
T. Braun et al. (Eds.): WWIC 2006, LNCS 3970, pp. 62 – 74, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Evaluating TCP Mechanisms for Real-Time
Streaming over Satellite Links

Panagiotis Papadimitriou and Vassilis Tsaoussidis

Demokritos University, Electrical & Computer Engineering Department,
Xanthi, 67100, Greece

{ppapadim, vtsaousi}@ee.duth.gr

Abstract. Real-time streaming over satellite IP networks is challenging, since
satellite links commonly exhibit long propagation delays and increased error
rates, which impair TCP performance. In this context, we quantify the effects of
satellite links on TCP efficiency and streaming video delivery. We investigate a
solution-framework composed by TCP implementations which are expected to
perform adequately in such environments. Furthermore, we study the supportive
role of Selective Acknowledgments (SACK). Along with protocol performance,
we also evaluate the impact of delayed acknowledgments. Our simulation
results illustrate that most existing end-to-end solutions do not comply with the
stringent QoS provisions of time-sensitive applications, resulting in inefficient
bandwidth utilization and increased delays in data delivery. Finally, with the
absence of a satellite-optimized TCP implementation for real-time streaming,
we identify TCP Real as the most prominent solution, since it manages to
alleviate most of the impairments induced by satellite links, sustaining a
relatively smooth transmission rate.

1 Introduction

Satellite systems evolve towards the delivery of broadband IP services and are
candidates to integrate the wireless data networks, due to their wide coverage and
broadcast capabilities. Geostationary (GEO) and low-altitude earth orbit (LEO)
satellites enable the delivery of time-sensitive data, such as audio and video content,
over large coverage areas. Unfortunately, satellite networks demonstrate several
drawbacks. Firstly, in order to provide services at a reasonable cost, satellite links
exhibit bandwidth asymmetry, since they comprise a high-capacity forward space link
and a low-bandwidth reverse (space or terrestrial) path. Some satellite networks are
inherently bandwidth asymmetric, such as those based on a direct broadcast satellite
(DBS) downlink and a return via a dial-up modem line. For purely GEO or LEO
systems, many proposed systems offer the capability to download at tens of Mb/s, but
they do not provide uplinks at rates faster than several hundred Kb/s or a few Mb/s,
due to uplink carrier sizing. Furthermore, satellite networks demonstrate relatively
increased propagation delays which dramatically affect the bandwidth-delay product
(BDP). Long transmission distances result in fading channels and eventually in bit
error rates (BER) which remain higher (10-6 or worse) than in terrestrial networks.
Reception of corrupted data may trigger requests for retransmission resulting in
possible congestion and increasing end-to-end delays.

 Evaluating TCP Mechanisms for Real-Time Streaming over Satellite Links 63

Most Internet transport protocols exhibit limited efficiency under these awkward
conditions. Transmission Control Protocol (TCP), based on the principles of
congestion management [9], Slow-Start [16], and Additive Increase Multiplicative
Decrease (AIMD) [4], was designed to provide a reliable data delivery service for
wired IP networks. As a result, it demonstrates inadequate performance in
heterogeneous wired/wireless environments, such as satellite networks. Authors in
[18] outline three major shortfalls of TCP: (i) ineffective bandwidth utilization, (ii)
unnecessary congestion-oriented responses to wireless link errors (e.g. fading
channels) and operations (e.g. handoffs), and (iii) wasteful window adjustments over
asymmetric, low-bandwidth reverse paths. More precisely, TCP commonly sets the
initial slow-start threshold (ssthress) to an arbitrary value independently of BDP. If
ssthress is adjusted too high relatively to the network BDP, the exponential increase
of congestion window (cwnd) may cause multiple packet drops and coarse timeouts.
Inversely, in the situation of a relatively low value of ssthress the slow-start phase is
concluded prematurely resulting in poor startup utilization. Furthermore, standard
TCP is not able to detect the nature of the errors that cause packet drops and
consequently determine the appropriate error-recovery strategy. Hence, TCP invokes
congestion-oriented responses to all wireless errors, which are common in satellite
links, resulting in unnecessary throughput degradation. Bandwidth asymmetry also
impacts TCP performance [2]. Despite the small size of acknowledgment (ACK)
packets, the reverse channel is often unable to carry the high rate of ACKs. The
congestion in the reverse path inevitably increases Round Trip Time (RTT)
diminishing the protocol efficiency.

Apart from the particular characteristics of satellite links, TCP should comply with
the stringent requirements and constraints of time-sensitive traffic. Real-time
applications are comparatively intolerant to delay and variations of throughput and
delay. Furthermore, reliability parameters, such as packet drops and bit errors, usually
compose an impairment factor, since they cause a perceptible degradation in media
quality. Standard TCP usually induces oscillations in the achievable transmission rate
and occasionally introduces arbitrary delays, since it enforces reliability and in-order
delivery. In this context, several TCP protocol extensions [5, 22] have emerged to
overcome the standard TCP limitations providing more efficient bandwidth utilization
in order to achieve a smooth transmission and playback rate.

Along these lines, the constraints of transmission over satellite links, as well as
streaming media requirements call for effective and robust transport protocol services.
Although numerous research proposals have emerged towards improving transport
services over wireless/satellite links, the converged domain of time-sensitive data
delivery over satellite IP networks has not attracted the required attention from the
research community. Realizing the issues and parameters that affect TCP performance
over satellite links, our objective is to exploit TCP’s potential for efficient streaming
media delivery over such environments. In this context, we investigate a solution-
framework based on the most prominent end-to-end solutions. Furthermore, we assess
the impact of delayed ACKs and link asymmetry on TCP performance, as well as the
associated impact of diverse link error rates. In this study, we do not include User
Datagram Protocol (UDP) in our evaluation experiments; the protocol lacks all basic
mechanisms for error recovery and flow/congestion control, and thus provides a

64 P. Papadimitriou and V. Tsaoussidis

different type of service. In [14] we have shown that UDP may perform worse than
TCP in several occasions. In addition, the absence of congestion control poses a threat
to network stability.

The rest of the paper is organized as follows. Section 2 summarizes related work,
while in Section 3 we formulate a transmission gap model for asymmetric satellite
links. Section 4 includes our evaluation methodology followed by Section 5, where
we analyze the results of the experiments we performed. Finally, in Section 6 we
highlight our conclusions and refer to future work.

2 Related Work

TCP’s efficiency for streaming media delivery over satellite links has not been
studied in depth. Proposed mechanisms range from minor tweaks, such as issuing
delayed ACKs in order to reduce the network load in the reverse path, to sophisticated
solutions, such as TCP Spoofing and split-connection protocols [3]. With the absence
of a dedicated and efficient end-to-end solution, most research approaches commonly
choose to tune an existing protocol in order to achieve the desired performance. Most
related research efforts focus on bulk-data transmission over satellite IP networks and
study the associated TCP performance [8, 15, 21, 2]. TCP-Peach [1] is a proposed
congestion control scheme that explicitly addresses satellite IP networks. TCP-Peach
incorporates two new algorithms, namely Sudden Start and Rapid Recovery, instead
of the typical Slow-Start and Fast Recovery. Inline with the Probing mechanism and
Immediate Recovery proposed in [17], these algorithms are based on the concept of
using dummy segments to probe the availability of network resources without carrying
any new information to the sender. The protocol achieves improved throughput
performance; however, it does not account for the Quality of Service (QoS) provisions
required by time-sensitive traffic.

TCP selective acknowledgments (SACK) options [11] were proposed in order to
alleviate TCP’s inefficiency in handling multiple drops in a single window. TCP
SACK enables the receiver to inform the sender about segments that were received
out of order. Hence, the sender avoids retransmitting segments whose successful
delivery at the other end is not evident from the duplicate ACKs received. TCP SACK
yields improved performance for a relatively large sending window. Furthermore, by
reducing the rate of ACKs, remarkable gains can be attained in asymmetric links.

Several TCP protocol extensions have emerged to overcome the standard TCP
limitations providing more efficient bandwidth utilization and sophisticated
mechanisms for congestion control, which preserve the fundamental QoS guarantees
for time-sensitive traffic. Authors in [5, 22] proposed a family of TCP compatible
protocols, called TCP-friendly. TCP-friendly protocols achieve smooth window
adjustments, while they manage to compete fairly with TCP flows. TCP-friendly Rate
Control (TFRC) [5] is a representative TCP-friendly protocol, where its transmission
rate is adjusted in response to the level of congestion, as indicated by the loss rate.
Multiple packet losses in the same RTT are considered as a single loss event by TFRC
and hence, the protocol follows a more gentle congestion control strategy. The

 Evaluating TCP Mechanisms for Real-Time Streaming over Satellite Links 65

protocol eventually achieves the smoothing of the transmission gaps and therefore, is
suitable for applications requiring a smooth sending rate, such as streaming media.
However, this smoothness has a negative impact, as the protocol becomes less
responsive to bandwidth availability [20].

TCP Westwood [10] is a TCP-friendly protocol that emerged as a sender-side-
only modification of TCP Reno congestion control. TCP Westwood exploits end-to-
end bandwidth estimation in order to adjust the values of ssthresh and cwnd after a
congestion episode. The protocol incorporates a recovery mechanism which avoids
the blind halving of the sending rate of TCP Reno after packet drops and enables
TCP Westwood to achieve a high link-utilization in the presence of wireless errors.
However, in [13] we showed that TCP Westwood tends to overestimate the
available bandwidth, due to ACKs clustering. TCP Westwood+ is a recent extension
of TCP Westwood, based on the Additive Increase/Adaptive Decrease (AIAD)
mechanism. TCP Westwood+ obtains more accurate estimates of the available
bandwidth [7].

TCP Real is a high-throughput transport protocol that incorporates congestion
avoidance mechanism in order to minimize transmission-rate gaps. As a result, this
protocol is suited for real-time applications, since it enables better performance and
reasonable playback timers. TCP Real [19] employs a receiver-oriented and
measurement-based congestion control mechanism that significantly improves
TCP performance over heterogeneous networks and asymmetric paths. The protocol
approximates a receiver-oriented approach beyond the balancing trade of the
parameters of additive increase and multiplicative decrease. In this context, TCP
Real introduces another parameter, namely γ, which determines the window
adjustments during congestion avoidance. More precisely, the receiver measures the
data-receiving rate and attaches the result to its ACKs, directing the transmission
rate of the sender. When new data is acknowledged and the congestion window is
adjusted, the current data-receiving rate is compared against the previous one. If
there is no receiving rate decrease, the congestion window is increased by 1
Maximum Segment Size (MSS) every RTT (α = 1). If the magnitude of the decrease
is small, the congestion window remains temporarily unaffected; otherwise, the
sender reduces the congestion window multiplicatively by γ. In [19] a default value
of γ = 1/8 is suggested. However, this parameter can be adaptive to the
detected conditions. Generally, TCP Real can be viewed as a TCP (α, β, γ) protocol,
where γ captures the protocol’s behavior prior to congestion, when congestion
boosts up.

Besides transport layer modifications, there are several techniques operating on the
link layer, which attempt to ameliorate the impact of wireless errors [3]. Forward
Error Correction (FEC) introduces added overhead to data bits in order to cope with
data corruption. Corrupted packets may be directly corrected, without retransmission,
which is critical for lossy links exhibiting long delays. Automatic Repeat Request
(ARQ) mechanisms are invoked when packets containing bit errors can not be
corrected. In this case, the erroneous packets are discarded and a retransmission is
directly triggered within TCP’s timeout.

66 P. Papadimitriou and V. Tsaoussidis

3 Transmission Gap Analysis of Asymmetric Satellite Links

In this section, we formulate a model for transmission gaps that explicitly addresses
asymmetric satellite links. The proposed model applies to bi-directional satellite
systems which exhibit bandwidth asymmetry; hence, both forward and reverse path
have the same propagation delay P. Based on [12], we define the transmission
period t(n), as the period between two consecutive transmissions (with individual
window sizes). In this context, we model t(n) as a function of transmission number
n. We also define W(n) as the number of data packets sent at the nth transmission.
We assume that W(0) = 1 and W(n) inflates up to the maximum window size
advertised by the receiver. The transmission time T(n) required for sending W(n)
data packets is:

DnBW

W(n)S
n)(T

⋅= (1)

where S and BWDn denote the fixed packet size (including TCP and IP headers) and
the bandwidth of the downlink, respectively. After nth transmission, W(n) ACK
packets are expected to reach the sender. Hence, the transmission time T΄(n) required
for sending W(n) ACKs is denoted by:

UpBW

W(n)S΄
n)(T΄ ⋅= (2)

where S΄ and BWUp are the ACK packet size and the bandwidth of the uplink,
respectively. ACKs transmission time is not negligible despite their small packet size
S΄, since BWUp is constrained. Ignoring any processing and queuing delays and with
respect to equations (1) and (2), we can approximate RTT from the 1st transmission
period where W(0) = 1:

 T΄(0)T(0)P2RTTinit ++⋅= (3)

UpDn

init
BW

S΄
BW

S
P2RTT ++⋅= (4)

Equation (4) reveals that in a GEO satellite system with a propagation delay P
typically exceeding 200ms, retransmitting a lost video packet is unfruitful either by
TCP or link layer mechanisms, such as ARQ.

Transmission period t(n) is eventually determined by the maximum value of
RTTinit, transmission rate T(n) and ACK transmission rate T΄(n):

 T΄(n)) T(n), ,(RTTmax t(n) init= (5)

In the case of a relatively small window size W(n), the system throughput does not
reach the bandwidth of the downlink BWDn and hence, t(n) is determined by the
value of RTTinit. As a result, only minimal variations may be induced in the

 Evaluating TCP Mechanisms for Real-Time Streaming over Satellite Links 67

transmission periods, since RTTinit is basically defined by the link propagation delay
P. In this case, transmission gaps are minimized achieving a smooth sending and
playback rate. On the other hand, whenever throughput instantly approximates BWDn,
transmission time T(n) is maximized and eventually designates the transmission
period t(n). Let a transmission number k, where all the available network resources
are allocated, and consequently packet drops occur. According to standard TCP, the
window of the next transmission W(k+1)1 will be halved and the associated
transmission time T(k+1) is expressed as:

DnBW
2

W(k)
S

1)k(T
⋅

=+ (6)

A similar outcome is reached in the situation of a link error, since TCP commonly
invokes congestion-oriented responses and reduces its window. Under these
conditions, apart from the impairments due to lost packets, the significant variations
in the transmission periods induce gaps which further degrade media quality.

We additionally consider the implication where the sender does not receive a
number of ACK packets, due to a constrained uplink bandwidth BWUp or heavy back
traffic. In this case, ACK transmission time T΄(n) exceeds both T(n) and RTTinit, and
consequently defines the value of t(n). Similarly, transmission delay variations in the
reverse path impact the associated transmission periods and diminish real-time
application performance. However, although TCP manages to relinquish the resources
allocated, when it detects congestion according to (6), it is not able to relieve the
congestion in the reverse path. Along these lines, reaching BWUp capacity poses the
highest threat on asymmetric links.

If we adopt the approach of delaying ACKs by a certain period d, we derive from
(4) a modified RTTinit formula:

 d
BW

S΄
BW

S
P2RTT΄

UpDn
init +++⋅= (7)

Furthermore, let the receiver send L delayed ACK packets which correspond to the
transmission of W(n) data packets. Consequently, ACK transmission time is now
expressed as:

UpBW

LS΄
n)(T΄΄ ⋅= (8)

A considerable ACK delay d is translated to a minimal number of L ACK packets,
which may render ACK transmission time T΄΄(n) negligible. From equations (7), (8),
it is obvious that by issuing delayed ACKs, we effectively reduce back traffic in the
expense of increasing RTT. With respect to (5), we reach the conclusion that delayed
ACKs may degrade TCP performance in the case where t(n) = RTT΄init. That is, no

1 We ignore the retransmission window. Consequently, after loss detection the TCP sender

halves the congestion window at transmission number (k+1).

68 P. Papadimitriou and V. Tsaoussidis

data/ACK congestion has occurred in the forward/reverse path. Inversely, gains are
expected from delayed ACKs in the situation of congestion in the downlink channel
(t(n) = T(n)), and especially during heavy back traffic, where t(n) = T΄΄(n) < T΄(n).

4 Evaluation Methodology

The evaluation plan was implemented on the NS-2 network simulator. LEO systems
with RTTs in the range of 40-200ms cause slight degradation in TCP performance,
despite the large RTT variations [8]. However, due to large RTTs (approximately
530ms), maintaining efficient TCP performance over GEO latencies is challenging.
Along these lines, we focus on quantifying the effects of GEO systems on TCP
efficiency and streaming video delivery. We simulated the system in Fig. 1, where N
senders transmit an MPEG-4 video stream to N receivers through a bi-directional
GEO satellite link with 5 Mbps downlink and 256 Kbps uplink channel. We consider
the modeled satellite system, as a retransmitter of data traffic (received from a
terrestrial gateway) to ground gateways and user terminals. The transmitted video
streams are multiplexed in Station 1, before traversing the satellite link. In accordance
with the lossy nature of satellite links, we simulated an error model for both forward
and reverse satellite channels with configurable bit error rate (BER). BER is adjusted
at 10-4, unless otherwise explicitly stated.

We assume a window scale option which overcomes the limitation of the
maximum window size (i.e. 64 KB) allowed by standard TCP. Hence, we adjusted the
maximum window size at 240 KB. Segment size is set to 1000 bytes and
consequently, a window may accommodate at the most 240 segments approximately.
Since the simulated network exhibits an average RTT of 550ms, simulation running
time was fixed to 200 seconds, an appropriate time-period for all the protocols to
demonstrate their potential. We performed the experiments over standard TCP Reno,
the modified TCP Reno variant [6], known as NewReno, augmented with the SACK
[11] option, and the protocols TCP Westwood+ and TCP-Real. Concerning the
relaxed packet loss requirements of time-sensitive applications, as well as the
implications that may be induced by FEC/ARQ [3] in order to maximize reliability,
we chose not to include such mechanisms in our experiments.

Fig. 1. Simulation topology

 Evaluating TCP Mechanisms for Real-Time Streaming over Satellite Links 69

In order to simulate real-time traffic, we developed an MPEG-4 Traffic
Generator. The traffic generated closely matches the statistical characteristics of an
original video trace. We used three separate Transform Expand Sample (TES)
models for modeling I, P and B frames, respectively. The resulting MPEG-4 stream
is generated by interleaving data obtained by the three models. The MPEG traffic
generator was integrated into NS-2 and provides the adjustment of the data rate of
the MPEG stream, as well as useful statistical data (e.g. average bit-rate, bit-rate
variance).

We hereby refer to the performance metrics supported by our simulation model.
System goodput is used to measure the overall system efficiency in bandwidth
utilization. In [14] we proposed a new metric for the performance evaluation of time-
sensitive traffic, called Real-Time Performance. The metric monitors packet inter-
arrival times and distinguishes the packets that can be effectively used by the client
application from delayed packets (according to a configurable inter-arrival threshold).
The proportion of the delayed packets is reflected in Delayed Packets Rate. Hence,
Real-Time Performance index is defined as the ratio of the number of timely received
packets over the total number of packets sent by the application:

1
packetssent #

packets receivedtimely #
 Index ePerformanc TimeReal ≤=−

In accordance with video streaming requirements, we adjusted the inter-arrival
threshold at 200ms. Since MPEG traffic is sensitive to packet drops, we
additionally define Packet Drop Rate, as the ratio of the number of lost packets
over the number of packets sent by the application. Most of our experiments were
performed on several flows, so we present the average of the real-time performance
of each MPEG flow.

5 Results and Discussion

In the sequel, we demonstrate and comment on the most prominent results from the
experiments we performed based on three distinct scenarios. The basic parameters of
each simulation scenario are as described in the previous section.

5.1 TCP Performance

Initially we performed a series of experiments in order to evaluate the video
performance delivered by the selected TCP variants. We simulated a wide range of
MPEG flows (1-50) adjusting the contention accordingly. We measured goodput and
real-time performance, and we additionally selected statistics from delayed and lost
packets, since both are influencing factors which impact video quality. We hereby
demonstrate the associated results of TCP Reno, TCP NewReno with SACK, TCP
Westwood+ and TCP Real (Figs. 2-5).

70 P. Papadimitriou and V. Tsaoussidis

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

1 10 20 30 40 50

MPEG flows

M
bp

s

Reno
SACK
Westwood+
Real

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 10 20 30 40 50

MPEG flows

Reno
SACK
Westwood+
Real

 Fig. 2. System goodput Fig. 3. Average Real-Time Performance

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1 10 20 30 40 50

MPEG flows

Reno
SACK
Westwood+
Real

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

0,20

1 10 20 30 40 50

MPEG flows

Reno
SACK
Westwood+
Real

 Fig. 4. Packet Drop Rate Fig. 5. Delayed Packets Rate

With the exception of TCP Real (and in part of Westwood+), the protocols are

unable to sustain goodput rates close to the bottleneck link rate (Fig. 2), despite the
relatively large window (i.e. 240 KB). Therefore, the available bandwidth is not fully
exploited, mainly due to link asymmetry and long latency. Inline with our analysis in
Section 3, heavy ACK traffic across the constrained uplink channel extends the
transmission periods (t(n) = T΄(n)) and inevitably induces variable transmission gaps,
which impair the performance of video delivery (Fig. 3).

A comparison between standard TCP Reno and TCP NewReno (with SACK)
reveals that SACK alone is not sufficient to enable high performance (Figs. 2, 3).
However, slight gains (especially for high contention) are eventually attained, since
NewReno prevents coarse timeouts and multiple window reductions, while SACK
accelerates the loss recovery phase. Both TCP Reno and TCP NewReno are based on
“blind” increase/decrease window mechanisms that dynamically exploit bandwidth
availability, without relying on precise measurements of current conditions.
Furthermore, they invoke unnecessary congestion-oriented responses to the increased
bit errors along the satellite link. Along these lines, they exhibit limited efficiency in
the context of real-time application performance (Fig. 3), primarily due to the
significant delays in video-data delivery. Fig. 5 illustrates that a notable proportion of
packets reach the recipient exceeding the delay requirements of streaming video both
for Reno and NewReno.

On the other hand, TCP Westwood+ and TCP Real rely on bandwidth estimation
schemes and are intended to sustain a smooth sending rate minimizing the
transmission gaps. TCP Westwood+, in contradiction to the initial version of

 Evaluating TCP Mechanisms for Real-Time Streaming over Satellite Links 71

Westwood, computes one sample of available bandwidth every RTT using all data
acked in the specific RTT, therefore obtaining more accurate estimates (Fig. 2).
However, from the perspective of real-time delivery, Westwood+ efficiency is not so
profound (Fig. 3), since it delivers a considerable amount of delayed packets (Fig. 4).
Inline with our analysis, reaching the downlink capacity (i.e. flows 30-50) maximizes
transmission time T(n) and generates variable transmission periods which impact
video delivery.

Unlike Westwood, TCP Real yields satisfactory performance on video delivery for
a wider range of flows (Fig. 3), which is the combined result of high goodput rates
(Fig. 2) and a gentle proportion of delayed packets (Fig. 5). TCP Real effectively
manages to amortize the low throughput of the initial window built across a longer
period of high throughput. Furthermore, the protocol exploits the integrated error
detection mechanism, as well as the additional parameter γ. In this context, the desired
smoothness is counterbalanced with responsiveness, which is critical during
congestion episodes.

5.2 TCP Performance vs. Error Rates

In this scenario, we performed our experiments using diverse bit error rate
adjustments (BER: 10-6 - 10-3). In satellite networks, BER scarcely exceeds 10-4.
However, we simulated a satellite link with BER as high as 10-3 in order to study
protocol efficiency under error-prone connections. We hereby demonstrate results
from 20 MPEG flows in order to investigate the associated impact on the performance
of video delivery (Figs. 6-9).

TCP Westwood+ is the less sensitive protocol to the diverse bit error rates (Fig. 8),
although it does not incorporate an inherent mechanism for error detection.
Furthermore, it maintains an acceptable delayed packets rate for intensely error-prone
satellite links (Fig. 9). On the contrary, TCP-Real demonstrates limited efficiency at
high bit error rates, despite the incorporated error classification mechanism.
Apparently, the mechanism operates inadequately for increased link errors. SACK’s
supportive role results in perceptible performance gains, since the loss recovery phase
is accelerated and the packet drop rate is sustained to slightly lower levels (Fig. 8).
However, inline with Reno, NewReno with SACK is still inefficient for excessively
lossy links.

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

0,000001 0,00001 0,0001 0,001

Bit Error Rate

M
b

p
s

Reno
SACK
Westwood+
Real

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0,000001 0,00001 0,0001 0,001

Bit Error Rate

Reno
SACK
Westwood+
Real

 Fig. 6. System Goodput (20 flows) Fig. 7. Average Real-Time Performance
 (20 flows)

72 P. Papadimitriou and V. Tsaoussidis

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,000001 0,00001 0,0001 0,001

Bit Error Rate

Reno
SACK
Westwood+
Real

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

0,20

0,000001 0,00001 0,0001 0,001

Bit Error Rate

Reno
SACK
Westwood+
Real

 Fig. 8. Packet Drop Rate (20 flows) Fig. 9. Delayed Packets Rate (20 flows)

5.3 Impact of Delayed ACKs

We conclude our evaluation scenarios by studying the impact of delayed ACKs on
protocol efficiency in satellite environments. We also investigate whether reducing
back traffic induces implications which affect the performance of video delivery. We
performed our experiments issuing ACKs with no delay and with delays of 100ms,
200ms and 500ms, successively. In the sequel, we discuss the behavior of TCP
NewReno with SACK which produced the most conclusive results (Figs. 10-13).

Although delayed ACKs tend to slow down the initial slow-start phase (due to the
decreased number of ACKs sent by a delayed-ACK receiver), our results illustrate
noticeable performance gains both for TCP efficiency (Fig. 10) and video quality
(Fig. 11). The reported gains are attained in the situation where goodput reaches the
capacity of downlink channel (Fig. 10: flows 20-50), and video transmission time is
maximized according to our analysis. The delayed ACKs effectively reduce the traffic
in the reverse path, which is a critical factor in asymmetric links. The beneficial role
of delayed ACKs is illustrated in Fig. 13, where the number of delayed packets is
slightly decreased (100ms and 500ms delack). However, we observe that issuing
ACKs with delays more than 100ms does not result in perceptible performance gains
(Figs. 10, 11), since the increased RTTs (as derived from equation (7)) counterbalance
the benefits from the reduced ACK transmission time T΄΄(n) (equation (8)).

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

1 10 20 30 40 50

Number of MPEG flows

M
b

p
s

No delack
100ms delack
200ms delack
500ms delack

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 10 20 30 40 50

Number of MPEG flows

No delack
100ms delack
200ms delack
500ms delack

 Fig. 10. System Goodput Fig. 11. Average Real-Time Performance
 (NewReno-SACK) (NewReno-SACK)

 Evaluating TCP Mechanisms for Real-Time Streaming over Satellite Links 73

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1 10 20 30 40 50

MPEG flows

No delack
100ms delack

200ms delack
500ms delack

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

0,20

1 10 20 30 40 50

MPEG flows

No delack
100ms delack
200ms delack
500ms delack

 Fig. 12. Packet Drop Rate Fig. 13. Delayed Packets Rate
 (NewReno-SACK) (NewReno-SACK)

6 Conclusions and Future Work

We demonstrated the challenges and limitations of TCP from the perspective of real-
time performance over asymmetric satellite links. We identified that protocol
efficiency over such environments is strictly related with effective bandwidth
utilization and minimized transmission gaps. Focusing on the study of GEO systems
where RTTs exhibit insignificant variations, transmission gaps are primarily induced
by reaching downlink capacity, and especially by congested back traffic across a
constrained reverse path. We also showed that issuing delayed ACKs occasionally
results in performance gains.

The algorithms of TCP Westwood+ and TCP-Real do not always obtain accurate
estimates, occasionally failing to achieve full utilization of asymmetric link
capacities. However, they are more effective than “blind” increase/decrease window
mechanisms (e.g. TCP Reno), which rely on specific events triggered by violated
thresholds. TCP-Real, in particular, yields satisfactory performance regardless of link
multiplexing; only link errors with BER in excess of 10-4 degrade its performance and
the perceived video quality. However, error rates of this magnitude are uncommon in
modern satellite systems. The investigation of additional protocols efficiency (e.g.
SCTP), as well as alternative satellite systems, such as Demand Assigned Multiple
Access (DAMA) satellite services, is under way.

References

1. I. F. Akyildiz, G. Morabito and S. Palazzo, TCP-Peach: A New Congestion Control
Scheme for Satellite IP Networks, IEEE Transactions on Networking, 9(3), pp. 307-321,
June 2001

2. H. Balakrishnan, V. Padmanabhan, G. Fairhurst and M. Sooriyabandara, TCP Performance
Implications of Network Path Asymmetry, RFC 3449, December 2002

3. H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. Katz, A Comparison of Mechanisms
for Improving TCP Performance over Wireless Links, ACM/IEEE Transactions on
Networking, 5(6), pp. 756-769, 1997

4. D. Chiu and R. Jain, Analysis of the increase/decrease algorithms for congestion
avoidance in computer networks, Journal of Computer Networks, 17(1), pp. 1-14, 1989

74 P. Papadimitriou and V. Tsaoussidis

5. S. Floyd, M. Handley, J. Padhye, and J. Widmer, Equation-Based Congestion Control for
Unicast Applications, In Proc. of ACM SIGCOMM 2000, Stockholm, Sweden, August
2000

6. S. Floyd and T. Henderson, The NewReno Modification to TCP’s Fast Recovery
Algorithm, Internet RFC 2582, 1999

7. L. Grieco and S. Mascolo, Performance evaluation and comparison of Westwood+, New
Reno, and Vegas TCP congestion control, ACM Computer Communication Review,
34(2), pp. 25-38, April 2004

8. T. R. Henderson and R. H. Katz, Transport protocols for Internet-compatible satellite
networks, IEEE Journal of Selected Areas in Communications (JSAC), Vol. 17, pp. 326-
344, Feb. 1999

9. V. Jacobson, Congestion avoidance and control, In Proc. of ACM SIGCOMM ‘88,
Stanford, USA, August 1988

10. S. Mascolo, C. Casetti, M. Gerla, M. Sanadidi, and R. Wang, TCP Westwood: Bandwidth
Estimation for Enhanced Transport over Wireless Links, In Proc. of MobiCom ’01, Rome,
Italy, July 2001

11. M. Mathis, J. Mahdavi, S. Floyd and A. Romanow, TCP Selective Acknowledgment
Options, RFC 2018, October 1996

12. H. Obata, K. Ishida, J. Funasaka and K. Amano, TCP Performance Analysis on
Asymmetric Networks Composed of Satellite and Terrestrial Links, In Proc. of 8th Int/nal
Conference on Network Protocols (ICNP), Osaka, Japan, November 2000

13. P. Papadimitriou and V. Tsaoussidis, Assessment of Internet Voice Transport with TCP,
To appear in Int/nal Journal of Communication Systems (IJCS), Wiley Academics

14. P. Papadimitriou and V. Tsaoussidis, On Transport Layer Mechanisms for Real-Time
QoS, Journal of Mobile Multimedia (JMM), 1(4), pp. 342-363, January 2006

15. C. Partridge and T. J. Shepard, TCP/IP Performance over Satellite Links, IEEE Network,
11(5), pp. 44-49, September-October 1997

16. W. Stevens, “TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery
Algorithms, RFC 2001, January 1997

17. V. Tsaoussidis, H. Badr, TCP-Probing: Towards an Error Control Schema with Energy
and Throughput Performance Gains, In Proc. of 8th Int/nal Conference on Network
Protocols (ICNP), Osaka, Japan, November 2000

18. V. Tsaoussidis and I. Matta, Open issues on TCP for Mobile Computing, Journal of
Wireless Communications and Mobile Computing, 2(1), pp. 3-20, February 2002

19. V. Tsaoussidis and C. Zhang, TCP Real: Receiver-oriented congestion control, Computer
Networks, 40(4), pp. 477-497, November 2002

20. V. Tsaoussidis and C. Zhang, The dynamics of responsiveness and smoothness in
heterogeneous networks, IEEE Journal on Selected Areas in Communications, 23(6), pp.
1178-1189, June 2005

21. L. Wood, G. Pavlou and B. Evans, Effects on TCP of Routing Strategies in Satellite
Constellations, IEEE Communications Magazine, 39(3), pp. 172-181, March 2001

22. Y. R. Yang and S. S. Lam, General AIMD Congestion Control, In Proc. of 8th Int/nal
Conference on Network Protocols (ICNP), Osaka, Japan, November 2000

	Introduction
	Related Work
	Transmission Gap Analysis of Asymmetric Satellite Links
	Evaluation Methodology
	Results and Discussion
	TCP Performance
	TCP Performance vs. Error Rates
	Impact of Delayed ACKs

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

