
 

 

  
Abstract – In this paper, we propose a new transport protocol, 

namely Scalable Streaming Video Protocol (SSVP), which employs 
an AIMD-oriented congestion control mechanism. SSVP, in a 
complementary role, operates on top of UDP and is specifically 
designed to support unicast video streaming applications. The 
transmission rate is controlled by properly adjusting the inter-
packet-gap, spacing outgoing packets evenly to produce a smoothed 
flow. SSVP attempts to optimize the performance of streaming 
video delivery with concern to friendliness with interfering traffic. 
Quantifying SSVP’s performance, we identify that the protocol 
utilizes a higher fraction of the available bandwidth, and maintains 
a regular transmission rate with oscillations of a smaller magnitude 
in comparison with existing congestion control schemes. 

I. INTRODUCTION 
      Time-sensitive applications, such as streaming media, gain 
popularity and real-time data is expected to compose a 
considerable portion of the overall data traffic traversing the 
Internet. These applications generally prefer timeliness to 
reliability. Real-time video streaming, in particular, calls for 
strict requirements on end-to-end latency and delay variation. 
More precisely, end-to-end delays exceeding 250 ms affect the 
timely delivery of video-data causing data unavailability and 
unintelligible real-time interaction with frustrating consequences 
to the end-user. Furthermore, reliability parameters, such as 
packet loss and bit errors, usually compose an impairment factor, 
since they cause a perceptible degradation in video quality. 
Unlike bulk data transfers, video streaming seeks to achieve 
smooth playback quality rather than simply transmit at the 
highest attainable bandwidth. 
      Real-time applications commonly “rely” on the unreliable 
transport services offered by User Datagram Protocol (UDP). 
UDP is a fast, lightweight protocol without any transmission or 
retransmission control. The protocol does not have functionality 
to override application characteristics, such as its transmission 
rates. It simply transmits at application rate and pattern. 
However, the lack of congestion control poses a threat to the 
network: had such applications dominated the Internet, it would 
have faced risk of congestion collapse. In this context, 
Internetworking functionality evolves towards punishing free-
transmitting protocols. 

 
 

      On the other hand, Transmission Control Protocol (TCP), 
based on the principles of congestion management [5], Slow-
Start [10], and Additive Increase Multiplicative Decrease 
(AIMD) [2], provides a reliable data delivery service to Internet 
applications, and is in large part responsible for the remarkable 
stability of the Internet. More precisely, the process of probing 
for bandwidth and reacting to observed congestion causes 
oscillations to the achievable transmission rate. With TCP’s 
increase-by-one and decrease-by-half control strategy, even an 
adaptive and scalable source coding scheme is not able to 
conceal the flow throughput variation. Furthermore, TCP 
occasionally introduces arbitrary delays, since it enforces 
reliability and in-order delivery. In response to standard TCP 
limitations, several TCP protocol extensions [1, 4] have emerged 
providing more efficient bandwidth utilization and sophisticated 
mechanisms for congestion control. TCP-Friendly protocols, 
proposed in [4, 12] achieve smooth window adjustments, while 
they manage to compete fairly with TCP flows. In order to 
achieve smoothness, they use gentle backward adjustments upon 
congestion. However, this modification has a negative impact on 
protocol responsiveness [11].  
      Overcoming the oscillatory nature of AIMD congestion 
control, as well as the risks arising by the extensive usage of 
UDP, we need sophisticated congestion control that interacts 
efficiently with other flows on the Internet.  An overview of 
Internet’s current congestion control paradigm reveals that 
routers play a relatively passive role: they merely indicate 
congestion through packet drops or Explicit Congestion 
Notification (ECN). It is the end-systems that perform the crucial 
role of responding appropriately to these congestion signals. 
Numerous video-streaming applications have implemented their 
own congestion control mechanisms, usually on a case-by-case 
basis on top of UDP. However, implementing application-level 
congestion control is difficult and not part of most applications’ 
core needs. We believe that a new transport protocol is needed, 
which would combine unreliable datagram delivery with built-in 
congestion control. This protocol would act as an enabling 
technology: new and existing applications could use it to timely 
transmit data without destabilizing the Internet.  
      In this context, we have been working on a congestion 
control mechanism for adapting outgoing video streams to the 
characteristics of the end-to-end network path. We had the 
option to rely on the unreliable UDP datagrams or modify TCP 
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to provide unreliable semantics. However, the latter seems 
particularly inappropriate considering the TCP semantics and its 
reliance on cumulative acknowledgments. Consequently, we 
considered UDP as a better choice, due to its unreliable and out-
of-order delivery. Along these lines, we developed a new 
transport protocol, namely Scalable Streaming Video Protocol 
(SSVP), operating on top of UDP. SSVP is well suited for unicast 
streaming video applications. The protocol incorporates end-to-
end congestion control and does not rely on Quality of Service 
(QoS) functionality in routers, such as Random Early Drop 
(RED), ECN or other Active Queue Management (AQM) 
mechanisms. Our objective is to provide efficient and smooth 
rate control while maintaining fairness and friendliness with 
corporate flows. SSVP adopts the generic AIMD approach by 
adjusting the inter-packet-gap (IPG) additively or 
multiplicatively, depending on whether or not congestion signal 
is captured. Our mechanism composes a viable alternative to 
existing congestion control schemes, alleviating most of the 
impairments induced by limited bandwidth and transient errors.  
      The rest of the paper is organized as follows. The following 
section briefly reviews related work. In Section III we discuss 
the design and implementation details of the proposed 
congestion control scheme. In Section IV we evaluate our 
mechanisms through extensive simulations. Finally, Section V 
concludes the paper. 

II. RELATED WORK 
      The literature includes several studies and proposals towards 
efficient video streaming over the Internet. Rate Adaptation 
Protocol (RAP) [8] is a rate-based protocol which employs an 
AIMD-oriented algorithm for the transmission of real-time 
streams. The sending rate is continuously adjusted by RAP in a 
TCP-friendly fashion using feedback from the receiver. Authors 
in [3] study the impact of selected congestion control algorithms 
on the performance of streaming media delivery. They also 
propose a Real-time Transport (RTP) [9] compatible protocol, 
namely SR-RTP, which employs SQRT binomial congestion 
control. Datagram Congestion Control Protocol (DCCP) [6] is a 
transport protocol that provides a congestion-controlled flow of 
unreliable datagrams, and constitutes a generalized framework 
for delay-sensitive data transport. DCCP aims to add to a UDP-
like foundation the minimum mechanisms necessary to support 
TCP-like or TFRC congestion control. 
      TCP-friendly protocols [4, 12] constitute an elegant solution 
for time-sensitive applications. TCP-friendly Rate Control 
(TFRC) [4] is a representative TCP-friendly protocol, where its 
transmission rate is adjusted in response to the level of 
congestion, as indicated by the loss rate. TFRC eventually 
achieves the smoothing of the transmission gaps; however, the 
protocol becomes less responsive to bandwidth availability [11]. 
TCP Westwood [7] is a TCP-friendly protocol that emerged as a 
sender-side-only modification of TCP Reno congestion control. 
TCP Westwood exploits end-to-end bandwidth estimation to 
properly set the values of slow-start threshold and congestion 
window after a congestion episode. TCP-Real [13] is a high-
throughput transport protocol that incorporates a congestion 

avoidance mechanism in order to minimize transmission-rate 
gaps. TCP-Real employs a receiver-oriented and measurement 
based congestion control mechanism that significantly improves 
real-time performance over heterogeneous networks and 
asymmetric paths. 

III. SSVP DESIGN AND IMPLEMENTATION 

A. Sender and Receiver Interaction 
      SSVP, in a complementary role, operates on top of UDP and 
supports end-to-end congestion control relying on sender and 
receiver interaction. SSVP acknowledges each datagram 
received by transmitting a control packet (containing no data). In 
accordance with the relaxed packet loss requirements of 
streaming video and considering the delays induced by 
retransmitted packets, we did not integrate reliability into UDP 
datagrams. Hence, control packets do not trigger retransmissions. 
However, they are effectively used in order to determine 
bandwidth and Round Trip Time (RTT) estimates, and properly 
negotiate and adjust the rate of the transmitted video stream. 
      We have encapsulated additional header information to UDP 
datagrams (Fig. 1), including packet type, packet sequence 
number, frame type, frame number and timestamp. Packet type 
field denotes whether a segment with video-data or a control 
packet is transmitted. Frame type and number can be exploited in 
order to augment a prioritized transmission (where I frames will 
be prioritized). Timestamp field is used to handle RTT 
computation. More precisely, when the sender transmits a video-
packet, it updates the specific field with current time. Upon the 
receipt of the corresponding control packet, the sender subtracts 
the included timestamp from current time in order to estimate the 
RTT sample. 
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Figure 1. SSVP Header 
 
      Since UDP is an unreliable protocol, some datagrams may be 
lost due to congestion or inability of the receiving host from 
reading the packets rapidly enough. The receiver uses packet 
drops or re-ordering as congestion indicator. Consequently, 
congestion control is triggered, when a packet is received 
carrying a sequence number greater than the expected sequence 
number or the receiver does not acquire any packets within a 
timeout interval. Along these lines, the proper adjustment of the 
timeout interval is critical. A timeout interval that is set too short 
will claim false packet drops resulting in a wasteful reduction of 
the transmission rate. On the other hand, a long and consequently 
conservative timeout interval will inevitably impact the protocol 
responsiveness. The timeout interval for SSVP (STO) is properly 



 

 

estimated based on current RTT measurements (SampleRTT), as 
follows: 
 

STO = γ×STO + (1 – γ)×SampleRTT 
 

where γ is the smoothing factor adjusted at 0.9.  

B. Rate Adjustment 
      SSVP adjusts the sending rate in a TCP-friendly fashion, 
exploiting the feedback of reception statistics (control packets). 
Both binomial [1] and AIMD congestion control are implied to 
achieve TCP-friendliness. Although binomial schemes, such as 
IIAD or SQRT [3], are quite attractive to multimedia 
applications for their smooth rate variations, they are not able to 
achieve TCP-friendliness independent of link capacity. Apart 
from link capacity, the selection of increase rate and decrease 
ratio composes another influencing parameter. Along these lines, 
in order to attain TCP-friendliness, SSVP incorporates AIMD 
congestion control. Let α, β the specific values of additive 
increase and multiplicative decrease rate, respectively. The 
choice of α and β has a direct impact on protocol responsiveness 
to conditions of increasing contention or bandwidth availability.  
 

 
 

Figure 2. SSVP transmission rate evolution 
 
     Fig. 2 illustrates an SSVP flow under AIMD congestion 
control with instantaneous transmission rate R. Transmission 
initiates at time t0 and R evolves, as follows: 
 

R(t + ∆t) = R(t) + α ∆t 
 

Assuming a packet drop at time t1, the transmission rate is 
reduced from R to βR and immediately the video coder is 
notified to reduce the video coding rate. This process (i.e. coding 
rate reduction) inevitably incurs a delay d and eventually 
transmission resumes at time t2 = t1 + d. If we assume that the 
server sends video data by dividing each frame into fixed packets 
of size S, we investigate the maximum end-to-end packet delay 
with respect to the stringent streaming video latency 
requirements. Let a packet P generated at time t2. P will be 
enqueued after a number of packets that were generated during 
the time period: t1 ≤ ts < t2. Consequently, such a packet will 
suffer the longest delay. During ts, the queue inside the sender is 
increased by d (1 - β) R / S packets, approximately. Hence, the 
sending delay D that denotes the amount of time that packet P 
will rest inside the server is derived by: 
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The sending delay D depends on the decrease parameter β. With 
respect to equation (1), we may alleviate the impact of delayed 
packets on video quality by choosing an appropriate β. 
Apparently, a large value of β reduces packet sending delays 
smoothing transmission gaps. Furthermore, the video server is 
enforced to gracefully degrade video quality in response to 
congestion signals. Based on equation (1), if we calculate the 
sending delays D1, D2 which correspond to β1 = 0.5 and β2 = 
0.875 respectively, we obtain an 85% gain for β2, which 
significantly improves video delivery in the situation of frequent 
packet drops. However, a large β enforces the selection of a 
small α, according to the TCP-friendly condition [4].  
      Based on our analysis and with respect to user perception of 
video quality, we employ SSVP under AIMD congestion control 
with a final selection of α = 0.2 and β = 0.875. Transmission rate 
is controlled by properly adjusting the inter-packet-gap (IPG). If 
no congestion is sensed, IPG is reduced additively; otherwise, it 
is increased multiplicatively. As a rate-based control, SSVP 
spaces outgoing packets evenly to produce a smoothed flow. The 
selected parameters result in oscillations of a smaller magnitude 
than standard TCP (1, 0.5), while per-RTT rate adjustments 
enforce a relatively responsive behavior. 
 

IV. PERFORMANCE EVALUATION 

A. Experimental Environment 
      The evaluation plan was implemented on the NS-2 network 
simulator. Simulations were initially conducted on the typical 
single-bottleneck dumbbell topology with a bottleneck capacity 
of 1 Mbps and a round-trip link delay of 30 ms. We also enabled 
simulations on a complex network topology (Fig. 3), which 
addresses the heterogeneity of the Internet. The specific topology 
includes multiple bottlenecks, cross traffic, wireless links and 
diverse RTTs. The propagation delays of the access links from 
all the source nodes, as well as the links to the peripheral sink 
nodes range from 5 ms to 15 ms, while the corresponding 
bandwidth capacities range from 2 Mbps to 10 Mbps. Cross 
traffic includes diverse FTP flows over TCP Reno. NS-2 error 
models were inserted into the access links to the sink nodes with 
packet error rate (PER) adjusted at 0.01. In both topologies we 
used drop-tail routers with buffer size adjusted in accordance 
with the bandwidth-delay product. Furthermore, we set the 
packet size to 1000 bytes and the maximum congestion window 
to 64 KB for all TCP connections. The duration of each 
simulation is 60 seconds. 
      In order to simulate real-time traffic, we developed an 
MPEG-4 Traffic Generator. The traffic generated closely 
matches the statistical characteristics of an original MPEG-4 
video trace. We used three separate Transform Expand Sample 



 

 

(TES) models for I, P and B frames, respectively. The resulting 
video stream is generated by interleaving data obtained by the 
three models. 
 

 
 

Figure 3. Simulation topology 
 
      We hereby refer to the performance metrics supported by our 
simulation model. Since both topologies include MPEG flows 
competing with corporate FTP flows, the performance metrics 
are applied separately to the MPEG and FTP traffic. Goodput 
was used to measure the overall system efficiency in bandwidth 
utilization. Inter-protocol fairness measurements were conducted 
based on normalized throughput, which is the ratio of the 
average throughput received by each flow over the bandwidth 
fair-share on each case. In order to quantify the performance on 
video delivery, we demonstrate packet jitter and delayed packets 
statistics. The proportion of delayed packets is reflected in 
Delayed Packets Rate, where we monitor packet inter-arrival 
times and eventually distinguish the packets that can be 
effectively used by the client application from delayed packets 
(according to a configurable packet inter-arrival threshold). In 
accordance with video streaming requirements, we adjusted the 
packet inter-arrival threshold at 100 ms.  

B.  Results and Discussion 
 In the sequel, we demonstrate and briefly analyze the most 

prominent results from the experiments we performed. Fig. 4 
illustrates an excerpt from an MPEG transfer over SSVP. The 
simulation was conducted on the dumbbell topology, where an 
SSVP flow competes with a single FTP flow (over TCP Reno). 
SSVP is able to sustain a regular transmission rate inducing 
oscillations of relatively small magnitude. More precisely, the 
integrated AIMD (0.2, 0.875) congestion control results in gentle 
rate reductions in response to packet drops. 

 The performance of video delivery is additionally depicted in 
Fig. 5. Delay variation scarcely exceeds the frustrating limit of 
100 ms, since SSVP effectively smoothes transmission gaps 
validating our choice to apply a multiplicative decrease factor of 
0.875, as derived in Section III-B. Furthermore, such a 
performance does not necessitate the use of deep playback 
buffers in order to ameliorate the effect of jitter. 
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Figure 4. SSVP Receiving Rate 
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Figure 5. SSVP Packet Jitter 
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Figure 6. Normalized Throughput 

 
      Based on the same network topology (i.e. dumbbell), we 
investigate the impact of SSVP on corporate traffic. We 
simulated a single SSVP flow competing with a diverse number 
of FTP flows (1-30) successively. Fig. 6 illustrates the associated 
normalized throughput measurements. The target sending rate 
for SSVP is adjusted at 380 Kbps in order to enforce strong 
contention with interfering TCP flows. Despite the limited link 
resources (1 Mbps) and the high SSVP sending rate, TCP flows 
are allowed to obtain a fair share of the link (in each case they 
score a normalized throughput of nearly 1).  On the other hand, 
SSVP manages to allocate the remaining resources, since 
bottleneck link utilization is always more than 80%. 
Consequently, SSVP co-exists fairly with TCP. 
      We also carried out a series of simulations in order to assess 
the performance of our approach versus TCP-friendly and UDP 
traffic (Figs. 7, 8). TCP-friendly contenders include the rate-
based TFRC and the measurement-based TCP-Real, both 
implied to yield remarkable efficiency on video delivery over a 



 

 

wide range of network and session dynamics. The associated 
experiments were conducted on the complex network topology, 
where we simulated diverse MPEG flows (1-50) competing with 
cross FTP traffic (10 flows).  
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Figure 7. Goodput of MPEG flows 
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Figure 8. Delayed Packets Rate 

 
      UDP achieves the highest goodput rates (Fig. 7), since it 
steadily transmits at application rate regardless of the prevailing 
network conditions. SSVP also exhibits high link utilization, 
outperforming both TFRC and TCP-Real, regardless of link 
multiplexing (Fig. 7). Inline with the single SSVP flow results, 
the properly selected decrease rate (0.875), as well as the per-
RTT rate adjustments effectively contribute to the remarkable 
performance of SSVP. Since goodput gains do not necessitate an 
improved performance on video delivery, we also demonstrate 
statistics from delayed packets in order to quantify protocol 
efficiency. Fig. 8 illustrates that SSVP, as well as TFRC achieve 
the timely delivery of most packets inducing minimal 
impairments on perceived video quality. 
      An overview of Figs. 7, 8 reveals that UDP causes long and 
variable delays that degrade video quality, since it results in 
rapidly growing queues and bottleneck buffer overflows. TCP-
Real fails to control the tradeoff between responsiveness and 
smoothness, exhibiting an inherent weakness when bandwidth 
becomes available rapidly. As a result, the protocol yields a 
limited performance (relatively to SSVP and TFRC) in the 
situation of bandwidth availability (i.e. low link multiplexing). 
However, in the case of scarce bandwidth (high contention), the 
advantage of SSVP and TFRC (i.e. efficient bandwidth 
utilization) is diminished and consequently, all three protocols 
achieve equivalent goodput performance (Fig. 7). On the other 
hand, in heterogeneous environments with random transient 

errors, TFRC occasionally fails to obtain accurate estimates of 
the loss event rate, invoking an inappropriate equation-based 
recovery that impacts bandwidth utilization. Finally, SSVP 
incorporates a simple and yet efficient end-to-end congestion 
management scheme on top of the light-weight UDP. A careful 
selection of protocol parameters enables SSVP to effectively 
adapt to the vagaries of the network, enabling the delivery of 
smooth video in a wide range of network dynamics. 
 

V. CONCLUSIONS 
      We have proposed a congestion control scheme that provides 
efficient support and QoS provisioning for streaming video 
applications over the Internet. Through simulations, we validated 
the robust behavior of our approach and we also demonstrated its 
feasibility in terms of wide range deployment. Furthermore, we 
showed that our implementation compares very favorably with 
congestion control mechanisms dedicated for time-sensitive 
traffic, such as TFRC. 
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