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Abstract

Real-time transmission over asymmetric satellite IP links is challenging, since satellite systems commonly exhibit long propagation
delays, while bandwidth asymmetry often enforces a variable and infrequent rate of acknowledgment packets (ACKs) across the
upstream channel with several undesirable implications. In this context, we formulate an analytical model in order to quantify the impact
of satellite systems and link asymmetry on TCP performance and real-time delivery. We emphasize on the effects of asymmetric links, and
especially on the implications that cause interruptions in the sending rate, and eventually disturb smooth delivery. Since TCP perfor-
mance is in part throttled by the rate of arriving ACKs, we additionally investigate the impact of delayed ACKs. Although delayed
ACKs occasionally diminish the transmission rate, we uncover notable gains in terms of smoothness and real-time delivery. Further-
more, we demonstrate conclusive performance studies tackling the supportive role of selective acknowledgments (SACK) and the effect
of varying bit error rates. Our simulation results illustrate that most existing end-to-end solutions do not comply with the stringent
Quality of Service (QoS) provisions of time-sensitive applications, resulting in ineffective bandwidth utilization and varying delays in data
delivery. Finally, with the absence of a satellite-optimized TCP implementation for real-time transmission, we identify the most
prominent end-to-end solutions that manage to alleviate most of the impairments induced by asymmetric satellite links, sustaining a
relatively smooth transmission rate.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Satellite systems evolve towards the delivery of broad-
band IP services and are candidates to integrate the wire-
less data networks, due to their wide coverage and
broadcast capabilities. Geostationary (GEO) and Low-alti-

tude Earth Orbit (LEO) satellites enable the delivery of
time-sensitive data, such as audio and video content, over
large coverage areas. However, satellite networks demon-
strate certain limitations. First, in order to provide services
at a reasonable cost, satellite links exhibit bandwidth asym-
metry, since they comprise a high-capacity forward space
link and a low-bandwidth reverse (space or terrestrial)
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path. Some satellite networks are inherently bandwidth
asymmetric, such as those based on a direct broadcast
satellite (DBS) downlink and a return via a dial-up modem
line. For purely GEO or LEO systems, many proposed sys-
tems offer the capability to download at tens of Mb/s, but
they do not provide uplinks at rates higher than several
hundred Kb/s or a few Mb/s, due to uplink carrier sizing.
Furthermore, satellite networks demonstrate relatively
increased propagation delays which dramatically affect
the bandwidth-delay product (BDP). Long transmission
distances result in fading channels, and eventually in bit
error rates (BER), which remain higher (10�6 or worse)
than in terrestrial networks. Reception of corrupted data
may trigger requests for retransmission increasing the
overhead, as well as end-to-end delays.

Most Internet transport protocols exhibit limited
efficiency under these awkward conditions. Transmission
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Control Protocol (TCP), based on the principles of conges-
tion management [1], Slow-Start [2], and Additive Increase

Multiplicative Decrease (AIMD) [3], was designed to pro-
vide a reliable data delivery service for wired IP networks.
As a result, it demonstrates inadequate performance in het-
erogeneous wired/wireless environments, such as satellite
IP networks. Authors in [4] outline three major shortfalls
of TCP: (i) ineffective bandwidth utilization, (ii) unneces-
sary congestion-oriented responses to wireless link errors
(e.g. fading channels) and operations (e.g. handoffs), and
(iii) wasteful window adjustments over asymmetric, low-
bandwidth reverse paths. More precisely, TCP commonly
sets the initial slow-start threshold (ssthress) to an arbitrary
value independently of BDP. If ssthress is adjusted too high
relatively to the network BDP, the exponential increase of
congestion window (cwnd) may cause multiple packet
drops and coarse timeouts. Inversely, in the situation of a
relatively low value of ssthress, the slow-start phase is
concluded prematurely resulting in poor startup utilization.
Furthermore, standard TCP is not able to detect the nature
of the errors that cause packet drops, and consequently
determine the appropriate error-recovery strategy. Hence,
TCP invokes congestion-oriented responses to all wireless
errors, which are common in satellite links, resulting in
unnecessary throughput degradation.

TCP performance is also affected by bandwidth
asymmetry [5]. Despite the small size of acknowledgment
packets (ACKs), the reverse channel is often unable to
carry their high rate. When ACKs arrive at the upstream
bottleneck link at a higher rate than the link can support,
a queue is built up. In the presence of a large sending
window, if buffering in the uplink is not enough to accom-
modate incoming ACKs, some of them are dropped due to
buffer overflow. Since most TCP implementations inflate
their cwnd in response to the number of ACKs they
receive, a possible infrequency of ACKs degrades the send-
ing rate. In addition, the loss of ACKs renders TCP’s Fast

Retransmit and Fast Recovery [6] algorithms less effective,
since the sender may not receive the threshold number
(commonly 3) of duplicate ACKs (DACKs). Therefore,
congestion in the reverse path may result in coarse timeouts
and multiple window reductions, while Round Trip Times

(RTTs) are often increased, diminishing the protocol
efficiency.

A part from the particular characteristics of satellite
links, TCP should comply with the stringent requirements
and constraints of time-sensitive traffic. Real-time applica-
tions are comparatively intolerant to delay and variations
of throughput and delay. Furthermore, reliability parame-
ters, such as packet drops and bit errors, usually compose
an impairment factor, since they cause a perceptible degra-
dation in media quality. Standard TCP usually induces
oscillations in the achievable transmission rate and
occasionally introduces arbitrary delays, since it enforces
reliability and in-order delivery. In this context, several
TCP protocol extensions [7–9] have emerged to overcome
the standard TCP limitations providing more effective
bandwidth utilization in order to achieve a smooth trans-
mission and playback rate.

Along these lines, the constraints of transmission over
satellite links, as well as real-time applications require-
ments call for effective and robust transport protocol ser-
vices. Although numerous research proposals have
emerged towards improving transport services over wire-
less/satellite links, the converged domain of time-sensitive
data delivery over satellite IP networks has not attracted
the required attention from the research community. Real-
izing the issues and parameters that affect TCP perfor-
mance over satellite links, our objective is to exploit
TCP’s potential for timely delivery over such environ-
ments. Our study builds on and extends the analysis and
the experimental results of [10]. Based on a comprehensive
analytical approach, as well as extensive simulations, we
investigate the performance issues that arise in real-time
streaming with window-based congestion control mecha-
nisms. We emphasize on link asymmetry and the potential
implications on TCP performance, due to the imperfection
and variability in the ACK feedback. In this context, we
uncover undesirable effects on standard TCP, which
degrade the performance of real-time delivery in several
occasions. Quantifying the efficiency of a solution-frame-
work based on selected TCP implementations, we eventually
identify the most prominent end-to-end mechanisms that
manage to alleviate most of the impairments induced by
satellite links and bandwidth asymmetry. In this study,
we do not include User Datagram Protocol (UDP) in our
evaluation experiments; the protocol lacks all basic mecha-
nisms for error recovery and flow/congestion control, and
thus provides a different type of service. In [11] we have
shown that UDP may perform worse than TCP in several
occasions. In addition, the absence of congestion control
for UDP poses a threat to network stability.

The rest of the paper is organized as follows. Section 2
summarizes related work and provides an overview of
TCP performance issues and selected proposals for trans-
mission over satellite links. In Section 3 we formulate an
analytical model in order to quantify the effects of satellite
systems and link asymmetry on TCP performance and real-
time delivery. Section 4 includes the parameters of our
evaluation methodology, followed by Section 5, where we
demonstrate conclusive performance studies based on
extensive simulations. Finally, in Section 6 we highlight
our conclusions.

2. An overview of related work and TCP performance issues

TCP’s efficiency for real-time delivery over satellite links
has not been studied in depth. Most related research efforts
focus on bulk-data transmission over satellite IP networks
and study the associated TCP performance [5,12–14]. On
the other hand, the literature includes several TCP
enhancements, which exhibit improved real-time perfor-
mance [7–9]. However, such end-to-end solutions do not
address the particular characteristics of satellite links. In
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the sequel, we provide a taxonomy of the most prominent
approaches, discussing separately TCP issues in satellite
links, enhanced TCP versions with real-time capabilities,
and selected mechanisms operating on the link-layer.

2.1. TCP issues in satellite networks

Departing from TCP performance issues during Slow-
Start, the associated algorithm may take a long time to
allocate a considerable amount of network resources. More
precisely, according to [13] the time t required by Slow-
Start in order to reach a data rate D is:

t ¼ RTTð1þ log2ðD � RTT=SÞÞ

where S is the average packet size. Concerning a GEO sa-
tellite link with a typical RTT of 550 ms, several RTTs are
needed to finish startup. Numerous proposals address the
limitation of utilizing inadequate resources during the
Slow-Start phase. According to a technique, namely TCP
Spoofing [15], a router located near the source transmits
ACK packets to the sender. Consequently, the sending
window is growing rapidly and performance is improved,
since the duration of Slow-Start is significantly reduced.
However, TCP Spoofing operates efficiently only under
certain provisions, which may not be satisfied within the
context of ‘‘real Internet’’. That is, ACKs are required to
traverse the same path with data. Furthermore, dynamic
routing changes or crashing routers may lead to loss of
data.

An alternative approach is split connection protocols,
such as Indirect-TCP (I-TCP) [16]. A split connection pro-
tocol virtually splits a TCP connection into multiple sepa-
rate connections. However, these protocols do not handle
handoff operations efficiently [15], since handoff procedures
tend to be slow and complicated. Furthermore, due to
splitting, end-to-end semantics of TCP is violated. Addi-
tional proposals include an increased initial congestion
window and Fast Start. According to the former approach,
the congestion window (cwnd) is initially adjusted:
1 < cwnd < 4. On the other hand, Fast Start [17] provides
an alternative to Slow-Start by exploiting the most recent
transmission rate and reusing it for a consequent transfer.
However, such an assumption is more suitable for short
flows (e.g. Web transfers) and may eventually lead to
congestion, if the last recorded rate is too high for current
network conditions.

TCP-Peach [18] is a proposed congestion control scheme
that explicitly addresses satellite IP networks. TCP-Peach
incorporates two new algorithms, namely Sudden Start

and Rapid Recovery, instead of the conventional Slow-Start
and Fast Recovery. Inline with the Probing mechanism and
Immediate Recovery proposed in [19], these algorithms are
based on the concept of using dummy segments to probe the
availability of network resources without carrying any new
information to the sender. Dummy segments are treated as
low-priority segments (priority assignment at the IP layer is
therefore required) in order to avoid implications with
actual data traffic. The main advantage of TCP-Peach is
the compatibility with traditional TCP implementations,
since it merely includes modifications in the end-user
behaviors. The protocol achieves improved goodput per-
formance; however, it is basically intended for bulk-data
transfers. Therefore, it does not account for the Quality
of Service (QoS) provisions required by time-sensitive
traffic.

TCP selective acknowledgments (SACK) options [20]
were proposed in order to alleviate TCP’s inefficiency in
handling multiple drops in a single window. The use of
selective acknowledgements is optional, and during the
connection setup is determined whether SACK would be
supported. TCP SACK enables the receiver to inform the
sender about segments that were received out of order.
Hence, the sender avoids retransmitting segments whose
successful delivery at the other end is not evident from
the DACKs received. TCP SACK yields improved perfor-
mance for a relatively large sending window. Furthermore,
by reducing the rate of ACKs, notable gains may be
attained in asymmetric links.

2.2. Transport layer enhancements with real-time capabilities

Several TCP protocol extensions have emerged in order
to overcome the standard TCP limitations providing more
effective bandwidth utilization and sophisticated mecha-
nisms for congestion control, which preserve the funda-
mental QoS guarantees for time-sensitive traffic. Authors
in [7–9] proposed a family of TCP compatible protocols,
called TCP-friendly. Generally, we consider TCP-friendly
any protocol whose long-term arrival rate does not exceed
the one of any conformant TCP in the same circumstances
[21]. TCP-friendly congestion control has the ability to
maintain network stability by promptly responding to con-
gestion and to be cooperative with other flows, while it
commonly provides more efficient QoS, (e.g. a smoothed
sending rate and bounded latency for playback multimedia
applications). The differences between standard TCP and
TCP-friendly congestion control lie mainly in the specific
values of additive increase rate a and multiplicative
decrease ratio b, while their similarities in their AIMD-
based congestion control (a characteristic that enables us
to include them both in the family of TCP (a,b) protocols).
Standard TCP is therefore viewed as a specific case of TCP
(a,b) with a = 1 and b = 0.5. On the other hand, TCP-
friendly protocols are designed to satisfy the requirements
of time-sensitive applications. However, they may exhibit
further weaknesses, when bandwidth becomes available
rapidly [22]. GAIMD [9] is a TCP-friendly protocol that
generalizes AIMD congestion control by parameterizing
a and b. For the family of TCP protocols, authors in [9]
derives a simple relationship between a and b in order to
be friendly to standard TCP. Based on experiments, they
propose an adjustment of b = 0.875 as an appropriate
smooth decrease ratio, and a moderated increase value
a = 0.31 to achieve TCP friendliness.



if an ACK is received  

   sample_BWE[n] = (acked * pkt_size * 8) / (now - last_ACK_time) 

BWE[n] = (1 - beta) * (sample_BWE[n] + sample_BWE[n - 1]) / 2 + beta * BWE[n - 1]

end if 

Fig. 1. TCP Westwood bandwidth estimation algorithm.
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TCP Westwood [23] is a sender-side-only modification of
TCP Reno congestion control, which exploits end-to-end
bandwidth estimation to properly set the values of slow-
start threshold and congestion window after a congestion
episode. TCP Westwood significantly improves fair sharing
of high-speed networks capacity. The protocol incorpo-
rates a recovery mechanism which avoids the blind halving
of the sending rate of TCP Reno after packet losses, and
enables TCP Westwood to achieve a high link-utilization
in the presence of wireless errors. The specific mechanism
considers the sequence of bandwidth samples sam-

ple_BWE[n] obtained using the ACK arrivals and evalu-
ates a smoothed value, BWE[n], by low-pass filtering the
sequence of samples, as described by the pseudocode in
Fig. 1, where acked is the number of segments acknowl-
edged by the last ACK; pkt_size is the segment size in bytes;
now is the current time; last_ACK_time is the time the pre-
vious ACK was received; beta is the pole used for the filter-
ing (a value of 19/21 is suggested). However, in [24] we
showed that TCP Westwood tends to overestimate the
available bandwidth, due to ACKs clustering. TCP West-

wood+ is a recent extension of TCP Westwood, based on
the Additive Increase/Adaptive Decrease (AIAD) mecha-
nism. Unlike the initial version of Westwood, TCP West-
wood+ computes one sample of available bandwidth
every RTT using all data acknowledged in the specific
RTT, therefore obtaining more accurate estimates [25].

TCP Real [26,27] is a high-throughput transport proto-
col that incorporates congestion avoidance mechanism in
order to minimize transmission-rate gaps. As a result, the
protocol is suited for real-time applications, since it enables
better performance and reasonable playback timers. TCP
Real employs a receiver-oriented and measurement-based
congestion control mechanism that significantly improves
TCP performance over heterogeneous networks and asym-
metric paths. The protocol approximates a receiver-orient-
ed approach beyond the balancing trade of the parameters
of additive increase and multiplicative decrease. In this
context, TCP Real introduces another parameter, namely
c, which determines the window adjustments during con-
gestion avoidance. More precisely, the receiver measures
the data-receiving rate and attaches the result to its ACKs,
directing the transmission rate of the sender. When new
data is acknowledged and the congestion window is adjust-
ed, the current data-receiving rate is compared against the
previous one. If there is no receiving rate decrease, the
congestion window is increased by 1 Maximum Segment

Size (MSS) every RTT (a = 1). If the magnitude of the
decrease is small, the congestion window remains
temporarily unaffected; otherwise, the sender reduces the
congestion window multiplicatively by c. In [26] a default
value of c = 1/8 is suggested. However, this parameter
can be adaptive to the detected conditions. Generally,
TCP Real can be viewed as a TCP (a,b,c) protocol, where
c captures the protocol’s behavior prior to congestion,
when congestion boosts up.

Although we explicitly study and analyze the behavior
of window-based mechanisms over asymmetric satellite
links, we briefly refer to selected rate-based protocols,
which compose an elegant framework for multimedia
applications. TCP-friendly Rate Control (TFRC) [7] is a
representative TCP-friendly, rate-based congestion control
protocol. According to TFRC, the transmission rate is
adjusted in response to the level of congestion, as it is indi-
cated by the loss rate. Unlike standard TCP, the instanta-
neous throughput of TFRC has a much lower variation
over time, and consequently, only smooth adjustments
are needed. Furthermore, multiple packet losses in the
same RTT are considered as a single loss event by TFRC
and hence, the protocol follows a more gentle congestion
control strategy. TFRC eventually achieves the smoothing
of the transmission gaps and therefore, is suitable for appli-
cations requiring a smooth sending rate, such as streaming
media. However, this smoothness has a negative impact, as
the protocol becomes less responsive to bandwidth avail-
ability [22]. Scalable Streaming Video Protocol (SSVP)
[28] is a new congestion control scheme, which operates
on top of UDP and is optimized for unicast video stream-
ing applications. The transmission rate is controlled in a
TCP-friendly fashion by properly adjusting the inter-pack-
et-gap, spacing outgoing packets evenly to produce a
smoothed flow. SSVP eventually adapts to the vagaries of
the network and provides efficient QoS provisioning for
video streaming applications.

2.3. Link-layer enhancements

Besides transport-layer modifications, there are several
techniques operating on the link-layer, which attempt to
ameliorate the impact of wireless errors [15]. The most
remarkable implementations, which provide error-correc-
tion, are Forward Error Correction (FEC) and Automatic

Repeat Request (ARQ) [29]. FEC introduces added over-
head to data bits in order to cope with data corruption.
Corrupted packets are directly corrected, without retrans-
mission, which is critical for lossy links exhibiting long
delays. In addition, FEC does not interfere with TCP
mechanisms. However, the redundant information is not
exploited in the absence of link errors resulting in a waste
of bandwidth. Furthermore, FEC requires additional
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resources in CPU processing time, memory and power
consumption.

On the other hand, ARQ mechanisms are invoked when
packets that contain bit errors cannot be corrected. In this
case, the erroneous packets are discarded and a retransmis-
sion is directly triggered. Unlike FEC, ARQ allocates
additional network resources only when a packet is
retransmitted. The mechanism generally operates more
efficiently for low bit rates. An undesirable effect of ARQ
is that it may interfere with TCP [15]. Concerning the
relaxed packet loss requirements of time-sensitive
applications, as well as the implications that may be
induced by FEC/ARQ in order to maximize reliability,
we chose not to include these mechanisms in our perfor-
mance studies.

3. TCP performance analysis over asymmetric satellite links

with real-time constraints

Departing from the analytical approach found in [10],
we formulate a model in order to quantify the effects of
satellite systems and link asymmetry on TCP performance,
and especially on real-time delivery. The proposed model
applies to bi-directional satellite systems that exhibit band-
width asymmetry; hence, both forward and reverse paths
have the same propagation delay P. We define the trans-
mission period t(n), as the period between two consecutive
transmissions (with individual window sizes). In this con-
text, we model t(n) as a function of transmission number
n. We also define W(n) as the number of data packets sent
at the nth transmission, as shown in Fig. 2. We assume that
W(0) = 1 and W(n) inflates up to the maximum window
size (MWS) (provided that the downstream link is not sat-
urated). Thus

1 6 W ðnÞ 6MWS

S

where S is the fixed packet size (including TCP and IP
headers). The window transmission time T(n) required for
sending W(n) data packets is
w
in
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Fig. 2. The evolution of window size vs. number of transmissions.
T ðnÞ ¼ S � W ðnÞ
BWDn

ð1Þ

where BWDn denotes the bandwidth of the downlink
channel.

TCP receivers typically generate an ACK for each
incoming data packet, and consequently after nth transmis-
sion, W(n) ACK packets are expected to reach the sender.
Hence, the ACK transmission time T(n) required for
sending W(n) ACKs is denoted by

T 0ðnÞ ¼ S0 � W ðnÞ
BWUp

ð2Þ

where S 0 and BWUp are the ACK packet size and the
bandwidth of the uplink, respectively. ACK transmission
time is not negligible despite their small packet size S,
since BWUp is constrained. Ignoring any processing and
queuing delays and with respect to Eqs. (1) and (2), we
can approximate RTT from the 1st transmission period
where W(0) = 1

RTT ¼ 2 � P þ T ð0Þ þ T 0ð0Þ ð3Þ

RTT ¼ 2 � P þ S
BWDn

þ S0

BWUp

ð4Þ

Considering real-time traffic where data packets bear
information with a limited useful lifetime, retransmissions
are often a wasted effort. Eq. (4) reveals that in a GEO
satellite system with a propagation delay P commonly
exceeding 400 ms, retransmitting a lost video packet is
unfruitful either with TCP or link-layer mechanisms, such
as ARQ.

Transmission period t(n) is eventually determined by the
maximum value of RTT, window transmission time T 0(n)
and ACK transmission time T 0(n)

tðnÞ ¼ maxðRTT;T ðnÞ; T 0ðnÞÞ ð5Þ

In the case of a relatively small window size W(n), the sys-
tem throughput does not reach the bandwidth of the down-
link BWDn and hence, t(n) is determined by the value of
RTT (Fig. 3a). As a result, only minimal variations may
be induced in the transmission periods, since RTT is basi-
cally defined by the link propagation delay P. In this case,
transmission gaps are minimized achieving a smooth send-
ing and playback rate.

On the other hand, whenever window size approaches
MWS, throughput may instantly approximate BWDn. In
this case, window transmission time T(n) is maximized
and eventually designates the transmission period t(n)
(Fig. 3b). Let a transmission number k, where all the avail-
able network resources are allocated, and consequently
packet drops occur. If we assume that both upstream and
downstream links are not heavily congested and the sender
is able to receive 3 DACKs in response to the packet loss in
the forward path, Fast Retransmit and Fast Recovery are
triggered. Hence, the window of the next transmission
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Fig. 4. The effect of delay due to coding rate reduction.

Fig. 3. Transmission period model. (a) RTT is maximized. (b) T(n) is
maximized. (c) T 0(n) is maximized.

1 ACK Congestion Control (ACC) is an experimental technique that
requires modifications both in the network (extension to ECN) and the
TCP receiver. Current TCP versions do not employ ACC.

1456 P. Papadimitriou, V. Tsaoussidis / Computer Communications 30 (2007) 1451–1465
W(k + 1) will be b*W(k) and the associated transmission
time T(k + 1) is expressed as

T ðk þ 1Þ ¼ S � W ðkÞ � b
BWDn

ð6Þ

where b is the protocol decrease ratio. A similar outcome
is reached in the situation of a link error, since TCP
commonly invokes congestion-oriented responses and
reduces its window, even if the downstream link is not sat-
urated. Under these conditions, apart from the impair-
ments due to lost packets, the significant variations in the
transmission periods induce gaps which further degrade
the perceived quality (since t(n) = T(n)).

If the sender has not received 3 DACKs, a timeout event
is triggered, followed by an abrupt window reduction
which diminishes the sending rate and may cause a notice-
able interruption in the transmitted stream. In the presence
of a scalable source coding scheme, such interruptions may
be more evident and frustrate the end user. More precisely,
assuming a packet drop during transmission number k, the
sending rate is decreased, and immediately the video coder
is notified to reduce the video coding rate. This process (i.e.
coding rate reduction) inevitably incurs an additional delay
DV. Therefore, the transition from transmission number k

to k + 1 will include an idle time-period resulting in a per-
ceptible transmission gap (Fig. 4).

We additionally consider the implication where the
sender does not receive a number of ACK packets, due
to a constrained uplink bandwidth BWUp or heavy back
traffic. In this case, ACK transmission time T 0(n) exceeds
both T(n) and RTT, and consequently, defines the value
of t(n) (Fig. 3c). Similarly, transmission delay variations
in the reverse path impact the associated transmission peri-
ods and diminish real-time application performance. How-
ever, although TCP manages to relinquish the resources
allocated when it detects congestion according to Eq. (6),
it is not able to relieve the congestion in the reverse path.1

Even if the upstream link has deep queues, the reverse
channel will get saturated before the downstream link,
degrading throughput performance in the forward direc-
tion. More precisely, the ACKs generated in response to
receiving data packets reflect the temporal spacing of these
data packets all the way back to the sender, enabling it to
transmit new packets that maintain the same spacing [1].
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However, the limited upstream capacity and queuing at the
upstream bottleneck router alters the inter-ACK spacing of
the reverse path, and hence that observed at the sender.
When ACKs arrive at the upstream bottleneck link at a
higher rate than the link can support, the spacing between
them, when they emerge from the link, is dilated enforcing
the TCP sender to clock out new data packets at a slower
rate. Therefore, the performance of the TCP connection is
no longer dependent on the downstream bottleneck link
alone; instead, it is throttled by the rate of arriving ACKs.
As a result, the rate of cwnd growth slows down, while cer-
tain TCP variants that dynamically exploit bandwidth
availability by measuring the rate of incoming ACKs (i.e.
TCP Westwood) may achieve inadequate bandwidth utili-
zation. In summary, reaching BWUp capacity poses the
highest threat on asymmetric links.

When ACKs are delayed, the receiver must generate an
ACK within a certain period d (usually d 6 500 ms). If we
adopt the approach of delaying ACKs by a certain period
d, we derive from Eq. (4) a modified RTT formula

RTT0 ¼ 2 � P þ S
BWDn

þ S0

BWUp

þ d ð7Þ

Let the receiver send L delayed ACK packets, which corre-
spond to the transmission of W(n) data packets. Conse-
quently, ACK transmission time is now expressed as

T 00ðnÞ ¼ S0 � L
BWUp

ð8Þ

A considerable ACK delay d is translated into a minimal
number of L ACK packets, which may render ACK trans-
mission time T00(n) negligible. In the presence of delayed
ACKs, the corresponding transmission period t 0(n) is deter-
mined by

t0ðnÞ ¼ maxðRTT0; T ðnÞ; T 00ðnÞÞ ð9Þ
Fig. 5. Simulatio
From Eqs. (7), (8), it is obvious that by issuing delayed
ACKs, we effectively reduce reverse traffic in the expense
of increasing RTT. With respect to Eqs. (5), (9), we
reach the conclusion that delayed ACKs may degrade
TCP performance in the case where t 0(n) = RTT (i.e. no
data/ACK congestion has occurred in the forward/reverse
path)

t0ðnÞ ¼ RTT0;RTT0 > RTT) t0ðnÞ > tðnÞ

Inversely, gains are expected from delayed ACKs in the
situation of congestion in the downlink channel (i.e.
t 0(n) = T(n)), and especially during heavy back traffic

t0ðnÞ ¼ T 00ðnÞ; T 00ðnÞ < T 0ðnÞ ) t0ðnÞ < tðnÞ

Despite these gains, reducing the number of ACKs per
received data segment may result in undesirable effects.
ACK clocking with delayed ACKs reflects the spacing
between data packets that actually trigger ACKs. Since
the TCP sender clocks out new data packets in response
to the inter-ACK spacing of the reverse path, TCP may
need more time in order to open the sending window. This
may also increase the TCP sender burst size.
4. Experimental environment

4.1. Experimental settings

The evaluation plan was implemented on the NS-2 net-
work simulator. LEO systems with RTTs in the range of
40–200 ms cause slight degradation in TCP performance,
despite the considerable RTT variations [12]. However,
due to large RTTs (approximately 530 ms), maintaining
efficient TCP performance over GEO latencies is more
challenging. Along these lines, we focus on quantifying
the effects of GEO systems on TCP efficiency and real-time
delivery. We simulated the system in Fig. 5, where N send-
n topology.
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ers transmit an MPEG-4 video stream to N receivers
through a bi-directional GEO satellite link with 10 Mbps
downlink and 256 Kbps uplink channel. We have also
attached M FTP sources transmitting to M FTP receivers
via the satellite link. We consider the modeled satellite sys-
tem, as a retransmitter of data traffic (received from a ter-
restrial gateway) to ground gateways and user terminals.
The transmitted data are multiplexed in Station 1, before
traversing the satellite link. In accordance with the lossy
nature of satellite links, we simulated an error model for
both forward and reverse satellite channels with configura-
ble bit error rate. BER is adjusted at 10�5, unless otherwise
explicitly stated.

We assume a window scale option which overcomes the
limitation of the maximum window size (i.e. 64 KB)
allowed by standard TCP. Therefore, we adjusted the max-
imum window size at 240 KB. Packet size is set to 1000
bytes and consequently, a window may accommodate at
the most 240 packets approximately. Since the simulated
network exhibits an average RTT of 550 ms, simulation
running time was fixed to 200 s, an appropriate time-period
for all the protocols to demonstrate their potential. We
simulated MPEG flows over standard TCP Reno, the mod-
ified TCP Reno variant [30], known as NewReno, aug-
mented with the SACK option, and the protocols TCP
Westwood+ (TCPW) and GAIMD (0.31,0.875). All the
FTP connections run over TCP Reno. Concerning the
relaxed packet loss requirements of time-sensitive applica-
tions, as well as the implications that may be induced by
FEC/ARQ [15] in order to maximize reliability, we chose
not to include such mechanisms in our experiments.

In order to simulate real-time traffic, we developed an
MPEG-4 Traffic Generator. The traffic generated closely
matches the statistical characteristics of an original video
trace. We used three separate Transform Expand Sample

(TES) models for modeling I, P and B frames, respectively.
The resulting MPEG-4 stream is generated by interleaving
data obtained by the three models. The MPEG traffic gen-
erator was integrated into NS-2 and provides the adjust-
ment of the data rate of the MPEG stream, as well as
useful statistical data (e.g. average bit-rate, bit-rate
variance).

4.2. Measuring performance

We hereby refer to the performance metrics supported
by our simulation model. Since the simulated topology
includes MPEG flows competing with corporate FTP
flows, the performance metrics are applied separately to
the MPEG and FTP traffic. Goodput was used to measure
the overall system efficiency in bandwidth utilization, and is
defined as

Goodput ¼ Original Data

Connection Time

where Original Data is the number of bytes delivered to
the high-level protocol at the receiver (i.e. excluding
retransmitted packets and overhead) and Connection Time

is the amount of time required for data delivery. Long-term
fairness is measured by the Fairness Index, derived from the
formula given in [3], and defined as

Fairness Index ¼

Pn
i¼1

Throughputi

� �2

n
Pn
i¼1

Throughput2
i

� �

where Throughputi is the throughput of the ith flow and n is
the total number of flows. Inter-protocol fairness measure-
ments were conducted based on normalized throughput,
which is the ratio of the average throughput received by
each flow over the bandwidth fair share on each case.

In order to quantify the performance on video delivery,
we monitor packet inter-arrival times and eventually distin-
guish the packets that can be effectively used by the client
application from delayed packets (according to a configu-
rable inter-arrival threshold). The proportion of delayed
packets is reflected in Delayed Packets Rate. Along these
lines, each recipient, receiving packets from the MPEG
streaming application, calculates the number of delayed
packets based on the following algorithm:

Algorithm 1: Delayed packets
# For each packet received with sequence number i,
# determine whether it is delayed

if threshold > 0 then
set packetTime[i] = currentTime
increase packetsReceived

if i > 0 and packetTime[i] � PacketTime[i � 1] >
threshold then

increase delayedPackets
end if

end if

Several notations used in the pseudocode algorithms are
as follows:

1. threshold: packet inter-arrival time threshold
2. delayedPackets: number of packets with inter-arrival

times exceeding the threshold
3. packetTime: packet arrival time.

In accordance with video streaming requirements, we
adjusted the inter-arrival threshold at 100 ms. Since real-
time traffic is sensitive to packet losses, we additionally
define Packet Drop Rate, as the ratio of the number of lost
packets over the number of packets sent by the application.
5. Performance evaluation

In the sequel, we demonstrate and comment on the most
prominent results from the experiments we performed
based on four distinct scenarios. The basic parameters of
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each simulation scenario are as described in the previous
section.
5.1. TCP performance

Initially we performed a series of experiments in order to
evaluate the video performance delivered by the selected
TCP variants. We simulated a wide range of MPEG flows
(1–50) competing with light FTP traffic (5 connections).
The target sending rate for the MPEG flows is adjusted
at 320 Kbps in order to enforce strong contention with
the interfering FTP flows. We measured goodput and proto-

col fairness, and we additionally selected statistics from
delayed and lost packets (only for the MPEG flows), since
both are influencing factors that impact video quality. We
hereby demonstrate the corresponding results of TCP
Reno, TCP NewReno with SACK, TCPW and GAIMD
(Fig. 6).

Apparently, all TCP protocols are unable to sustain
goodput rates close to the bottleneck link rate (Fig. 6a),
despite the relatively large maximum window (i.e.
240 KB). The MPEG connections in each case are affected
by link asymmetry, while they are also sensitive to the dis-
turbances caused by interfering FTP traffic. More precisely,
in the situation of high link-multiplexing, the resulting
infrequency of ACKs diminishes the sending rate, since
a

c d

b

Fig. 6. TCP performance. (a) Goodput of MPEG flows. (b) Fa
cnwd is adjusted in response to the incoming rate of ACKs.
Furthermore, Fast Retransmit and Fast Recovery are not
triggered, when the upstream link is heavily congested
and the TCP sender does not receive 3 DACKs.

Despite these undesirable implications, we note that
GAIMD and especially TCPW achieve higher bandwidth
utilization, outperforming TCP Reno and TCP NewReno
with SACK. Both protocols invoke gentle responses in
the face of packet loss, maintaining a higher sending rate.
TCP Westwood+, in contradiction to the initial version
of Westwood, computes one sample of available band-
width every RTT using all data acknowledged in the specif-
ic RTT, therefore obtaining more accurate estimates
(Fig. 6a). However, from the perspective of real-time deliv-
ery, Westwood+’s efficiency is not evident, since it delivers
a considerable amount of delayed packets (Fig. 6d). Inline
with our analytical approach, reaching the downlink
capacity (i.e. flows 30–50) maximizes transmission time
T(n) and results in variable transmission periods which
impact video delivery. The protocol responds inappropri-
ately to the variation in the rate of arriving ACKs, since
the disturbed inter-ACK spacing reflects the fluctuations
in the receiving rate, due to congestion incidents.

Unlike TCPW, GAIMD yields satisfactory performance
on video delivery for a wider range of flows, which is the
joint effect of relatively low packet losses (Fig. 6c) and a
irness index. (c) Packet drop rate. (d) Delayed packets rate.
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gentle proportion of delayed packets (Fig. 6d). The proto-
col avoids the ‘‘blind’’ halving of cwnd by employing a
large decrease ratio (0.875), therefore achieving the desired
smoothness in the expense of being less responsive than
standard TCP (1.0,0.5). A perceptible lack of responsive-
ness is reflected in Fig. 6c, where GAIMD exhibits more
packet drops than TCPW. However, counterbalancing
the tradeoff between smoothness with responsiveness is
hard to achieve, and in the case of time-sensitive traffic
smoothness composes the primary target.

A comparison between standard TCP Reno and TCP
NewReno (with SACK) reveals that SACK alone is not
sufficient to enable high performance (Fig. 6a). However,
slight gains (especially for high contention) are eventually
attained, since NewReno prevents coarse timeouts and
multiple window reductions, while SACK accelerates the
loss recovery phase. Both TCP Reno and TCP NewReno
are based on ‘‘blind’’ increase/decrease window mecha-
nisms that dynamically exploit bandwidth availability,
without relying on precise measurements of current condi-
tions. Furthermore, they invoke unnecessary congestion-
oriented responses to the bit errors along the satellite link.
Along these lines, they exhibit limited efficiency in the con-
text of real-time delivery. Fig. 6d illustrates that a notable
proportion of packets reach the recipient exceeding the
a

b

Fig. 7. TCP performance vs. bit errors (10 MPEG and 5 FTP flows). (a) G
delay requirements of streaming video both for Reno and
NewReno.

Finally, Fig. 6b depicts some interesting results from the
perspective of bandwidths sharing over asymmetric satellite
links. GAIMD is the only protocol which exhibits a slight
inefficiency in long-term fairness. The protocol employs a
low increase rate of 0.31, which inevitably impacts conver-
gence speed. In a system with multiple flows, competing
connections may perceive a different amount of packet loss.
Considering a low convergence speed in conjunction with
very large RTTs, GAIMD flows eventually converge to dif-
ferent cwnd parameter values and achieve diverse through-
put rates.

5.2. TCP performance vs. error rates

In this scenario, we performed our experiments using
diverse bit error rate adjustments (BER: 10�7 � 10�4). In
satellite networks, BER can be as high as 10�4, which cor-
responds to a packet loss probability of 10�2 or higher. We
hereby demonstrate results from 10 (Fig. 7) to 20 MPEG
flows (Fig. 8) in order to investigate the effect of error-
prone transmission on protocol efficiency and the
performance of video delivery. Apart from MPEG traffic,
the system includes 5 FTP connections in both cases.
c

oodput of MPEG flows. (b) Packet drop rate. (c) Delayed packets rate.
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Fig. 8. TCP performance vs. bit errors (20 MPEG and 5 FTP flows). (a) Goodput of MPEG flows. (b) Packet drop rate. (c) Delayed packets rate.
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Figs. 7 and 8 illustrate that TCP performance degrades
significantly for BER higher than 10�5. TCPW composes
the only exception, since it is by far the less sensitive proto-
col to the increased number of wireless errors. TCPW relies
on a bandwidth estimation mechanism which responds
remarkably well to a wide range of bit error rates, render-
ing TCPW the protocol of choice for BER exceeding 10�5.
Furthermore, it maintains an acceptable delayed packets
rate for intensely error-prone satellite links (Figs. 7c and
8c). On the contrary, TCP Reno, NewReno and GAIMD
compose ‘‘blind’’ increase/decrease windows mechanisms,
which rely on specific events triggered by violated thresh-
olds. Therefore, their congestion-oriented responses to link
errors result in wasteful backward window adjustments
that dramatically affect bandwidth utilization. SACK’s
supportive role results in perceptible performance gains,
since the loss recovery phase is accelerated and the packet
drop rate is sustained to slightly lower levels (Figs. 7b and
8b). However, inline with Reno, NewReno with SACK is
still inefficient for excessively lossy links. The performance
on video delivery is significantly degraded, as the effect of
low goodput rates (Figs. 7c and 8c).

According to Figs. 7 and 8, these undesirable effects are
evident only for BER P 10�5, which is not common in
satellite systems. However, TCP’s limited efficiency at high
bit error rates calls for a next level of enhancement, where
TCP would enable a sophisticated error-recovery strategy
adjusted to the error characteristics of the underlying net-
work and possible performance tradeoffs. Based on such
an approach, the TCP sender would not be obliged to
reduce its transmission rate in the event of a wireless error.

5.3. Impact of delayed ACKs

We assess the impact of delayed ACKs on protocol effi-
ciency in satellite environments. We primarily investigate
whether reducing ACK traffic induces implications, which
affect the performance of video delivery. We simulated
diverse MPEG flows (1–50) competing with 5 FTP connec-
tions. We performed our experiments issuing ACKs with
no delay and with delays of 100, 200 and 500 ms, succes-
sively. In the sequel, we discuss the behavior of TCP New-
Reno with SACK (Fig. 9) and TCP Westwood+ (Fig. 10),
which produced the most conclusive results.

According to Figs. 9a and 10a, reducing the number of
ACKs results in minor (NewReno) or no gains (TCPW) in
terms of bandwidth utilization. Delayed ACKs tend to
slow down the initial slow-start phase (due to the decreased
number of ACKs sent by the TCP receiver), while they
increase the time needed for the TCP sender to open the
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Fig. 9. TCP performance with delayed ACKs (NewReno-SACK). (a) Goodput of MPEG flows. (b) Packet drop rate. (c) Delayed packets rate.
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sending window. Furthermore, the increased RTTs
diminish the sending rate. Fig. 10a also validates TCPW’s
behavior in response to delayed ACKs, as analyzed in Sec-
tion 3. More precisely, TCP’s flow throughput is throttled
by the rate of arriving ACKs with undesirable effects, espe-
cially when the congestion control mechanism relies on
measuring the specific rate in order to obtain bandwidth
estimates (i.e. TCP Westwood). Therefore, delayed ACKs
occasionally degrade TCPW efficiency, since the protocol
achieves inadequate bandwidth utilization for high link-
multiplexing.

On the other hand, we uncover notable gains in terms
of video delivery when issuing delayed ACKs. ACK
clocking with delayed ACKs reflects the spacing between
data packets that actually trigger ACKs. Since the send-
ing rate depends on the rate of incoming ACKs, reduc-
ing and eventually smoothing this rate enables a
smoothed transmission rate, inline with streaming video
provisions. The beneficial role of delayed ACKs is illus-
trated in both Figs. 9c and 10c, where the number of
delayed packets is noticeably decreased. However, we
note that issuing ACKs with delays more than 100 ms
does not result in perceptible performance gains, since
the increased RTTs (as derived from Eq. (7)) counterbal-
ance the benefits from the reduced ACK transmission
time T00(n) (Eq. (8)).

5.4. Inter-protocol fairness

We conclude our performance studies by investigating
the interactions of a variety of MPEG flows with interfer-
ing FTP traffic over asymmetric satellite links. We demon-
strate results only from TCP Westwood+ and GAIMD,
which adequately enable real-time delivery in such environ-
ments. Along these lines, we simulated a wide range of
MPEG flows (1–50) competing with moderate (20 flows)
and heavy (40 flows) FTP traffic over TCP Reno. We
repeated the experiment for TCPW and GAIMD, and
measured the normalized throughput of the MPEG and
the FTP connections for each protocol separately (Figs.
11 and 12).

A comparative overview of Figs. 11 and 12 reveals that
GAIMD coexists fairly with TCP, while TCPW allocates
increased network resources exceeding the link fair share.
When competing with 40 FTP/Reno flows (Fig. 11b),
TCPW connections apparently ‘‘steal’’ bandwidth from
the FTP flows, enforcing the Reno senders to invoke sharp
backward window adjustments under these awkward
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Fig. 10. TCP performance with delayed ACKs (TCPW). (a) Goodput of MPEG flows. (b) Packet drop rate. (c) Delayed packets rate.

a b

Fig. 11. Normalized throughput (TCPW). (a) 1–50 MPEG flows vs. 20 TCP Reno flows. (b) 1–50 MPEG flows vs. 40 TCP Reno flows.
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conditions. As we reported in Subsection 2.2, the conges-
tion control mechanism of TCPW tends to overestimate
the available bandwidth. Thus, the protocol confines the
transmission rate of all interfering connections, which
undesirably obtain resources consistently below of the fair
share of the link.

On the other hand, GAIMD maintains friendliness with
corporate connections, since the employed a, b parameters
satisfy the TCP-friendly equation obtained in [9]
a ¼ 4ð1� b2Þ
3

Therefore, as depicted in Fig. 12, GAIMD allows interfer-
ing TCP flows to obtain network resources closer to the
fair share of the link (i.e. normalized throughput of 1) in
comparison with TCPW, which is critical in systems with
multiple flows and different protocols.

We note that the effects of link asymmetry, such as
increased sender burst size and longer time to open cwnd,
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Fig. 12. Normalized throughput (GAIMD). (a) 1–50 MPEG flows vs. 20 TCP Reno flows. (b) 1–50 MPEG flows vs. 40 TCP Reno flows.
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give an impulse to contention conditions among competing
connections, and consequently, compromise inter-protocol
fairness.

6. Conclusions

Focusing on the study of GEO systems where RTTs expe-
rience insignificant variations, we investigated how satellite
links and bandwidth asymmetry impact TCP performance
and real-time delivery. Based on an analytical approach, as
well as extensive simulations, we demonstrated that in such
environments, TCP performance is not explicitly dependent
on the downlink capacity, but it is throttled by the rate of
incoming ACKs across the reverse path. Apart from inade-
quate bandwidth utilization, a variable and infrequent rate
of ACKs deteriorates the performance of real-time delivery,
causing transmission gaps which are eventually perceived as
playback interruptions at the receiver. During heavy traffic
in the uplink, Fast Retransmit and Fast Recovery algorithms
may not be triggered resulting in coarse timeouts and multi-
ple window reductions. We also showed that delayed ACKs
do not enable perceptible gains in terms of bandwidth utili-
zation. On the contrary, they occasionally degrade the per-
formance of protocols that dynamically exploit bandwidth
availability by measuring the rate of arriving ACKs, such
as TCP Westwood. Despite this implication, we uncovered
notable gains in terms of real-time delivery, since a reduced
and regular rate of ACKs enables a smoother transmission
rate.

From the perspective of individual protocol perfor-
mance, we showed that the algorithm of TCP Westwood+
does not always obtain accurate estimates; yet, it is more
effective than ‘‘blind’’ increase/decrease window mecha-
nisms (i.e. TCP Reno), which rely on specific events trig-
gered by violated thresholds. Even by enabling SACK,
the benefits for TCP are minimal in such environments.
We also identified a significant discrepancy between the
throughput rates achieved by competing Westwood+ and
TCP connections in several occasions. On the other hand,
GAIMD yields satisfactory performance in terms of real-
time delivery in a wide range of network and session
dynamics. Employing a high decrease ratio, the protocol
responds to congestive and wireless losses by reducing the
congestion window more gently than standard TCP.
GAIMD’s performance (along with standard TCP) deteri-
orates only over highly error-prone links (i.e. BER > 10�5),
where flow characteristics do not follow a prescribed and
static behavior. However, error rates of this magnitude
are not common in modern satellite systems.
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