MINRTO for
  last pkt of train
set_odd:true

D:even D:odd

D:odd

D:odd

D:even
D:even

Fig. 4. The Proposed Mechanism

Summarizing, the Minimum RTO is set according to the following equation:

RTOmin =































R ms, for the last packet if set odd = 1,

RTOcur, otherwise.

where R is a fixed, extended value for the Minimum RTO. We discuss the

setting of this value in Section 5.1.

We present part of the above process in Fig. 5. Initially (i.e., until packet 1478)

set odd is false and D = 2, in which case there’s no need for an extended

Minimum RTO (State 1). Next, D = 3 and hence the proposed mechanism

extends the 3rd packet’s Minimum RTO and sets set odd to true (State 2).
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From that point onwards, since set odd is true and D is not odd, the proposed

mechanism will extend the Minimum RTO of the last (i.e., 2nd) packet of the

back-to-back train of packets (State 2).
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Fig. 5. Modeling the ACKs Arrival

According to the above, we re-write Equation 2, for the proposed mechanism

as follows:

C(f) =































R ms

RTOcur

, for the last packet if set odd = 1,

1, otherwise.

Obviously, the cost of extra waiting time, due to the conservative Minimum

RTO setting, is now significantly decreased; at the same time, the risk of

running into spurious timeouts, due to delayed ACK response from the TCP

client, is effectively avoided.

We note that the proposed mechanism does not apply for packets sent during

the Fast Retransmit phase. During fast retransmit, the Minimum RTO is set

to R ms; afterwards, the mechanism resumes from Step 6. Furthermore, the

sender keeps one extra variable to account for Delayed ACKs that are, finally,

sent to the TCP sender. Although the packet interarrival gap, which equals the
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packet inter-departure gap plus potential sudden increases in network queuing

delays, is typically smaller than 200ms (i.e., the Delayed ACK interval) for

a regular FTP application 1 , the proposed algorithm needs to deal with such

exceptions as well. Otherwise, the algorithm may operate in a wrong state (see

Figure 4). Furthermore, interactive applications, such as SIP [16] transactions

over TCP, piggyback ACKs together with data packets from the client towards

the direction of the server. In that case, it is possible that a Delayed ACK is

piggybacked to a data packet in the TCP data channel. Again, the triggered

Delayed ACK will enter the algorithm in the wrong state.

More precisely, arrival of a Delayed ACK is similar to D (Equation 4) becom-

ing odd, which (according to Figure 4) causes State-change. Inline with the

proposed algorithm’s main functionality, which is to identify whether the next

ACK expected is going to be delayed or not, we introduce a variable called

next ack expected, which is TRUE when the ACK is, potentially, going to

be delayed and FALSE, otherwise. Therefore, upon an ACK arrival and in

case the next ack expected = 1 the algorithm changes State, accordingly.

This way, the proposed algorithm effectively avoids operation in the wrong

state in case of triggered Delayed ACKs or piggybacked packets.

1 We observed, through simulations, that the probability of a triggered Delayed

ACK increases with the error rate, due to extensive idle periods caused by timeout

events. However, we do not present such results here, since the behavior of Delayed

ACKs is outside the scope of the current study.
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4 Performance Evaluation Plan

We evaluate the performance of the proposed mechanism using ns-2 [10]. We

use realistic protocol settings to reflect the behavior of Internet servers [9], [8],

[18]. That is, most OSs use the SACK version of TCP [7] with the timestamps

option enabled [6] and the response against spurious timeouts [5], [17] in place.

We set the Delayed ACK timer to 200ms and the clock granularity to 10ms;

we compare the proposed mechanism with three different Minimum RTO im-

plementations: i) 200ms implemented in Linux TCP, ii) 400ms implemented

in Solaris TCP and iii) 1 second as proposed by IETF (and probably imple-

mented in Windows TCP). We use the network topologies shown in Figure 6;

buffer sizes are set according to the Bandwidth − Delay Product (BDP) of

the outgoing links. We use the RED [4] queuing policy whenever BDP > 20

packets and Drop Tail otherwise, since we consider it unrealistic to set the

RED minimum threshold to less than 5 packets.

10Mbps, 1ms

10Mbps, 5ms

10Mbps, 10ms

�100Mbps,
   10ms

Clients

�30Mbps,
 10ms

Web Server

(a) Topology 1

(b) Topology 2

Fig. 6. Simulation Topologies

We use two traditional performance metrics:

(1) the Task Completion Time (TCT) to measure the time required for a file
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transfer, and

(2) the System Goodput, in case of FTP applications:

Goodput =
Original Data

Connection time
(5)

where Original Data is the number of Bytes delivered to the high-level

protocol at the receiver (i.e., excluding the retransmitted packets and

the TCP header overhead) and Connection time is the amount of time

required for the data delivery.

Whenever deemed appropriate, we also present the retransmission effort of

the transport protocol. Fairness properties are not considered here, since the

proposed algorithm neither hurts nor improves the protocol’s Fairness perfor-

mance.

5 Results

We divide the Results Section in three main subsections. Firstly (Section 5.1),

we show that due to limited standardization efforts on the subject of the

Minimum RTO setting, communication problems may arise when different

OSs attempt to ”talk” to each other. Next, we present the impact of the

Minimum RTO setting on: i) web flows (Section 5.2.1), ii) short FTP flows

(Section 5.2.2) and iii) long FTP flows (Section 5.2.3). Throughout Section 5.2,

we emphasize on next generation, broadband wireless access networks, where

flow-contention is low and losses occur, mainly, due to wireless errors. Finally,

in Section 5.3, we simulate flows that experience congestion losses.

We find that the impact of the proposed mechanism, performance-wise, de-
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pends on several network conditions. For example, the impact of the Adaptive

MINRTO increases for file transfers that take place over short RTT paths or

high speed links and losses happen mainly due to wireless fading channels. On

the contrary, losses due to buffer overflow minimize the impact of the Adaptive

MINRTO.

5.1 The Need for a Standard Mechanism

We have already shown that there exist different implementation settings both

for the Delayed ACK timer and for the Minimum RTO value among different

OSs. We report, however, that in case Equations 6 and 7 hold, then the sender

will run into spurious timeout expirations every time the receiver delays the

ACK response and D = 1 (e.g., after every timeout expiration).

Server′s Minimum RTO < RTPD + TD +

QD + Client′s Delayed ACK Timer (6)

Minimum RTO > RTOcur (7)

We verify the above statement experimentally. We simulate a Linux server

(Minimum RTO = 200ms) and a Windows client (Delayed ACK Timer =

200ms), over a 42ms Round Trip Propagation Delay path (see Fig. 6(a)).

Indeed, we see in Fig. 7 that the Linux server spuriously times-out and re-

transmits packet 601 (i.e., the ACK arrives 42ms later).

On the contrary, the proposed mechanism extends the Minimum RTO long

enough to avoid spurious retransmissions (see Fig. 8). In the present work,
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Fig. 7. Linux Server - 200ms Delayed ACK Client (e.g., Windows client)
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Fig. 8. Modified Linux Server - 200ms Delayed ACK Client (e.g., Windows client)

whenever deemed necessary, according to the proposed mechanism, we ap-

ply Minimum RTO = R = 500ms. That is, the proposed mechanism will

effectively deal with situations where RTPD+TD+QD ≤ 300ms (see Equa-

tion 6), since we have not found any implementation, where the Delayed ACK

interval is greater than 200ms.
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5.2 Wireless Losses

5.2.1 Web Flows

We use the topology shown in Fig. 6(a), where three flows download a content-

rich web-page (i.e., 100KBs) every 5 seconds; end-users are connected through

wireless, lossy links to router R2 (PER = 3%). In Table 2, we present the

Average Task Completion Time 2 (ATCT) for the IETF, Solaris and Linux

TCP implementations, comparatively with the Adaptive MINRTO, after 20

successfully completed tasks.

Since the propagation and transmission delays are the same in all cases, we

subtract them in order to capture the delay difference solely due to the pro-

posed algorithm. We present the performance difference ratio for each Mini-

mum RTO setting comparatively i) with the previous larger Minimum RTO

setting (first number in parentheses) and ii) with the largest Minimum RTO

setting (i.e., IETF standard, second number in parentheses). That is, for ex-

ample, a Linux server improves the 1st flow’s performance by 6% against a

Solaris server and by 17.5% against an IETF-compliant server.

Table 2

Average Task Completion Time (ATCT)
flow 1 flow 2 flow 3

IETF 2.9s 3.0s 3.2s
Solaris 2.55s (12.1%, 12.1%) 2.75s (8.5%, 8.5%) 3s (6.35%, 6.35%)
Linux 2.4s (6%, 17.5%) 2.5s (9.19%, 16.76%) 2.7s (10.11%, 15.75%)
adMINRTO 2.1s (12.6%, 27.65%) 2.4s (4.12%, 20.1%) 2.55s (5.67%, 20.4%)

We observe, in Table 2, that in all cases (i.e., for all flows) the shorter the

Minimum RTO setting, the faster the web-page transfer. Thus, the proposed

algorithm is faster than the rest of the OS’s Minimum RTO settings. The per-

2 Each Task is defined as a complete transfer of a web page.
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formance difference may reach 12% improvement for Linux servers and 27%

for IETF-compliant servers. At the same time, the algorithm presented here,

avoids spurious timeout expirations, in contrast to the Linux TCP implemen-

tation, as shown in Section 5.1. We note that Mac OS, as well as FreeBSD

implementations set the Minimum RTO value to 1.2 seconds. Although we do

not present such results here, we noticed that greater values for the Minimum

RTO degrade TCP’s performance further.

5.2.2 Short Flows

We conduct a series of experiments with regard to the time required to down-

load small files (i.e., the TCT), up to 6MBs 3 , considering various network

conditions. We use the topology shown in Figure 6(b), the scenario setup de-

tails are presented in Table 3, while the corresponding results are presented

in Figure 9.

Table 3

Short Flows Experiment Details
File Size PER Flows bw d

Fig. 9(a) see Fig. 3% 3 5 Mbps 1ms

Fig. 9(b) 2MB see Fig. 3 5 Mbps 1ms

Fig. 9(c) 2MB 3% see Fig. 5 Mbps 1ms

Fig. 9(d) 2MB 3% 3 see Fig. 1ms

In all cases, we see that IETF-compliant servers extend significantly the file

delivery time. Occasionally, the difference between the IETF specification

and the rest of the Minimum RTO settings may reach 100% increase (e.g.,

3 Although the term ”short flows” is typically used for web flows (i.e., up to 100KBs)

in the related literature, it is very common that users wait for a small file delivery,

before resuming other tasks (e.g., small program installation, software updates or

heavy presentation files). Therefore, for the purpose of the current study, we use

the term ”short flows” for such file transfers as well.
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Fig. 9. Short Flows

Fig. 9(b), PER = 5%). Clearly, the conservative 1-second Minimum RTO set-

ting becomes inefficient since in many cases, users have to wait for more than

one minute before a small file is downloaded. The rest of the Minimum TCP-

RTO implementations achieve much faster Task Completion Times (TCT),

with the Adaptive MINRTO being the fastest one. Although one would ex-

pect that the protocols’ performance difference would decrease as contention

increases, small buffer sizes set according to the BDP, are not associated with

extensive queuing delays (see Figure 9(c)). The Linux Minimum RTO set-

ting, occasionally, falls in consecutive spurious timeout expirations (see Sec-

tion 5.1), increasing this way the Task Completion Time (e.g., Fig. 9(a), 4 MB

or Fig. 9(c) 40 and 60 flows).
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5.2.3 Long Flows

We extend our experimental analysis to investigate the performance of long

FTP flows. We use the topology shown in Figure 6(b); the simulation time is

fixed to 300 seconds; the scenarios are summarized in Table 4, while the cor-

responding results are presented in Figure 10, where we measure the Goodput

performance of the transport protocols.

Table 4

Long Flows Experiment Details
bw bb PER Flows bw d

Fig. 10(a) see Fig. 3% 500 50 Mbps 1ms

Fig. 10(b) 100 Mbps see Fig. 3 5 Mbps 1ms

Fig. 10(c) 100 Mbps 3% see Fig. 5 Mbps 1ms

Fig. 10(d) 100 Mbps 3% 3 see Fig. 1ms

Fig. 10(e) 100 Mbps 3% 3 5 Mbps see Fig.

We observe significant performance increase when the Adaptive MINRTO is

used. Faster transmission links (i.e., increased bandwidth) allow for faster re-

transmission attempts and consequently better protocol performance, as we

see in Fig. 10(a) and 10(d). Performance increase may be greater than 30%

against the Linux Minimum RTO setting, 45% against the Solaris implemen-

tation and 100% against the IETF proposal. Results are similar in case of

increasing PER (Figure 10(b)). Note that Mac OS and FreeBSD implemen-

tations will further reduce TCP’s Goodput performance. We report that the

performance difference increases even more, in extreme environments, where

the packet error rate may be up to 10% or more (e.g., wireless mesh networks).

The effect of the proposed algorithm is reduced as the Round Trip Propagation

Delay (RTPD) and the Queuing Delay (QD) increase. In particular, the effect

of the proposed algorithm decreases as RTPD + TD + QD ; RTOmin(f),

where f represents the Linux, Solaris or IETF corresponding setting.
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(c) Increasing Contention
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(e) Increasing RTT

Fig. 10. Long Flows

Indeed, we see in Figure 10(e) that the effect of the proposed algorithm, grad-

ually, fades away as the round trip propagation delay (and consequently the

queuing delay) of the end-to-end path increases. Reduction of the performance

difference, however, exists even for short round trip time paths. For example,

in case RTT = 60ms, the performance difference of the proposed algorithm

decreases to 10% against the Linux setting and to 22% against the IETF spec-

ification. Longer RTT paths (e.g., 120ms) minimize the effect of the proposed

algorithm, due to large buffer sizes, which, in turn, increase the queuing delay.

Therefore, the proposed algorithm boosts TCP’s performance for file trans-
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fers that take place over short paths (e.g., within university campuses, cities

or WANs), end-users are wirelessly connected and losses are due to fading

channels.

5.3 Congestion Losses

We evaluate the performance of the proposed algorithm when losses happen

due to buffer overflow, rather than due to wireless errors. For that purpose,

we repeat the simulation presented in Figure 10(c) but in the current setup,

wireless PER = 0%. The corresponding results are presented in Figure 11;

in Fig. 11(a) and 11(b) RTT = 6ms, while in Fig. 11(c) and 11(d) RTT =

120ms.
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(a) Goodput - RTT = 6ms
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(b) Retransmissions - RTT = 6ms
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(c) Goodput - RTT = 120ms
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(d) Retransmissions - RTT = 120ms

Fig. 11. Congestion Losses

In both cases, we see that there is no difference in the Goodput performance

of the different TCP implementations (Fig. 11(a) and 11(c)). Similar results

were presented in a recent, trace-driven, study [15]. As for the retransmission
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effort, we observe that in all cases, excluding the Linux TCP implementation,

the shortest the Minimum RTO setting, the more the retransmission effort

of the transport protocol, when the data transfer takes place over short RTT

paths (Fig. 11(b)). Noteworthy, we observe that the Linux Minimum RTO im-

plementation, which, in conjunction with the 200ms Delayed ACK timer, falls

in spurious timeout expirations quite frequently (see Section 5.1), increasing

this way the number of retransmitted packets (Fig. 11(b) and 11(d)).

As we have already shown in Fig. 10(e), the effect of small Minimum RTO

values decrease as the RTT increases. This expectation is further validated in

Fig. 11(d), where we see that smaller Minimum RTO settings do not result

in increased retransmission effort. Higher levels of flow contention result in

inefficient retransmission timeout (Equation 1) calculations [14], [12], [13] and,

hence, such scenarios do not correspond to the scope of the current study.

6 Deployability

Extensive performance evaluation revealed that the proposed algorithm im-

proves significantly TCP’s performance in case of data transfers over short

(up to approximately 100ms) RTT paths, where the last-mile wireless link in-

duces random errors. In case of short RTT paths and minimal wireless losses,

short Minimum RTO settings increase TCP’s retransmission effort. Other-

wise, in case of long RTT paths and losses due to congestion, the proposed

algorithm neither improves nor degrades TCP’s performance. Therefore, the

proposed algorithm presents high potential for deployability, since it does not

impact (by increased retransmission overhead) the stability and convergence

of long, transatlantic Internet flows. Instead, (incremental) deployment of the
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proposed algorithm will improve TCP performance for flows within university

campuses, cities or regional urban areas.

Furthermore, current TCP implementations, due to different Minimum RTO

settings, may occasionally become unfair. For example, the Linux implemen-

tation is much more aggressive than the IETF specification. Therefore, users

that download data from a Linux server may steal bandwidth resources from

users connected to an IETF-compliant server. A universal setting for the Min-

imum TCP-RTO can cancel this unfairness.

7 Conclusions

We have shown that the conservative 1-second Minimum RTO setting causes

severe TCP performance degradation, especially in case of wireless losses. We

argued that such a conservative setting, to protect against spurious TCP time-

outs, is not needed, since: i) modern OSs use fine-grained clocks and ii) the

Delayed ACK response can be dealt with, using the proposed Adaptive MIN-

RTO algorithm. Simulation results show that the proposed algorithm achieves

significantly higher Goodput performance, when flows traverse wireless fad-

ing channels, while the performance difference decreases in case of congestion

losses.
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