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Abstract— We present a new timeout algorithm for TCP, based
on the observation that TCP-RTO should not be solely based on
RTT estimations. We argue that the design principles of the
current timeout algorithm may lead to flow synchronization,
unnecessary retransmission effort and unfair resource allocation.
WB-RTO exhibits two major properties: (i) it cancels retrans-
mission synchronization which dominates when resource demand
exceeds by far resource supply and (ii) reschedules flows on the
basis of their contribution to congestion.

I. INTRODUCTION

The retransmission timeout policy of standard TCP [14]
is governed by the rules of RFC 2988 [13]. The algorithm
is based solely on RTT measurements, trying to capture
dynamic network conditions by measuring the variation of
the RTT samples. In particular, the Retransmission Timeout
is calculated upon each ACK arrival after smoothing out the
measured samples, and weighting the recent history. More
precisely, upon each ACK arrival, the sender:
• calculates the RTT Variation:

RTTV AR = 3/4×RTTV AR + 1/4× |SRTT−

RTTSAMPLE(1)

• updates the expected RTT prior to calculating the timeout:

SRTT = 7/8× SRTT + 1/8×RTTSAMPLE (2)

• and finally, calculates the Retransmission Timeout value:

RTO = SRTT + max(G, 4×RTTV AR) (3)

where, RTTVAR holds the RTT variation and SRTT the
smoothed RTT. In Equation (3), G denotes the timer granu-
larity, which is incorporated in order to assign a lower bound
to the retransmission timeout to protect it against spurious
timeouts (i.e. when RTT equals the timer granularity).

Although the design of the timeout algorithm has been
studied extensively in the past (e.g. [5], [8], [9], [11], [12],
[13], [17], [19]), the association with its inherent scheduling
properties has not really been evaluated adequately. Instead,
much attention has been paid on its ability to reflect net-
work delay accurately (e.g. [1], [3]), allowing for speedy
retransmission when conditions permit and avoiding double
submission due to early expiration. However, network delay
as it is captured by measuring the RTT alone, cannot always

capture the level of flow contention [16]. In this context, flows
with large windows, a common situation when flow contention
is low, do capture network delay with better precision: for
example, last packets of the same window will experience
more delays. The situation appears to be very diverse when
each flow is represented with a single-packet window, for
example.

However, there are 3 points to make: 1) this diversity
can only be reflected on the timeout when flows are not
synchronized, 2) the responsiveness of the algorithm depends
on the weighting of the measured samples and 3) all packets
entering a full buffer experience the same delays, leading all
flows to adjust to the same timeout value. Hence, it is possible
for the timeout to shrink when contention grows, at least for
those flows that experience less delays in the queue [16].

The problem of scheduling as it is associated with timeout
has another dimension as well. When flows are synchronized,
or becoming synchronized due to a congestion event, the
timeout is adjusted accordingly for all participating flows.
The existing policy to exclude the retransmitted (dropped)
packets from measurements leaves little space for timeout
differentiation among the participating flows, thus leading
to possibly synchronized retransmissions. Therefore, fairness
cannot be guaranteed since flows are not randomly scheduled,
but instead, are possibly partitioned into two groups: the one
consisting of flows that utilize the link and the other consisting
of flows that unsuccessfully attempt to enter at times when the
link is utilized.

The equations that form the timeout algorithm (Equa-
tions (1), (2) and (3)) do not allow for differentiation among
flows that experience the same queuing delay. For example,
flows that enter a system simultaneously will be ordered in
the queue and possibly follow the same order throughout the
upcoming transmission rounds. Furthermore, flows that enter
the system when the buffer is fully utilized, may also be
excluded in the next rounds, for the same reason. Current
timeout scheduling becomes deterministic, allowing only a
particular set of participating flows to utilize the link.

In this paper, we extend our previous study [16] in the sense
that we still consider cases, where the timeout algorithm be-
comes the scheduler for the link. We present a new algorithm
which records the congestion window and calculates the aver-
age window in order to capture how contention evolves with
time. In addition, our algorithm uses the current congestion



window to assess the contribution of the flow to congestion.
The RTT instead is only used to determine the lower bound of
the timeout. We call our algorithm Window-Based RTO. We
investigate the behavior of the proposed algorithm and find that
WB-RTO cancels TCP’s inability to administer simultaneous
retransmissions and consequently WB-RTO achieves higher
goodput, better fairness, and less retransmission overhead.

II. RELATED WORK

Several researchers have reported problems regarding the
TCP-RTO [5], [9], [12], [16], [17], [19]. Lixia Zhang, in
[19], identifies several drawbacks of the TCP retransmission
timer and reports its intrinsic limitations. The paper concludes
that mainly external events should trigger retransmissions and
timers should be used only as a last notification about packet
loss. Although WB-RTO departs from a different point, it also
alleviates problems reported in [19], due to the fact that these
problems are mainly caused by the exclusive relation of the
timers with the RTT.

The Eifel Algorithm [9], [12], [8] focuses on spurious
timeouts. The Eifel algorithm uses the TCP timestamp option
[10], in order to detect spurious timer expirations. Once a
spurious timeout is detected, the sender does not back-off, but
instead it restores the transmission rate to the recorded rate
prior to the timeout event.

The Forward RTO Algorithm [17] targets the detection
of spurious timeouts too. The algorithm instead of using
timestamp options, it checks the ACK packets that arrive at the
sender after the timer’s expiration, observes whether the ACKs
advance the sequence number or not and finally concludes on
whether the timeout was spurious or not.

Both the above algorithms (Eifel [12] and F-RTO [17])
improve TCP’s performance ( [2], [18]) significantly. However,
none of them really solves the problems stated in [19], due
to the fact that they do not modify the retransmission timeout
algorithm itself, but instead they only change the response
of the transport protocol after a timeout has occurred. More
precisely, both algorithms ( [12], [17]) take into consideration
outstanding data packets only after the timer expires, while
the nature of the problem calls for modifications of the
timeout itself. In this context, WB-RTO adjusts the timeout
to an appropriate value which efficiently avoids unnecessary
retransmissions (up to 500%), without impacting the goodput
performance of TCP (see section V).

In [16], we have shown that TCP timers, based solely on
RTT estimations, do not always respond according to the level
of flow contention. We investigated the behavior of TCP in
high contention scenaria and confirmed that it is possible
for the timeout to decrease when contention increases. We
concluded that this anomaly is due to flow synchronization.
Our analysis called for a new design, which should also
account for approximation of the level of flow contention,
along with a mechanism to cancel synchronization. We exploit
these directives in the present work.

III. WB-RTO: THE PROPOSED ALGORITHM

We propose a new algorithm for the TCP RTO to: (i)
practically approximate the level of contention, (ii) estimate
the contribution of each flow to congestion and (iii) allow
for asynchronous retransmissions, ordered in time in reverse
proportion to their contribution to congestion. We note that
(i), (ii) and (iii) form a collaborative detect/respond scheme to
increase efficiency of the system response, i.e. not a particular
flow response. Clearly, if all flows calculate a single accurate
time for retransmission, the system will fail to provide efficient
service, due to flow synchronization. In this context, (iii)
allows for better responsiveness to contention.

A. Implementation

During periods of high contention, it is possible for all flows
to operate with minimal windows, in which case we induce
randomization to guarantee timeout diversity. However, it is
also possible for the contending flows to operate with different
window sizes. In this case, we attempt to adjust the timeout
according to the degree of their contribution to congestion,
which is captured in parameter c. In particular1, we initially
classify the flow depending on its current transmission window
and charge it with an appropriate penalty (parameter c),
according to the following observations: the current congestion
window (cwnd ) is compared with the maximum congestion
window (max cwnd ) that the flow has ever reached, since
the connection establishment. In case the cwnd is smaller than
half of the maximum congestion window, the flow is marked
with the minimal charge (c = 1). If the flow’s cwnd belongs to
the interval [max cwnd /2, (3/4)×max cwnd ), the penalty
is higher (c = 1, 5). Finally, if the current cwnd lies in the
remaining area ([(3/4)×max cwnd , max cwnd ]), the flow
is given a major penalty (c = 2). The justification for the
above policy is as follows: the penalty charged to the flow
will influence the retransmission timeout value. The higher the
penalty, the longer the RTO. This way, we attempt to punish
flows operating with large congestion windows upon a timeout
event, since the timer’s expiration is considered here as a
congestion signal. On the contrary, a flow operating with small
congestion window (compared to the maximum congestion
window) has not contributed much to the network load and
hence there is no need to be punished. The above statements
are grafted in Equation (4) below.

Next, we further classify the flow according to its (re-
cent) congestion window history (average window, denoted
as awnd ). We define four different thresholds2 (Threshold
1 to 4) and classify the flow according to its awnd value,
which corresponds to the current level of flow contention (see
Equation (5) below). Threshold1 corresponds to very high
contention, while Threshold4 refers to the situation where

1The following proccess is triggered every time the RTO is calculated for
a specific TCP flow.

2Note that both the thresholds and the parameters discussed below are
determined based on experiments and they constitute subject of further
investigation (see section V.B).



congestion events happen sparsely. Throughout the experi-
ments, Threshold1 (high contention) was set to 5 packets,
while Threshold4 (low contention) was set 50 packets.

We assign four multipliers (a1 to a4) corresponding
to the four predetermined intervals ((0, Threshold1) to
(Threshold3, Threshold4)). More precisely, ai (where ai <
ai−1) multiplies c in order to set the penalty and consequently
the RTO based on both the window and its history (Equa-
tions (6) and (7). Summarizing, the first classification (i.e.
parameter c in Equation 4) captures the contribution of the
flow to congestion, while the second classification (Threshold
1 to 4 in Equation (5)) gives an estimation of the level of flow
contention.

Finally, we randomly select a value from the interval (rtt,
ai×c), where the lower bound, rtt, guarantees that the timeout
will not expire prior to the RTT, preventing the algorithm
from becoming too aggressive (Equations (6) and (7). The
pseudocode is presented below:
• compare cwnd with max cwnd and assign a penalty

accordingly

c = f(cwnd , max cwnd ) (4)

• classify the flow to the appropriate Threshold, according
to its awnd

ai = g(awnd , Thresholdi) (5)

• finally, calculate the Window-Based RTO

WB −RTO = random(rtt, c × ai) (6)

or

WB −RTO = random(rtt, f(cwnd , max cwnd )

× g(awnd , Thresholdi))(7)
where Thresholds 1 to 4 are set to 5, 10, 30 and 50,
respectively and the corresponding parameters (a1, a2, a3, a4)
are set to 10, 5, 3 and 2, respectively.

B. Expected Behavior

The proposed algorithm attempts to i) to incorporate the
level of flow contention (Equation (5)), ii) penalize flows
according to their contribution to contention (Equation (4)) and
iii) schedule retransmission in a manner that synchronization
is avoided (Equation (7)).

In Figure 1, we present the behavior of WB-RTO for a
wide range of average transmission windows. Three plots
are presented in this Figure. Each line plot represents the
response of WB-RTO relevant with the average transmission
window for the three possible penalties. Three points are
salient: i) the highest values (in average) for the retransmission
timeout correspond to the highest penalties, ii) it is possible
for a flow to calculate a small RTO even when it operates
with large windows, iii) timeout settles to smaller values
as the average window increases. Note that in all cases,

Fig. 1. WB-RTO vs awnd

we prevent the algorithm from calculating a timeout value
smaller than the round trip time, since this would result in
an undesirably aggressive behavior, which would negatively
impact the system performance.

C. Proof of Concept

We provide a more detailed analysis based on a simulated
scenario using the Dumbbell network topology (Figure 4).
Our scenario involves 5 high-demanding sessions over a low
Delay ×Bandwidth product link (D×B = 10pkts), where
buffers are set in accordance, to hold up to 10 packets. Due
to limited resource supply, the demand should be adjusted to
an average of 2 packets per window per flow. In Figure 2
we use the sequence number to capture the progress in time.
We highlight the interval between 500 and 515 seconds,
out of a simulation run that lasts for 1500 seconds and
note that the sequence number progress is similar throughout
the whole simulation. We observe that TCP-RTO scheduling
results in multiple simultaneous transmissions/retransmissions
(for example packets in the circles). Figure 3(a), which depicts
the measured RTT for the same time interval, justifies the
noticeable difference observed in Figure 2. We observe that
no RTT variation is present (Figure 3(a)) among different
flows, resulting in identical RTO settings (Figure 3(b)) for the
participating flows, and in turn, to flow synchronization.

On the contrary, WB-RTO schedules flows more efficiently
as shown in Figure 2(b). A closer look verifies that no packets
are transmitted simultaneously (at least not more than 2 at
a time). The Goodput performance and the retransmission
effort of the two protocols, is shown in Table I. TCP-RTO
retransmits approximately 300 packets per flow more than
WB-RTO, resulting in a sum of 1500 more retransmissions
in a total of 1500 seconds of simulation time. The fairness of
the two protocols is similar, with a slightly fairer behavior for
WB-RTO. Although we can not present the sequence number
progress for the complete experiment due to space limitations,
we observed that, in case of standard TCP and in the last 300
seconds of the experiment, the third flow did not advance its
sequence number, resulting in degraded Goodput performance
and hence in unfair system behavior. This is further explained
by Figure 3(b), where we see that flow 2 makes wrong RTO
estimation which results in an extraordinary long timeout wait



(a) TCP-RTO

(b) WB-RTO

Fig. 2. Sequence Number Progress

(a) Round Trip Time (in seconds)

(b) Retransmission Timeout (in seconds)

Fig. 3. Standard TCP Behavior

in the last 300 seconds of the simulation.

IV. EVALUATION METHODOLOGY

We have implemented our evaluation plan on the ns-2
network simulator. The network topology, used as a test-bed,
is the single-bottleneck dumbbell shown in Figure 4 and the
simulation time was fixed at 1500 seconds.

Fig. 4. Simulation Topology

TABLE I
PROTOCOL PERFORMANCE IN THE SMALL SCENARIO

Goodput (KB/s) Retransmitted Packets
TCP-RTO WB-RTO TCP-RTO WB-RTO

1st Flow 1.95 2.25 600 310
2nd Flow 2.2 2.15 620 300
3rd Flow 1.8 2.35 550 315
4th Flow 2.0 2.05 600 315
5th Flow 2.05 2.2 620 305
Total 10.0 11.0 2990 1545

In the current work we test the performance of the proposed
algorithm under the Drop Tail queuing policy3, where the
buffers’ capacity is set to 50 packets. The Window-Based
Retransmission Timeout is implemented in TCP-Reno. We
note that with the exception of Tahoe, which lacks the Fast
Recovery mechanism, all other TCP versions perform simi-
larly and hence, such implementations are excluded from the
current work.

V. SIMULATION RESULTS

Our simulation experiments focus mainly on cases with
high contention, where the timeout plays a dominant role
in scheduling. We describe the results in two subsections.
In the first subsection we describe the behavior of WB-RTO
over a Dumbbell network topology (Figure 4). In the second
subsection we discuss parameter adjustments and exploit some
interesting performance tradeoffs.

A. Performance Evaluation

The Delay-Bandwidth Product (D × B) of the backbone
link in the dumbbell network topology is 100 packets and the
router’s Drop Tail buffer can hold up to 50 packets. The sim-
ulation is repeated 10 times, increasing each time the number
of participating flows (10, 20,..., 100). We have intentionally
designed the simulated conditions so that resource supply does
not suffice for what users demand. The purpose is to give
the timeout algorithm the ultimate role of the transmission
scheduler for the link. In our case, the main target of the
retransmission timer is to distribute flows in time and permit
all flows to utilize the network resources, instead of rejecting
some flows for the benefit of the rest. Consequently, we expect
improvement in terms of fairness [4].

Figure 5 summarizes the performance of the two proto-
cols. WB-RTO outperforms TCP-RTO in all cases, in terms
of Goodput (Figure 5(a)). TCP-RTO results in 50% more
retransmissions (25MB in 1500 secs) than WB-RTO does,
as shown in Figure 5(b). In particular, TCP-RTO retransmits
more than 50.000 packets (almost 50MB), while WB-RTO
retransmits less than 20.000 packets, when 60 flows utilize the
link (Figure 5(b)). Note that even with that huge number of
retransmissions, standard TCP can not achieve better Goodput
performance than WB-RTO. Concluding, we argue that this

3Further performance evaluation, including Active Queue Management
schemes can be found in [15].



(a) Goodput (in Bytes/sec)

(b) Retransmitted Packets

(c) Fairness

(d) Goodput per Flow

Fig. 5. Protocol Performance in the Dumbbell Topology

behavior owes to the unnecessarily forcefull retransmission
policy of standard TCP.

One may naively think that the difference in Goodput
performance achieved by WB-RTO is negligeable compared to
the traditional TCP RTO. However, the Retransmission Time-
out Algorithm is responsible for the Retransmission effort of
the protocol, rather than for the actual Goodput performance of
the protocol. Hence, we pay more attention to the combination
of the retransmission effort spent by the protocol in order to
achieve the measured Goodput performance, rather than on
the Goodput performance alone. Furthermore, we focus on the
scheduling potential of the TCP timeout algorithm, emphasiz-
ing on the fair resource allocation among the competing flows.

In this context, WB-RTO greatly outperforms TCP-RTO in
terms of fairness (see Figure 5(c)); when contention increases
(e.g. more than 60 flows), the scheduling property of the
timeout becomes more dominant. In effect, TCP RTO behaves

unfairly to some flows, since it continously fails to provide a
time scale suitable for the whole system of flows, which could
guarantee efficient link utilization. To strengthen our claims,
we analyze the achieved Goodput per flow in Figure 5(d),
in case of 100 participating flows. As expected, we see that
in case of standard TCP, some flows continously transmit
(flows 1-60), while the rest of them (flows 61-100) continously
get rejected and achieve zero Goodput performance. On the
contrary, WB-RTO successfully provides resources to the most
of the participating flows (only 10 flows get rejected). Standard
TCP’s forcefull retransmissions result in higher Goodput for
the first 60 flows (compared to WB-RTO), while WB-RTO’s
more adaptive retransmission timer allows for transmission
opportunities to a larger number of participating flows (Fig-
ure 5(d)). WB-RTO exhibits one significant characteristic: it
occassionally behaves aggressively and occassionally more
conservatively, depending on the level of contention (as this
is captured by the window adjustments of the protocol).

B. Tradeoffs and Parameter Adjustments

As already mentioned in section 3, both the Thresholds and
the corresponding parameters (a1, a2, a3, a4), of the proposed
algorithm are set experimentally. We deemed necessary to
exploit when and how far do such settings impact the results
and the generality of the algorithm. In this section, we assign
different values to parameters a1 to a4, simulate the previous
scenario and investigate performance tradeoffs regarding the
behavior of WB-RTO. More specifically, we increase 10 times
the values of a parameters4, making the algorithm even more
conservative in terms of the timeout value adjustments.

In Figure 6 we plot the performance of the protocols. The
difference in the Goodput performance (Figure 6(a)) is even
greater than what it was previously (Figure 5(a)). Further-
more, the number of retransmissions for WB-RTO decreased,
reaching the outstanding level of 500% less retransmissions
(Figure 6(b)). However, fairness degrades the overall perfor-
mance of WB-RTO (Figure 6(c)) when less than 60 flows
compete for network resources. Figure 6(d) reveals the unfair
behavior of WB-RTO. In this Figure, we plot the per flow
Goodput performance for the experiment of 100 participating
flows. Like before, TCP-RTO rejects the last 40 flows from
utilizing the link, while this time WB-RTO extents the timeout
value long enough and gives transmission opportunities to all
flows, resulting in more fair resource utilization (last dots in
Figure 6(c)).

The same Figure, holds also the justification for the unfair
behavior of WB-RTO, when less than 60 flows participate
in the experiment. That is, we notice significant fluctuation
in the goodput performance of different flows, which results
in unfair resource allocation (Figure 6(c)): a flow enters the
link operating with small average window during the start-up
phase. Upon packet loss, the timeout is likely to get a rahter
high value, since the interval (rtt, c × ai)) is now larger.
After possibly waiting for a long time, the flow attempts to

4a1 = 100, a2 = 50, a3 = 30, a4 = 20
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Fig. 6. Protocol Performance in the Dumbbell Topology (Conservative
Adjustments)

enter the link, but the awnd is still small resulting in another
possible long wait, in case of timer expiration. The situation
remains, and the flow awaits for long time periods, until it
can retransmit, something that inevitably degrades Goodput
performance5. It is worth mentioning that RED gateways
cancel this drawback of the proposed algorithm [15]. Inline
to their design property, RED [6] gateways drop packets in
proportion to the transmission rate.

The above analysis exploits an interesting tradeoff: high
values for the Window-Based RTO reduce retransmission
overhead at the cost of fairness. More sophisticated parameter
adjustments constitute subject of future work.

We have also investigated the performance of WB-RTO in
scenaria with different time-demanding applications (i.e. short

5The situation is similar to the Ethernet capture effect.

together with long flows [7]). As a side effect, we observed
that long, standard-TCP flows synchronize their transmission
attempts with the short web-like flows. Given that, the queuing
delay increases periodically affecting the performance of the
time-demanding web applications. On the contrary WB-RTO
schedules short flows independently of the long ones, resulting
in more efficient link and buffer utilization [15].

VI. CONCLUSIONS

We have shown that TCP timers do not always adjust to
the level of flow contention. Several flows may calculate the
same timeout, leading to congestion events due to simultane-
ous retransmissions. We proposed a solution based on three
mechanisms: i) approximation of the current level of network
contention, ii) estimation of the contribution of the flow to
congestion, and iii) allowance for asynchronous retransmis-
sions when timeout happens. Our results match our design
goal. However, during simulations we exploited interesting
performance tradeoffs, which call for further optimizations.
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