

Abstract – In this paper, we propose a new transport protocol,

namely Scalable Streaming Video Protocol (SSVP), which employs
an AIMD-oriented congestion control mechanism. SSVP, in a
complementary role, operates on top of UDP and is specifically
designed to support unicast video streaming applications. The
transmission rate is controlled by properly adjusting the inter-
packet-gap, spacing outgoing packets evenly to produce a smoothed
flow. SSVP attempts to optimize the performance of streaming
video delivery with concern to friendliness with interfering traffic.
Quantifying SSVP’s performance, we identify that the protocol
utilizes a higher fraction of the available bandwidth, and maintains
a regular transmission rate with oscillations of a smaller magnitude
in comparison with existing congestion control schemes.

I. INTRODUCTION
 Time-sensitive applications, such as streaming media, gain
popularity and real-time data is expected to compose a
considerable portion of the overall data traffic traversing the
Internet. These applications generally prefer timeliness to
reliability. Real-time video streaming, in particular, calls for
strict requirements on end-to-end latency and delay variation.
More precisely, end-to-end delays exceeding 250 ms affect the
timely delivery of video-data causing data unavailability and
unintelligible real-time interaction with frustrating consequences
to the end-user. Furthermore, reliability parameters, such as
packet loss and bit errors, usually compose an impairment factor,
since they cause a perceptible degradation in video quality.
Unlike bulk data transfers, video streaming seeks to achieve
smooth playback quality rather than simply transmit at the
highest attainable bandwidth.
 Real-time applications commonly “rely” on the unreliable
transport services offered by User Datagram Protocol (UDP).
UDP is a fast, lightweight protocol without any transmission or
retransmission control. The protocol does not have functionality
to override application characteristics, such as its transmission
rates. It simply transmits at application rate and pattern.
However, the lack of congestion control poses a threat to the
network: had such applications dominated the Internet, it would
have faced risk of congestion collapse. In this context,
Internetworking functionality evolves towards punishing free-
transmitting protocols.

 On the other hand, Transmission Control Protocol (TCP),
based on the principles of congestion management [5], Slow-
Start [10], and Additive Increase Multiplicative Decrease
(AIMD) [2], provides a reliable data delivery service to Internet
applications, and is in large part responsible for the remarkable
stability of the Internet. More precisely, the process of probing
for bandwidth and reacting to observed congestion causes
oscillations to the achievable transmission rate. With TCP’s
increase-by-one and decrease-by-half control strategy, even an
adaptive and scalable source coding scheme is not able to
conceal the flow throughput variation. Furthermore, TCP
occasionally introduces arbitrary delays, since it enforces
reliability and in-order delivery. In response to standard TCP
limitations, several TCP protocol extensions [1, 4] have emerged
providing more efficient bandwidth utilization and sophisticated
mechanisms for congestion control. TCP-Friendly protocols,
proposed in [4, 12] achieve smooth window adjustments, while
they manage to compete fairly with TCP flows. In order to
achieve smoothness, they use gentle backward adjustments upon
congestion. However, this modification has a negative impact on
protocol responsiveness [11].
 Overcoming the oscillatory nature of AIMD congestion
control, as well as the risks arising by the extensive usage of
UDP, we need sophisticated congestion control that interacts
efficiently with other flows on the Internet. An overview of
Internet’s current congestion control paradigm reveals that
routers play a relatively passive role: they merely indicate
congestion through packet drops or Explicit Congestion
Notification (ECN). It is the end-systems that perform the crucial
role of responding appropriately to these congestion signals.
Numerous video-streaming applications have implemented their
own congestion control mechanisms, usually on a case-by-case
basis on top of UDP. However, implementing application-level
congestion control is difficult and not part of most applications’
core needs. We believe that a new transport protocol is needed,
which would combine unreliable datagram delivery with built-in
congestion control. This protocol would act as an enabling
technology: new and existing applications could use it to timely
transmit data without destabilizing the Internet.
 In this context, we have been working on a congestion
control mechanism for adapting outgoing video streams to the
characteristics of the end-to-end network path. We had the
option to rely on the unreliable UDP datagrams or modify TCP

Panagiotis Papadimitriou and Vassilis Tsaoussidis
Demokritos University of Thrace, Electrical & Computer Engineering Department

Xanthi, 67100 GREECE
E-mail: {ppapadim, vtsaousi}@ee.duth.gr

End-to-end Congestion Management for
Real-Time Streaming Video over the Internet

to provide unreliable semantics. However, the latter seems
particularly inappropriate considering the TCP semantics and its
reliance on cumulative acknowledgments. Consequently, we
considered UDP as a better choice, due to its unreliable and out-
of-order delivery. Along these lines, we developed a new
transport protocol, namely Scalable Streaming Video Protocol
(SSVP), operating on top of UDP. SSVP is well suited for unicast
streaming video applications. The protocol incorporates end-to-
end congestion control and does not rely on Quality of Service
(QoS) functionality in routers, such as Random Early Drop
(RED), ECN or other Active Queue Management (AQM)
mechanisms. Our objective is to provide efficient and smooth
rate control while maintaining fairness and friendliness with
corporate flows. SSVP adopts the generic AIMD approach by
adjusting the inter-packet-gap (IPG) additively or
multiplicatively, depending on whether or not congestion signal
is captured. Our mechanism composes a viable alternative to
existing congestion control schemes, alleviating most of the
impairments induced by limited bandwidth and transient errors.
 The rest of the paper is organized as follows. The following
section briefly reviews related work. In Section III we discuss
the design and implementation details of the proposed
congestion control scheme. In Section IV we evaluate our
mechanisms through extensive simulations. Finally, Section V
concludes the paper.

II. RELATED WORK
 The literature includes several studies and proposals towards
efficient video streaming over the Internet. Rate Adaptation
Protocol (RAP) [8] is a rate-based protocol which employs an
AIMD-oriented algorithm for the transmission of real-time
streams. The sending rate is continuously adjusted by RAP in a
TCP-friendly fashion using feedback from the receiver. Authors
in [3] study the impact of selected congestion control algorithms
on the performance of streaming media delivery. They also
propose a Real-time Transport (RTP) [9] compatible protocol,
namely SR-RTP, which employs SQRT binomial congestion
control. Datagram Congestion Control Protocol (DCCP) [6] is a
transport protocol that provides a congestion-controlled flow of
unreliable datagrams, and constitutes a generalized framework
for delay-sensitive data transport. DCCP aims to add to a UDP-
like foundation the minimum mechanisms necessary to support
TCP-like or TFRC congestion control.
 TCP-friendly protocols [4, 12] constitute an elegant solution
for time-sensitive applications. TCP-friendly Rate Control
(TFRC) [4] is a representative TCP-friendly protocol, where its
transmission rate is adjusted in response to the level of
congestion, as indicated by the loss rate. TFRC eventually
achieves the smoothing of the transmission gaps; however, the
protocol becomes less responsive to bandwidth availability [11].
TCP Westwood [7] is a TCP-friendly protocol that emerged as a
sender-side-only modification of TCP Reno congestion control.
TCP Westwood exploits end-to-end bandwidth estimation to
properly set the values of slow-start threshold and congestion
window after a congestion episode. TCP-Real [13] is a high-
throughput transport protocol that incorporates a congestion

avoidance mechanism in order to minimize transmission-rate
gaps. TCP-Real employs a receiver-oriented and measurement
based congestion control mechanism that significantly improves
real-time performance over heterogeneous networks and
asymmetric paths.

III. SSVP DESIGN AND IMPLEMENTATION

A. Sender and Receiver Interaction
 SSVP, in a complementary role, operates on top of UDP and
supports end-to-end congestion control relying on sender and
receiver interaction. SSVP acknowledges each datagram
received by transmitting a control packet (containing no data). In
accordance with the relaxed packet loss requirements of
streaming video and considering the delays induced by
retransmitted packets, we did not integrate reliability into UDP
datagrams. Hence, control packets do not trigger retransmissions.
However, they are effectively used in order to determine
bandwidth and Round Trip Time (RTT) estimates, and properly
negotiate and adjust the rate of the transmitted video stream.
 We have encapsulated additional header information to UDP
datagrams (Fig. 1), including packet type, packet sequence
number, frame type, frame number and timestamp. Packet type
field denotes whether a segment with video-data or a control
packet is transmitted. Frame type and number can be exploited in
order to augment a prioritized transmission (where I frames will
be prioritized). Timestamp field is used to handle RTT
computation. More precisely, when the sender transmits a video-
packet, it updates the specific field with current time. Upon the
receipt of the corresponding control packet, the sender subtracts
the included timestamp from current time in order to estimate the
RTT sample.

 Bits
 0 2 4 16 31

Packet
Type

Frame
Type

Frame
Number Sequence Number

Packet Size

Timestamp

Figure 1. SSVP Header

 Since UDP is an unreliable protocol, some datagrams may be
lost due to congestion or inability of the receiving host from
reading the packets rapidly enough. The receiver uses packet
drops or re-ordering as congestion indicator. Consequently,
congestion control is triggered, when a packet is received
carrying a sequence number greater than the expected sequence
number or the receiver does not acquire any packets within a
timeout interval. Along these lines, the proper adjustment of the
timeout interval is critical. A timeout interval that is set too short
will claim false packet drops resulting in a wasteful reduction of
the transmission rate. On the other hand, a long and consequently
conservative timeout interval will inevitably impact the protocol
responsiveness. The timeout interval for SSVP (STO) is properly

estimated based on current RTT measurements (SampleRTT), as
follows:

STO = γ×STO + (1 – γ)×SampleRTT

where γ is the smoothing factor adjusted at 0.9.

B. Rate Adjustment
 SSVP adjusts the sending rate in a TCP-friendly fashion,
exploiting the feedback of reception statistics (control packets).
Both binomial [1] and AIMD congestion control are implied to
achieve TCP-friendliness. Although binomial schemes, such as
IIAD or SQRT [3], are quite attractive to multimedia
applications for their smooth rate variations, they are not able to
achieve TCP-friendliness independent of link capacity. Apart
from link capacity, the selection of increase rate and decrease
ratio composes another influencing parameter. Along these lines,
in order to attain TCP-friendliness, SSVP incorporates AIMD
congestion control. Let α, β the specific values of additive
increase and multiplicative decrease rate, respectively. The
choice of α and β has a direct impact on protocol responsiveness
to conditions of increasing contention or bandwidth availability.

Figure 2. SSVP transmission rate evolution

 Fig. 2 illustrates an SSVP flow under AIMD congestion
control with instantaneous transmission rate R. Transmission
initiates at time t0 and R evolves, as follows:

R(t + ∆t) = R(t) + α ∆t

Assuming a packet drop at time t1, the transmission rate is
reduced from R to βR and immediately the video coder is
notified to reduce the video coding rate. This process (i.e. coding
rate reduction) inevitably incurs a delay d and eventually
transmission resumes at time t2 = t1 + d. If we assume that the
server sends video data by dividing each frame into fixed packets
of size S, we investigate the maximum end-to-end packet delay
with respect to the stringent streaming video latency
requirements. Let a packet P generated at time t2. P will be
enqueued after a number of packets that were generated during
the time period: t1 ≤ ts < t2. Consequently, such a packet will
suffer the longest delay. During ts, the queue inside the sender is
increased by d (1 - β) R / S packets, approximately. Hence, the
sending delay D that denotes the amount of time that packet P
will rest inside the server is derived by:

)1
β
1(

S
d

βR
S

R β)-(1 d

D −=≈ (1)

The sending delay D depends on the decrease parameter β. With
respect to equation (1), we may alleviate the impact of delayed
packets on video quality by choosing an appropriate β.
Apparently, a large value of β reduces packet sending delays
smoothing transmission gaps. Furthermore, the video server is
enforced to gracefully degrade video quality in response to
congestion signals. Based on equation (1), if we calculate the
sending delays D1, D2 which correspond to β1 = 0.5 and β2 =
0.875 respectively, we obtain an 85% gain for β2, which
significantly improves video delivery in the situation of frequent
packet drops. However, a large β enforces the selection of a
small α, according to the TCP-friendly condition [4].
 Based on our analysis and with respect to user perception of
video quality, we employ SSVP under AIMD congestion control
with a final selection of α = 0.2 and β = 0.875. Transmission rate
is controlled by properly adjusting the inter-packet-gap (IPG). If
no congestion is sensed, IPG is reduced additively; otherwise, it
is increased multiplicatively. As a rate-based control, SSVP
spaces outgoing packets evenly to produce a smoothed flow. The
selected parameters result in oscillations of a smaller magnitude
than standard TCP (1, 0.5), while per-RTT rate adjustments
enforce a relatively responsive behavior.

IV. PERFORMANCE EVALUATION

A. Experimental Environment
 The evaluation plan was implemented on the NS-2 network
simulator. Simulations were initially conducted on the typical
single-bottleneck dumbbell topology with a bottleneck capacity
of 1 Mbps and a round-trip link delay of 30 ms. We also enabled
simulations on a complex network topology (Fig. 3), which
addresses the heterogeneity of the Internet. The specific topology
includes multiple bottlenecks, cross traffic, wireless links and
diverse RTTs. The propagation delays of the access links from
all the source nodes, as well as the links to the peripheral sink
nodes range from 5 ms to 15 ms, while the corresponding
bandwidth capacities range from 2 Mbps to 10 Mbps. Cross
traffic includes diverse FTP flows over TCP Reno. NS-2 error
models were inserted into the access links to the sink nodes with
packet error rate (PER) adjusted at 0.01. In both topologies we
used drop-tail routers with buffer size adjusted in accordance
with the bandwidth-delay product. Furthermore, we set the
packet size to 1000 bytes and the maximum congestion window
to 64 KB for all TCP connections. The duration of each
simulation is 60 seconds.
 In order to simulate real-time traffic, we developed an
MPEG-4 Traffic Generator. The traffic generated closely
matches the statistical characteristics of an original MPEG-4
video trace. We used three separate Transform Expand Sample

(TES) models for I, P and B frames, respectively. The resulting
video stream is generated by interleaving data obtained by the
three models.

Figure 3. Simulation topology

 We hereby refer to the performance metrics supported by our
simulation model. Since both topologies include MPEG flows
competing with corporate FTP flows, the performance metrics
are applied separately to the MPEG and FTP traffic. Goodput
was used to measure the overall system efficiency in bandwidth
utilization. Inter-protocol fairness measurements were conducted
based on normalized throughput, which is the ratio of the
average throughput received by each flow over the bandwidth
fair-share on each case. In order to quantify the performance on
video delivery, we demonstrate packet jitter and delayed packets
statistics. The proportion of delayed packets is reflected in
Delayed Packets Rate, where we monitor packet inter-arrival
times and eventually distinguish the packets that can be
effectively used by the client application from delayed packets
(according to a configurable packet inter-arrival threshold). In
accordance with video streaming requirements, we adjusted the
packet inter-arrival threshold at 100 ms.

B. Results and Discussion
 In the sequel, we demonstrate and briefly analyze the most

prominent results from the experiments we performed. Fig. 4
illustrates an excerpt from an MPEG transfer over SSVP. The
simulation was conducted on the dumbbell topology, where an
SSVP flow competes with a single FTP flow (over TCP Reno).
SSVP is able to sustain a regular transmission rate inducing
oscillations of relatively small magnitude. More precisely, the
integrated AIMD (0.2, 0.875) congestion control results in gentle
rate reductions in response to packet drops.

 The performance of video delivery is additionally depicted in
Fig. 5. Delay variation scarcely exceeds the frustrating limit of
100 ms, since SSVP effectively smoothes transmission gaps
validating our choice to apply a multiplicative decrease factor of
0.875, as derived in Section III-B. Furthermore, such a
performance does not necessitate the use of deep playback
buffers in order to ameliorate the effect of jitter.

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0 10 20 30 40 50 60

time (sec)

M
bp

s

Figure 4. SSVP Receiving Rate

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

0,20

0 10 20 30 40 50 60

time (sec)

pa
ck

et
 in

te
r-

ar
ri

va
l t

im
e

(s
ec

)

Figure 5. SSVP Packet Jitter

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

1 5 10 15 20 25 30

TCP Reno flows

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

SSVP
Reno
Link Utilization

Figure 6. Normalized Throughput

 Based on the same network topology (i.e. dumbbell), we
investigate the impact of SSVP on corporate traffic. We
simulated a single SSVP flow competing with a diverse number
of FTP flows (1-30) successively. Fig. 6 illustrates the associated
normalized throughput measurements. The target sending rate
for SSVP is adjusted at 380 Kbps in order to enforce strong
contention with interfering TCP flows. Despite the limited link
resources (1 Mbps) and the high SSVP sending rate, TCP flows
are allowed to obtain a fair share of the link (in each case they
score a normalized throughput of nearly 1). On the other hand,
SSVP manages to allocate the remaining resources, since
bottleneck link utilization is always more than 80%.
Consequently, SSVP co-exists fairly with TCP.
 We also carried out a series of simulations in order to assess
the performance of our approach versus TCP-friendly and UDP
traffic (Figs. 7, 8). TCP-friendly contenders include the rate-
based TFRC and the measurement-based TCP-Real, both
implied to yield remarkable efficiency on video delivery over a

wide range of network and session dynamics. The associated
experiments were conducted on the complex network topology,
where we simulated diverse MPEG flows (1-50) competing with
cross FTP traffic (10 flows).

0

1

2

3

4

5

6

7

8

9

10

10 20 30 40 50

MPEG flows

M
bp

s

TFRC
Real
UDP
SSVP

Figure 7. Goodput of MPEG flows

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

10 20 30 40 50

MPEG flows

TFRC
Real
UDP
SSVP

Figure 8. Delayed Packets Rate

 UDP achieves the highest goodput rates (Fig. 7), since it
steadily transmits at application rate regardless of the prevailing
network conditions. SSVP also exhibits high link utilization,
outperforming both TFRC and TCP-Real, regardless of link
multiplexing (Fig. 7). Inline with the single SSVP flow results,
the properly selected decrease rate (0.875), as well as the per-
RTT rate adjustments effectively contribute to the remarkable
performance of SSVP. Since goodput gains do not necessitate an
improved performance on video delivery, we also demonstrate
statistics from delayed packets in order to quantify protocol
efficiency. Fig. 8 illustrates that SSVP, as well as TFRC achieve
the timely delivery of most packets inducing minimal
impairments on perceived video quality.
 An overview of Figs. 7, 8 reveals that UDP causes long and
variable delays that degrade video quality, since it results in
rapidly growing queues and bottleneck buffer overflows. TCP-
Real fails to control the tradeoff between responsiveness and
smoothness, exhibiting an inherent weakness when bandwidth
becomes available rapidly. As a result, the protocol yields a
limited performance (relatively to SSVP and TFRC) in the
situation of bandwidth availability (i.e. low link multiplexing).
However, in the case of scarce bandwidth (high contention), the
advantage of SSVP and TFRC (i.e. efficient bandwidth
utilization) is diminished and consequently, all three protocols
achieve equivalent goodput performance (Fig. 7). On the other
hand, in heterogeneous environments with random transient

errors, TFRC occasionally fails to obtain accurate estimates of
the loss event rate, invoking an inappropriate equation-based
recovery that impacts bandwidth utilization. Finally, SSVP
incorporates a simple and yet efficient end-to-end congestion
management scheme on top of the light-weight UDP. A careful
selection of protocol parameters enables SSVP to effectively
adapt to the vagaries of the network, enabling the delivery of
smooth video in a wide range of network dynamics.

V. CONCLUSIONS
 We have proposed a congestion control scheme that provides
efficient support and QoS provisioning for streaming video
applications over the Internet. Through simulations, we validated
the robust behavior of our approach and we also demonstrated its
feasibility in terms of wide range deployment. Furthermore, we
showed that our implementation compares very favorably with
congestion control mechanisms dedicated for time-sensitive
traffic, such as TFRC.

REFERENCES
[1] D. Bansal and H. Balakrishnan, “Binomial Congestion Control

Algorithms”, In Proc. of IEEE INFOCOM 2001, Anchorage, Alaska,
USA, April 2001

[2] D. Chiu, R. Jain, “Analysis of the increase/decrease algorithms for
congestion avoidance in computer networks”, Journal of Computer
Networks, 17(1), pp. 1-14, June 1989

[3] N. Feamster, D. Bansal and H. Balakrishnan, “On the Interactions
Between Layered Quality Adaptation and Congestion Control for
Streaming Video”, In Proc. of 11th Int/nal Packet Video Workshop,
Kyongju, Korea, April 2001

[4] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-Based
Congestion Control for Unicast Applications”, In Proc. of ACM
SIGCOMM 2000, Stockholm, Sweden, August 2000

[5] V. Jacobson, “Congestion avoidance and control”, In Proc. of ACM
SIGCOMM ‘88, Stanford, USA, August 1988

[6] E. Kohler, M. Handley, and S. Floyd, “Designing DCCP: Congestion
control without reliability”, In Proc. of ACM SIGCOMM 2006, Piza, Italy,
September 2006

[7] S. Mascolo, C. Casetti, M. Gerla, M. Sanadidi, and R. Wang, “TCP
Westwood: Bandwidth Estimation for Enhanced Transport over Wireless
Links”, In Proc. of ACM MobiCom ’01, Rome, Italy, July 2001

[8] R. Rejaie, M. Handley and D. Estrin, “RAP: An End-to-end Rate-based
Congestion Control Mechanism for Realtime Streams in the Internet”, In
Proc. of IEEE INFOCOM, New York, USA, March 1999

[9] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A
transport protocol for real-time applications”, RFC 1889, January 1996

[10] W. Stevens, “TCP Slow Start, Congestion Avoidance, Fast Retransmit,
and Fast Recovery Algorithms”, RFC 2001, January 1997

[11] V. Tsaoussidis and C. Zhang, “The Dynamics of Responsiveness and
Smoothness in Heterogeneous Networks”, IEEE Journal on Selected
Areas in Communications (JSAC), 23(6), pp. 1178-1189, June 2005

[12] Y. R. Yang and S. S. Lam, “General AIMD Congestion Control”, In Proc.
of 8th IEEE ICNP, Osaka, Japan, November 2000

[13] C. Zhang and V. Tsaoussidis, “TCP Real: Improving Real-time
Capabilities of TCP over Heterogeneous Networks”, In Proc. of 11th
IEEE/ACM NOSSDAV, Port Jefferson, New York, USA, June 2001

