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Abstract. Real-time streaming over satellite IP networks is challenging, since 
satellite links commonly exhibit long propagation delays and increased error 
rates, which impair TCP performance. In this context, we quantify the effects of 
satellite links on TCP efficiency and streaming video delivery. We investigate a 
solution-framework composed by TCP implementations which are expected to 
perform adequately in such environments. Furthermore, we study the supportive 
role of Selective Acknowledgments (SACK). Along with protocol performance, 
we also evaluate the impact of delayed acknowledgments. Our simulation 
results illustrate that most existing end-to-end solutions do not comply with the 
stringent QoS provisions of time-sensitive applications, resulting in inefficient 
bandwidth utilization and increased delays in data delivery. Finally, with the 
absence of a satellite-optimized TCP implementation for real-time streaming, 
we identify TCP Real as the most prominent solution, since it manages to 
alleviate most of the impairments induced by satellite links, sustaining a 
relatively smooth transmission rate. 

1   Introduction 

Satellite systems evolve towards the delivery of broadband IP services and are 
candidates to integrate the wireless data networks, due to their wide coverage and 
broadcast capabilities. Geostationary (GEO) and low-altitude earth orbit (LEO) 
satellites enable the delivery of time-sensitive data, such as audio and video content, 
over large coverage areas. Unfortunately, satellite networks demonstrate several 
drawbacks. Firstly, in order to provide services at a reasonable cost, satellite links 
exhibit bandwidth asymmetry, since they comprise a high-capacity forward space link 
and a low-bandwidth reverse (space or terrestrial) path. Some satellite networks are 
inherently bandwidth asymmetric, such as those based on a direct broadcast satellite 
(DBS) downlink and a return via a dial-up modem line. For purely GEO or LEO 
systems, many proposed systems offer the capability to download at tens of Mb/s, but 
they do not provide uplinks at rates faster than several hundred Kb/s or a few Mb/s, 
due to uplink carrier sizing. Furthermore, satellite networks demonstrate relatively 
increased propagation delays which dramatically affect the bandwidth-delay product 
(BDP). Long transmission distances result in fading channels and eventually in bit 
error rates (BER) which remain higher (10-6 or worse) than in terrestrial networks. 
Reception of corrupted data may trigger requests for retransmission resulting in 
possible congestion and increasing end-to-end delays. 
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Most Internet transport protocols exhibit limited efficiency under these awkward 
conditions. Transmission Control Protocol (TCP), based on the principles of 
congestion management [9], Slow-Start [16], and Additive Increase Multiplicative 
Decrease (AIMD) [4], was designed to provide a reliable data delivery service for 
wired IP networks. As a result, it demonstrates inadequate performance in 
heterogeneous wired/wireless environments, such as satellite networks. Authors in 
[18] outline three major shortfalls of TCP: (i) ineffective bandwidth utilization, (ii) 
unnecessary congestion-oriented responses to wireless link errors (e.g. fading 
channels) and operations (e.g. handoffs), and (iii) wasteful window adjustments over 
asymmetric, low-bandwidth reverse paths. More precisely, TCP commonly sets the 
initial slow-start threshold (ssthress) to an arbitrary value independently of BDP. If 
ssthress is adjusted too high relatively to the network BDP, the exponential increase 
of congestion window (cwnd) may cause multiple packet drops and coarse timeouts. 
Inversely, in the situation of a relatively low value of ssthress the slow-start phase is 
concluded prematurely resulting in poor startup utilization. Furthermore, standard 
TCP is not able to detect the nature of the errors that cause packet drops and 
consequently determine the appropriate error-recovery strategy. Hence, TCP invokes 
congestion-oriented responses to all wireless errors, which are common in satellite 
links, resulting in unnecessary throughput degradation. Bandwidth asymmetry also 
impacts TCP performance [2]. Despite the small size of acknowledgment (ACK) 
packets, the reverse channel is often unable to carry the high rate of ACKs. The 
congestion in the reverse path inevitably increases Round Trip Time (RTT) 
diminishing the protocol efficiency. 

Apart from the particular characteristics of satellite links, TCP should comply with 
the stringent requirements and constraints of time-sensitive traffic. Real-time 
applications are comparatively intolerant to delay and variations of throughput and 
delay. Furthermore, reliability parameters, such as packet drops and bit errors, usually 
compose an impairment factor, since they cause a perceptible degradation in media 
quality. Standard TCP usually induces oscillations in the achievable transmission rate 
and occasionally introduces arbitrary delays, since it enforces reliability and in-order 
delivery. In this context, several TCP protocol extensions [5, 22] have emerged to 
overcome the standard TCP limitations providing more efficient bandwidth utilization 
in order to achieve a smooth transmission and playback rate. 

Along these lines, the constraints of transmission over satellite links, as well as 
streaming media requirements call for effective and robust transport protocol services. 
Although numerous research proposals have emerged towards improving transport 
services over wireless/satellite links, the converged domain of time-sensitive data 
delivery over satellite IP networks has not attracted the required attention from the 
research community. Realizing the issues and parameters that affect TCP performance 
over satellite links, our objective is to exploit TCP’s potential for efficient streaming 
media delivery over such environments. In this context, we investigate a solution-
framework based on the most prominent end-to-end solutions. Furthermore, we assess 
the impact of delayed ACKs and link asymmetry on TCP performance, as well as the 
associated impact of diverse link error rates. In this study, we do not include User 
Datagram Protocol (UDP) in our evaluation experiments; the protocol lacks all basic 
mechanisms for error recovery and flow/congestion control, and thus provides a 
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different type of service. In [14] we have shown that UDP may perform worse than 
TCP in several occasions. In addition, the absence of congestion control poses a threat 
to network stability. 

The rest of the paper is organized as follows. Section 2 summarizes related work, 
while in Section 3 we formulate a transmission gap model for asymmetric satellite 
links. Section 4 includes our evaluation methodology followed by Section 5, where 
we analyze the results of the experiments we performed. Finally, in Section 6 we 
highlight our conclusions and refer to future work. 

2   Related Work 

TCP’s efficiency for streaming media delivery over satellite links has not been 
studied in depth. Proposed mechanisms range from minor tweaks, such as issuing 
delayed ACKs in order to reduce the network load in the reverse path, to sophisticated 
solutions, such as TCP Spoofing and split-connection protocols [3]. With the absence 
of a dedicated and efficient end-to-end solution, most research approaches commonly 
choose to tune an existing protocol in order to achieve the desired performance. Most 
related research efforts focus on bulk-data transmission over satellite IP networks and 
study the associated TCP performance [8, 15, 21, 2]. TCP-Peach [1] is a proposed 
congestion control scheme that explicitly addresses satellite IP networks. TCP-Peach 
incorporates two new algorithms, namely Sudden Start and Rapid Recovery, instead 
of the typical Slow-Start and Fast Recovery. Inline with the Probing mechanism and 
Immediate Recovery proposed in [17], these algorithms are based on the concept of 
using dummy segments to probe the availability of network resources without carrying 
any new information to the sender. The protocol achieves improved throughput 
performance; however, it does not account for the Quality of Service (QoS) provisions 
required by time-sensitive traffic. 

TCP selective acknowledgments (SACK) options [11] were proposed in order to 
alleviate TCP’s inefficiency in handling multiple drops in a single window. TCP 
SACK enables the receiver to inform the sender about segments that were received 
out of order. Hence, the sender avoids retransmitting segments whose successful 
delivery at the other end is not evident from the duplicate ACKs received. TCP SACK 
yields improved performance for a relatively large sending window. Furthermore, by 
reducing the rate of ACKs, remarkable gains can be attained in asymmetric links.  

Several TCP protocol extensions have emerged to overcome the standard TCP 
limitations providing more efficient bandwidth utilization and sophisticated 
mechanisms for congestion control, which preserve the fundamental QoS guarantees 
for time-sensitive traffic. Authors in [5, 22] proposed a family of TCP compatible 
protocols, called TCP-friendly. TCP-friendly protocols achieve smooth window 
adjustments, while they manage to compete fairly with TCP flows. TCP-friendly Rate 
Control (TFRC) [5] is a representative TCP-friendly protocol, where its transmission 
rate is adjusted in response to the level of congestion, as indicated by the loss rate. 
Multiple packet losses in the same RTT are considered as a single loss event by TFRC 
and hence, the protocol follows a more gentle congestion control strategy. The 
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protocol eventually achieves the smoothing of the transmission gaps and therefore, is 
suitable for applications requiring a smooth sending rate, such as streaming media. 
However, this smoothness has a negative impact, as the protocol becomes less 
responsive to bandwidth availability [20].  

TCP Westwood [10] is a TCP-friendly protocol that emerged as a sender-side-
only modification of TCP Reno congestion control. TCP Westwood exploits end-to-
end bandwidth estimation in order to adjust the values of ssthresh and cwnd after a 
congestion episode. The protocol incorporates a recovery mechanism which avoids 
the blind halving of the sending rate of TCP Reno after packet drops and enables 
TCP Westwood to achieve a high link-utilization in the presence of wireless errors. 
However, in [13] we showed that TCP Westwood tends to overestimate the 
available bandwidth, due to ACKs clustering. TCP Westwood+ is a recent extension 
of TCP Westwood, based on the Additive Increase/Adaptive Decrease (AIAD) 
mechanism. TCP Westwood+ obtains more accurate estimates of the available 
bandwidth [7].  

TCP Real is a high-throughput transport protocol that incorporates congestion 
avoidance mechanism in order to minimize transmission-rate gaps. As a result, this 
protocol is suited for real-time applications, since it enables better performance and 
reasonable playback timers. TCP Real [19] employs a receiver-oriented and 
measurement-based congestion control mechanism that significantly improves  
TCP performance over heterogeneous networks and asymmetric paths. The protocol 
approximates a receiver-oriented approach beyond the balancing trade of the 
parameters of additive increase and multiplicative decrease. In this context, TCP 
Real introduces another parameter, namely γ, which determines the window 
adjustments during congestion avoidance. More precisely, the receiver measures the 
data-receiving rate and attaches the result to its ACKs, directing the transmission 
rate of the sender. When new data is acknowledged and the congestion window is 
adjusted, the current data-receiving rate is compared against the previous one. If 
there is no receiving rate decrease, the congestion window is increased by 1 
Maximum Segment Size (MSS) every RTT (α = 1). If the magnitude of the decrease 
is small, the congestion window remains temporarily unaffected; otherwise, the 
sender reduces the congestion window multiplicatively by γ. In [19] a default value 
of γ = 1/8 is suggested. However, this parameter can be adaptive to the  
detected conditions. Generally, TCP Real can be viewed as a TCP (α, β, γ) protocol, 
where γ captures the protocol’s behavior prior to congestion, when congestion 
boosts up. 

Besides transport layer modifications, there are several techniques operating on the 
link layer, which attempt to ameliorate the impact of wireless errors [3]. Forward 
Error Correction (FEC) introduces added overhead to data bits in order to cope with 
data corruption. Corrupted packets may be directly corrected, without retransmission, 
which is critical for lossy links exhibiting long delays. Automatic Repeat Request 
(ARQ) mechanisms are invoked when packets containing bit errors can not be 
corrected. In this case, the erroneous packets are discarded and a retransmission is 
directly triggered within TCP’s timeout. 
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3   Transmission Gap Analysis of Asymmetric Satellite Links 

In this section, we formulate a model for transmission gaps that explicitly addresses 
asymmetric satellite links. The proposed model applies to bi-directional satellite 
systems which exhibit bandwidth asymmetry; hence, both forward and reverse path 
have the same propagation delay P. Based on [12], we define the transmission 
period t(n), as the period between two consecutive transmissions (with individual 
window sizes). In this context, we model t(n) as a function of transmission number 
n. We also define W(n) as the number of data packets sent at the nth transmission. 
We assume that W(0) = 1 and W(n) inflates up to the maximum window size 
advertised by the receiver. The transmission time T(n) required for sending W(n) 
data packets is: 

                                                      
DnBW

W(n)S
n)(T

⋅=                                                     (1)     

where S and BWDn denote the fixed packet size (including TCP and IP headers) and 
the bandwidth of the downlink, respectively. After nth transmission, W(n) ACK 
packets are expected to reach the sender. Hence, the transmission time T΄(n) required 
for sending W(n) ACKs is denoted by: 

                                                     
UpBW

W(n)S΄
n)(T΄ ⋅=                                                   (2) 

where S΄ and BWUp are the ACK packet size and the bandwidth of the uplink, 
respectively. ACKs transmission time is not negligible despite their small packet size 
S΄, since BWUp is constrained. Ignoring any processing and queuing delays and with 
respect to equations (1) and (2), we can approximate RTT from the 1st transmission 
period where W(0) = 1: 

                                           T΄(0)T(0)P2RTTinit ++⋅=                                          (3) 

                                          
UpDn

init
BW

S΄
BW

S
P2RTT ++⋅=                                       (4) 

Equation (4) reveals that in a GEO satellite system with a propagation delay P 
typically exceeding 200ms, retransmitting a lost video packet is unfruitful either by 
TCP or link layer mechanisms, such as ARQ.  

Transmission period t(n) is eventually determined by the maximum value of 
RTTinit, transmission rate T(n) and ACK transmission rate T΄(n): 

                                         T΄(n))  T(n),  ,(RTTmax    t(n) init=                                         (5) 

In the case of a relatively small window size W(n), the system throughput does not 
reach the bandwidth of the downlink  BWDn and hence, t(n) is determined by the 
value of RTTinit. As a result, only minimal variations may be induced in the 
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transmission periods, since RTTinit is basically defined by the link propagation delay 
P. In this case, transmission gaps are minimized achieving a smooth sending and 
playback rate. On the other hand, whenever throughput instantly approximates BWDn, 
transmission time T(n) is maximized and eventually designates the transmission 
period t(n). Let a transmission number k, where all the available network resources 
are allocated, and consequently packet drops occur. According to standard TCP, the 
window of the next transmission W(k+1)1 will be halved and the associated 
transmission time T(k+1) is expressed as: 

 

                                                
DnBW
2

W(k)
S

1)k(T
⋅

=+                                                (6) 

 

A similar outcome is reached in the situation of a link error, since TCP commonly 
invokes congestion-oriented responses and reduces its window. Under these 
conditions, apart from the impairments due to lost packets, the significant variations 
in the transmission periods induce gaps which further degrade media quality.  

We additionally consider the implication where the sender does not receive a 
number of ACK packets, due to a constrained uplink bandwidth BWUp or heavy back 
traffic. In this case, ACK transmission time T΄(n) exceeds both T(n) and RTTinit, and 
consequently defines the value of t(n). Similarly, transmission delay variations in the 
reverse path impact the associated transmission periods and diminish real-time 
application performance. However, although TCP manages to relinquish the resources 
allocated, when it detects congestion according to (6), it is not able to relieve the 
congestion in the reverse path. Along these lines, reaching BWUp capacity poses the 
highest threat on asymmetric links.  

If we adopt the approach of delaying ACKs by a certain period d, we derive from 
(4) a modified RTTinit formula:  

                                        d
BW

S΄
BW

S
P2RTT΄

UpDn
init +++⋅=                             (7) 

Furthermore, let the receiver send L delayed ACK packets which correspond to the 
transmission of W(n) data packets. Consequently, ACK transmission time is now 
expressed as: 

                                                      
UpBW

LS΄
n)(T΄΄ ⋅=                                                      (8) 

 

A considerable ACK delay d is translated to a minimal number of L ACK packets, 
which may render ACK transmission time T΄΄(n) negligible. From equations (7), (8), 
it is obvious that by issuing delayed ACKs, we effectively reduce back traffic in the 
expense of increasing RTT. With respect to (5), we reach the conclusion that delayed 
ACKs may degrade TCP performance in the case where t(n) = RTT΄init. That is, no 

                                                           
1 We ignore the retransmission window. Consequently, after loss detection the TCP sender 

halves the congestion window at transmission number (k+1). 
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data/ACK congestion has occurred in the forward/reverse path. Inversely, gains are 
expected from delayed ACKs in the situation of congestion in the downlink channel 
(t(n) = T(n)), and especially during heavy back traffic, where t(n) = T΄΄(n) < T΄(n). 

4   Evaluation Methodology 

The evaluation plan was implemented on the NS-2 network simulator. LEO systems 
with RTTs in the range of 40-200ms cause slight degradation in TCP performance, 
despite the large RTT variations [8]. However, due to large RTTs (approximately 
530ms), maintaining efficient TCP performance over GEO latencies is challenging. 
Along these lines, we focus on quantifying the effects of GEO systems on TCP 
efficiency and streaming video delivery. We simulated the system in Fig. 1, where N 
senders transmit an MPEG-4 video stream to N receivers through a bi-directional 
GEO satellite link with 5 Mbps downlink and 256 Kbps uplink channel. We consider 
the modeled satellite system, as a retransmitter of data traffic (received from a 
terrestrial gateway) to ground gateways and user terminals. The transmitted video 
streams are multiplexed in Station 1, before traversing the satellite link. In accordance 
with the lossy nature of satellite links, we simulated an error model for both forward 
and reverse satellite channels with configurable bit error rate (BER). BER is adjusted 
at 10-4, unless otherwise explicitly stated. 

We assume a window scale option which overcomes the limitation of the 
maximum window size (i.e. 64 KB) allowed by standard TCP. Hence, we adjusted the 
maximum window size at 240 KB. Segment size is set to 1000 bytes and 
consequently, a window may accommodate at the most 240 segments approximately. 
Since the simulated network exhibits an average RTT of 550ms, simulation running 
time was fixed to 200 seconds, an appropriate time-period for all the protocols to 
demonstrate their potential. We performed the experiments over standard TCP Reno, 
the modified TCP Reno variant [6], known as NewReno, augmented with the SACK 
[11] option, and the protocols TCP Westwood+ and TCP-Real. Concerning the 
relaxed packet loss requirements of time-sensitive applications, as well as the 
implications that may be induced by FEC/ARQ [3] in order to maximize reliability, 
we chose not to include such mechanisms in our experiments. 

 

Fig. 1. Simulation topology 
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In order to simulate real-time traffic, we developed an MPEG-4 Traffic 
Generator. The traffic generated closely matches the statistical characteristics of an 
original video trace. We used three separate Transform Expand Sample (TES) 
models for modeling I, P and B frames, respectively. The resulting MPEG-4 stream 
is generated by interleaving data obtained by the three models. The MPEG traffic 
generator was integrated into NS-2 and provides the adjustment of the data rate of 
the MPEG stream, as well as useful statistical data (e.g. average bit-rate, bit-rate 
variance).  

We hereby refer to the performance metrics supported by our simulation model. 
System goodput is used to measure the overall system efficiency in bandwidth 
utilization. In [14] we proposed a new metric for the performance evaluation of time-
sensitive traffic, called Real-Time Performance. The metric monitors packet inter-
arrival times and distinguishes the packets that can be effectively used by the client 
application from delayed packets (according to a configurable inter-arrival threshold). 
The proportion of the delayed packets is reflected in Delayed Packets Rate. Hence, 
Real-Time Performance index is defined as the ratio of the number of timely received 
packets over the total number of packets sent by the application: 

1
packetssent  #

packets  receivedtimely  #
 Index  ePerformanc TimeReal ≤=−  

In accordance with video streaming requirements, we adjusted the inter-arrival 
threshold at 200ms. Since MPEG traffic is sensitive to packet drops, we 
additionally define Packet Drop Rate, as the ratio of the number of lost packets 
over the number of packets sent by the application. Most of our experiments were 
performed on several flows, so we present the average of the real-time performance 
of each MPEG flow.  

5   Results and Discussion 

In the sequel, we demonstrate and comment on the most prominent results from the 
experiments we performed based on three distinct scenarios. The basic parameters of 
each simulation scenario are as described in the previous section. 

5.1   TCP Performance 

Initially we performed a series of experiments in order to evaluate the video 
performance delivered by the selected TCP variants. We simulated a wide range of 
MPEG flows (1-50) adjusting the contention accordingly. We measured goodput and 
real-time performance, and we additionally selected statistics from delayed and lost 
packets, since both are influencing factors which impact video quality. We hereby 
demonstrate the associated results of TCP Reno, TCP NewReno with SACK, TCP 
Westwood+ and TCP Real (Figs. 2-5).  
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                   Fig. 2. System goodput                          Fig. 3. Average Real-Time Performance 
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                       Fig. 4. Packet Drop Rate                                Fig. 5. Delayed Packets Rate 

 
With the exception of TCP Real (and in part of Westwood+), the protocols are 

unable to sustain goodput rates close to the bottleneck link rate (Fig. 2), despite the 
relatively large window (i.e. 240 KB). Therefore, the available bandwidth is not fully 
exploited, mainly due to link asymmetry and long latency. Inline with our analysis in 
Section 3, heavy ACK traffic across the constrained uplink channel extends the 
transmission periods (t(n) = T΄(n)) and inevitably induces variable transmission gaps, 
which impair the performance of video delivery (Fig. 3).  

A comparison between standard TCP Reno and TCP NewReno (with SACK) 
reveals that SACK alone is not sufficient to enable high performance (Figs. 2, 3). 
However, slight gains (especially for high contention) are eventually attained, since 
NewReno prevents coarse timeouts and multiple window reductions, while SACK 
accelerates the loss recovery phase. Both TCP Reno and TCP NewReno are based on 
“blind” increase/decrease window mechanisms that dynamically exploit bandwidth 
availability, without relying on precise measurements of current conditions. 
Furthermore, they invoke unnecessary congestion-oriented responses to the increased 
bit errors along the satellite link. Along these lines, they exhibit limited efficiency in 
the context of real-time application performance (Fig. 3), primarily due to the 
significant delays in video-data delivery. Fig. 5 illustrates that a notable proportion of 
packets reach the recipient exceeding the delay requirements of streaming video both 
for Reno and NewReno. 

On the other hand, TCP Westwood+ and TCP Real rely on bandwidth estimation 
schemes and are intended to sustain a smooth sending rate minimizing the 
transmission gaps. TCP Westwood+, in contradiction to the initial version of 
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Westwood, computes one sample of available bandwidth every RTT using all data 
acked in the specific RTT, therefore obtaining more accurate estimates (Fig. 2). 
However, from the perspective of real-time delivery, Westwood+ efficiency is not so 
profound (Fig. 3), since it delivers a considerable amount of delayed packets (Fig. 4). 
Inline with our analysis, reaching the downlink capacity (i.e. flows 30-50) maximizes 
transmission time T(n) and generates variable transmission periods which impact 
video delivery. 

Unlike Westwood, TCP Real yields satisfactory performance on video delivery for 
a wider range of flows (Fig. 3), which is the combined result of high goodput rates 
(Fig. 2) and a gentle proportion of delayed packets (Fig. 5). TCP Real effectively 
manages to amortize the low throughput of the initial window built across a longer 
period of high throughput. Furthermore, the protocol exploits the integrated error 
detection mechanism, as well as the additional parameter γ. In this context, the desired 
smoothness is counterbalanced with responsiveness, which is critical during 
congestion episodes. 

5.2   TCP Performance vs. Error Rates 

In this scenario, we performed our experiments using diverse bit error rate 
adjustments (BER: 10-6 - 10-3). In satellite networks, BER scarcely exceeds 10-4. 
However, we simulated a satellite link with BER as high as 10-3 in order to study 
protocol efficiency under error-prone connections. We hereby demonstrate results 
from 20 MPEG flows in order to investigate the associated impact on the performance 
of video delivery (Figs. 6-9). 

TCP Westwood+ is the less sensitive protocol to the diverse bit error rates (Fig. 8), 
although it does not incorporate an inherent mechanism for error detection. 
Furthermore, it maintains an acceptable delayed packets rate for intensely error-prone 
satellite links (Fig. 9). On the contrary, TCP-Real demonstrates limited efficiency at 
high bit error rates, despite the incorporated error classification mechanism. 
Apparently, the mechanism operates inadequately for increased link errors. SACK’s 
supportive role results in perceptible performance gains, since the loss recovery phase 
is accelerated and the packet drop rate is sustained to slightly lower levels (Fig. 8). 
However, inline with Reno, NewReno with SACK is still inefficient for excessively 
lossy links. 
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      Fig. 8. Packet Drop Rate (20 flows)                Fig. 9. Delayed Packets Rate (20 flows) 

5.3   Impact of Delayed ACKs 

We conclude our evaluation scenarios by studying the impact of delayed ACKs on 
protocol efficiency in satellite environments. We also investigate whether reducing 
back traffic induces implications which affect the performance of video delivery. We 
performed our experiments issuing ACKs with no delay and with delays of 100ms, 
200ms and 500ms, successively. In the sequel, we discuss the behavior of TCP 
NewReno with SACK which produced the most conclusive results (Figs. 10-13). 

Although delayed ACKs tend to slow down the initial slow-start phase (due to the 
decreased number of ACKs sent by a delayed-ACK receiver), our results illustrate 
noticeable performance gains both for TCP efficiency (Fig. 10) and video quality 
(Fig. 11). The reported gains are attained in the situation where goodput reaches the 
capacity of downlink channel (Fig. 10: flows 20-50), and video transmission time is 
maximized according to our analysis. The delayed ACKs effectively reduce the traffic 
in the reverse path, which is a critical factor in asymmetric links. The beneficial role 
of delayed ACKs is illustrated in Fig. 13, where the number of delayed packets is 
slightly decreased (100ms and 500ms delack). However, we observe that issuing 
ACKs with delays more than 100ms does not result in perceptible performance gains 
(Figs. 10, 11), since the increased RTTs (as derived from equation (7)) counterbalance 
the benefits from the reduced ACK transmission time T΄΄(n) (equation (8)). 
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                 Fig. 12. Packet Drop Rate                            Fig. 13. Delayed Packets Rate 
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6   Conclusions and Future Work 

We demonstrated the challenges and limitations of TCP from the perspective of real-
time performance over asymmetric satellite links. We identified that protocol 
efficiency over such environments is strictly related with effective bandwidth 
utilization and minimized transmission gaps. Focusing on the study of GEO systems 
where RTTs exhibit insignificant variations, transmission gaps are primarily induced 
by reaching downlink capacity, and especially by congested back traffic across a 
constrained reverse path. We also showed that issuing delayed ACKs occasionally 
results in performance gains. 

The algorithms of TCP Westwood+ and TCP-Real do not always obtain accurate 
estimates, occasionally failing to achieve full utilization of asymmetric link 
capacities. However, they are more effective than “blind” increase/decrease window 
mechanisms (e.g. TCP Reno), which rely on specific events triggered by violated 
thresholds. TCP-Real, in particular, yields satisfactory performance regardless of link 
multiplexing; only link errors with BER in excess of 10-4 degrade its performance and 
the perceived video quality. However, error rates of this magnitude are uncommon in 
modern satellite systems. The investigation of additional protocols efficiency (e.g. 
SCTP), as well as alternative satellite systems, such as Demand Assigned Multiple 
Access (DAMA) satellite services, is under way. 
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