1178

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 6, JUNE 2005

The Dynamics of Responsiveness and Smoothness
in Heterogeneous Networks

Vassilis Tsaoussidis, Senior Member, IEEE, and Chi Zhang, Member, IEEE

Abstract—Additive increase/multiplicative decrease-based
protocols, including transmission control protocol (TCP),
TCP-friendly, and a new generation of rate-based protocols,
attempt to control the tradeoff of responsiveness and smoothness.
Traditionally, smoothness has not been a main concern since it
does not impact the performance of regular Internet applications
such as the Web, FTP, or e-mail. However, multimedia-driven pro-
tocols attempt to favor smoothness at the cost of responsiveness.
In general, smoothness and responsiveness constitute a tradeoff;
however, we uncover undesirable dynamics of the protocols in
the context of wireless/mobile networks with high-error rate or
frequent handoffs: low responsiveness is not counterbalanced by
gains in smoothness, but instead, produces a conservative behavior
that degrades protocol performance with both delay-tolerant and
-sensitive applications. Based on our observations, as well as on
further analysis of the impact of the bottleneck queue on channel
utilization, we seek an alternative strategy for smooth window
adjustments. We introduce a new parameter +, which implements
a congestion avoidance tactic and reaches better smoothness
without damaging responsiveness.

Index Terms—Congestion control, fairness, transmission control
protocol (TCP)-friendly protocols.

I. INTRODUCTION

HE CONGESTION control algorithms of Internet trans-

port protocols (e.g., [1]) are based on a somewhat “blind”
increase/decrease window adjustment, which exploits dynami-
cally the availability of bandwidth, avoids persistent congestion,
and achieves fair utilization. For example, the window adjust-
ment is modeled on the additive increase/multiplicative decrease
(AIMD) algorithm, which allows for fair resource allocation and
efficient resource utilization [3]. AIMD is also becoming the
core algorithm of all transport protocols that support conges-
tion control functions [4]. According to AIMD, all senders keep
increasing their transmission rate additively (i.e., the congestion
window W increases by a packets per round-trip time (RTT) if
there is no packet loss), until the network becomes congested.
At this stage, a multiplicative decrease ratio is used to avoid a
congestive collapse (i.e., the congestion window W decreases
to BW upon congestion). The standard TCP itself uses an in-
crease rate 1 packet per window of acknowledgments (o = 1)
and a multiplicative decrease ratio of 1/2 of the current window
(8 = 0.5).

Manuscript received January 29, 2004; revised December 8, 2004.

V. Tsaoussidis is with the Department of Electrical and Computer Engi-
neering, Demokritos University, Xanthi 67100, Greece (e-mail: vtsaousi@
ee.duth.gr).

C. Zhang is with the School of Computer Science, Florida International
University, Miami, FL 33199 USA (e-mail: czhang @cs.fiu.edu).

Digital Object Identifier 10.1109/JSAC.2005.845627

While TCP congestion control is appropriate for bulk data
transfer (i.e., traditional Internet applications such as the
Web, FTP, or e-mail.), some real-time applications such as
media-streaming applications suffer severe consequences (e.g.,
data-rate oscillations and even transmission gaps) due to the
standard multiplicative window decrease by a factor of 2 upon
congestion [14]. This is due to the inherent characteristic of
increase/decrease algorithms to produce sawtooth transmission
behavior. Therefore, transmission smoothness becomes an
important concern. Departing from the results of Chiu and
Jain [3], researchers have proposed some new variations of
the traditional increase/decrease schema to control congestion
with small oscillations, driven by the requirements of multi-
media applications for smooth patterns of data transmission. To
achieve rate adjustments, window decrease ratio [is increased
during congestion. Therefore, the magnitude of sawtooth oscil-
lation is reduced. The analysis of [3] and later the proofs of [§]
made clear however, that favoring smoothness inevitably will
damage a system’s convergence time to equilibrium (i.e., lesser
responsiveness).

The dominance of TCP in the Internet gave ground to an-
other limitation, more artificial rather than natural: a protocol
that utilizes more bandwidth than TCP is not considered a
TCP-friendly protocol. Practically, the TCP-friendly approach
not only increases the multiplicative decrease ratio 3 during
congestion, but also reduces the additive increase rate o to pay
back the credit. Based on the aforementioned interrelation of
throughput, smoothness, and responsiveness, an equation was
invented in [14] to allow a throughput-oriented TCP-friendly
modulation of the additive increase factor o and the multi-
plicative decrease factor 3. TCP-friendly TCP(«, 3) protocols
parameterize the congestion window increase value « and
decrease ratio (3, and tradeoff responsiveness (low «) for
smoothness (high 3). They also provide a good opportunity
to acquire interesting and useful insights into the strategy of
window adjustments: By tuning the protocol parameters o and
[, we can watch the protocol behavior under various network
and traffic conditions.

The aforementioned approach, to restrict protocol be-
havior within the confines of TCPs resource utilization, and
meanwhile, to keep the flexibility to adjust smoothness and
responsiveness according to application requirements, sounds
like a straightforward and clear procedure. However, the cal-
culation of TCPs throughput entails a number of assumptions,
which may not necessarily hold in general, but certainly do not
hold specifically in heterogeneous (wired/wireless) networks
or under dynamic traffic loads. That makes matters much more
complicated than they appear. We attempt to: 1) explore this

0733-8716/$20.00 © 2005 IEEE

TSAOUSSIDIS AND ZHANG: DYNAMICS OF RESPONSIVENESS AND SMOOTHNESS IN HETEROGENEOUS NETWORKS

Source 1 Sink 1
Q 5ms 5ms O
bw_src bw_dst
25ms :
bw_bottleneck
R1 R2
© O sink N
Source N
Fig. 1. Network topology.

complexity; 2) present some anomalies through experiments;
and 3) provide a justified proposal for overcoming the present
anomalies. In summary, we investigate whether the damage in
responsiveness is indeed counterbalanced by gains in smooth-
ness also when the prescribed patterns of network traffic and
the error characteristics of traditional networks do not apply.
Our study initially involves the following:

* heterogeneous networks with both wired and wireless

components;

» three classes of TCP-friendly TCP(«,/[3) protocols:

1) standard TCP(1, 1/2); 3) responsive TCP is TCP(«, 3)
with relatively low (3 value and high « value; and
3) smooth TCP is TCP(«,) with relatively high (3
value and low « value;

* static and dynamic! environments;

» delay-sensitive and -tolerant applications.

Based on the analysis of the assumptions of equation-based
congestion control and on our experimental data, we arrive at
the conclusion that TCP-friendly protocols, which are based en-
tirely on the o/ 3 tradeoff, may be adequate for specific applica-
tions, networks, and scenarios; however, they are inappropriate
for several other occasions. We analyze further the potential of
a new parameter 7, in the role of congestion avoidance, prior to
congestion control.

We combine an analytical and experimental study. First, we
describe the experimental methodology and the variety of the
performance metrics used in the paper. In Section I1I, we present
a series of observations, which we justify with selected results.
In Section IV, we present a proposal for better handling of the
responsiveness/smoothness tradeoff. In Section V, we conclude
our findings.

II. EXPERIMENTAL METHODOLOGY

We have implemented our testing plan on the ns-2 network
simulator [9]. The network topology used as a testbed is shown
in Fig. 1. The number of flows (or the number of source-sink
pairs) NV, varied from experiment to experiment. The bottle-
neck link capacity (bw_bottleneck), the access links to source
nodes (bw_src), and the access links to sink nodes (bw_dst)
were occasionally reconfigured for the different scenarios. In
most cases, however, bw_bottleneck = bw_src = bw_dst un-
less it is pointed out explicitly otherwise. The buffer sizes at
routers are set to the delay-bandwidth product. We have also
simulated competing flows with highly diverse RTTs, and the

'From the perspective of the participating flows with criterion whether their
number is fixed or not.

1179

results are given in Section III. For simulations of heteroge-
neous (wired and wireless) networks, ns-2 error models were
inserted into the access links at the sink nodes. The Bernoulli
model was used to simulate link-level errors with configurable
packet error rate (PER). We have also simulated random error
rates with a two-state Markov model, the results and the obser-
vations are similar. Furthermore, to test protocol behaviors with
mobile handoffs, we used a two-state continuous Markov chain.
Each state has exponentially-distributed sojourn time. The “Off”
state has a long average sojourn time with a zero drop rate, while
the “Off” state has a short average sojourn time, during which
all transmitted packets were lost on the wireless access links.

In order to validate our statements about the behavior of
equation-based protocols with parameters « and /3, we selected
and evaluated four protocols that span across a spectrum of
smoothness and responsiveness and satisfy the TCP-friendly
(3) shown in Section III. Our four versions are TCP(0.31,
0.875), TCP(0.583, 0.75), TCP(1, 0.5), and TCP(1.25, 0.25).
TCP(1, 0.5) is the standard TCP.

We made use of FTP applications, over wired and heteroge-
neous (wired and wireless) networks in a static environment.
To evaluate how efficiently and fairly the protocols can exploit
the bandwidth that becomes available, or can share the existing
bandwidth with new incoming flows, we considered dynamic
scenarios where the number of active flows gradually falls off
or picks up, respectively, during the experimentation time.

We also evaluated the protocols’ performance with delay-
sensitive applications, by configuring the ns-2 constant-bit rate
(CBR) agent above the TCP(«,) protocols; we simulate a
playback-enabled application with data rate of 1 Mb/s. The bot-
tleneck link bandwidth satisfies the condition

1 Mb/s* N = bw_bottleneck

in order to allow for provisioning just enough bandwidth to all
flows.

A. Performance Metrics

In a static environment, the System Goodput, defined as the
sum of the goodput of all flows, is used to measure the overall
system efficiency in terms of bandwidth utilization at the re-
ceivers. The Goodput for each flow is defined as

Original _Data

Goodput = —————
P Connection_Time

where Original Data is the number of bytes delivered to the
high-level protocol at the receiver (i.e., excluding retransmitted
packets) and Connection_Time is the amount of time required
for the data delivery. The allotted system goodput (ASG), is
defined as the system goodput within a short sampling period
(usually at a time scale of several RTTs), and is used to cap-
ture the particularity of protocol behavior over time, in dynamic
environments.

The protocol efficiency can be studied from another perspec-
tive. Overhead is used as a metric to realize the protocol trans-
mission effort to complete reliable data delivery

Overhead = (Bytes_Sent-Original Bytes)

Bytes_Sent

1180

Bytes_Sent is the total bytes transmitted by TCP senders, while
Original_Bytes is the number of bytes delivered to the higher
level protocol by all receivers, excluding retransmitted packets
and TCP header bytes. This metric captures the portion of con-
sumed bandwidth, or the percentage of the transmission en-
ergy (a scarce resource in mobile computing), that is wasted on
packet retransmissions and protocol header overhead.

Long-term fairness is measured by the fairness index, defined
by [3]

" 2

<Z throughputi>

i=1

n Y. throughput?
i=1

Fairness Index =

where throughput; is the throughput of the ith flow, measured
at a time scale of connection time. Similarly, the allotted fair-
ness is defined as the corresponding fairness within a short sam-
pling period, and is used to capture the system fairness over time
under dynamic traffic loads. Allotted throughput is also used to
compute the short-term fairness of a single run, derived from the
traditional fairness index

n 2
<Z throughput(t)i>
i=1

n Y throughput(#)?

i=1

Short Term Fairness = E;

where E;{-} denotes the computation of the mean along the
time, and throughput, () is allotted throughput of the ith flow
around time .

To investigate the performance smoothness observed by end
users, allotted throughput of individual flow throughput;(¢) is
used to observe the performance fluctuations. Following the
metric in [13], we use coefficient of variation (CoV) to gauge
the throughput smoothness experienced by flow i

\/ E {throughput? (t)} — E,{throughput; ()}?
E.{throughput, ()}

COV,L' =

For a system with multiple flows, the system CoV is the average
of CoVs of all flows. As argued in [13], short-term fairness is
closely related to CoV and smoothness.

Allotted throughput and, hence, CoV and short-term fairness,
are often measured 15 s after the simulation starts, in order to
just capture the system performance after it enters equilibrium
state.

In experiments with real-time CBR applications with 1 Mb/s
data rate, the application attempts to read and consume up to
125 kB every second, (assuming the playback buffer is exactly
125 kB). Because of the sending window fluctuation and the
transmission gaps of TCP(«,), there are instances when
the data is unavailable to the application. The percentage of

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 6, JUNE 2005

application’s successful attempts to read z% of 125 kB data
from the playback buffer, namely, % application success
percentage, is used to measure the protocol’s smoothness and
real-time performance

Application Success Percentage

LS
_ 100* Z Z uccess(% %
7=1

=1

where n is the total number of flows; 7' is the connection time
(in seconds); Success(i, j) is defined as

Success = 1,
0,

where Allotted Goodput(z, j) is the goodput of the ith flow
within the jth second. In our experimental configuration, tar-
geted receiving rate is 1 Mb/s. From another perspective, the
metric 2% application success percentage captures the number
of discrete time slots when the flow achieves at least 2% of
1 Mb/s data receiving rate.

i Alloted Goodput(i,j)
Targeted Receiving Rate
otherwise

> z%

III. OBSERVATIONS ON THE DYNAMICS OF
RESPONSIVENESS AND SMOOTHNESS

A throughput equation for standard TCP is first introduced
in [10]. GAIMD [14] extends the equation to include parame-
ters & and (3, as shown in (1) at the bottom of the page where
p is the loss rate; Ty is the retransmission timeout value; b is
the number of packets acknowledged by each ACK. The overall
throughput of TCP-friendly («,) protocols is bounded by the
average throughput of standard TCP(« = 1,4 = 0.5), which
means that (2), which is derived from (1) (see [14]) could pro-
vide a rough guide to achieve friendliness

Ta,ﬁ(p7RTT7T07b) = T1,0.5(p7 RTTTO,b) (2)

Authors of [14] derive from (1) and (2) a simple relationship for
«a and §
4(1-p%)
o= 3 . 3)
Based on experiments, they propose a § = 7/8 as the appro-
priate value for the reduced the window (i.e., less rapidly than
TCP does). For 8 = 7/8, (3) gives an increase value « = 0.31.
We present next some observations on the dynamics of TCP
responsiveness and smoothness, based on theoretical analyses.
We further use experimental results to verify our observations
and analyses.
Observation 1: It takes several RTTs for a small « to pay
back the bandwidth credit of a high 3.
The observations of the window dynamics and event losses
are frequently assumed within a time period of a congestion

1

Ta,/i’(p; RTT7 7107 b) =

RTT /555 p + To min (1,3\/“ e)p(l +32p?)

ey

TSAOUSSIDIS AND ZHANG: DYNAMICS OF RESPONSIVENESS AND SMOOTHNESS IN HETEROGENEOUS NETWORKS

epoch [5], which reflects the uninterrupted growing lifetime of
congestion window. More precisely, a congestion epoch begins
with OW packets, increased by « packets per RTT and reaching a
congestion window of W packets, when a packet is dropped. The
congestion window is then decreased to SW. Hence, a congestion
epoch involves

W

n=0-0* R

“)

Assuming that the capacity of the bottleneck link is B packets/s
and the number of active flows going through the bottleneck
router is N, and assuming a control system as in [3], we further
calculate that:

RTT
= B x .

N

)

Equation (1) is modeled by calculating the average
throughput over a congestion epoch, which is associated
with several RTTs. Since (1) gives the steady-state TCP
throughput, in a dynamic network where conditions change
rapidly, friendliness might not be attained. More precisely,
based on (4), we conclude that (1) and (2) can be achieved
at a time n RTTs or later since multiple drops will extend
further the time of convergence. Based on (4) and (5), we
further conclude that the time period required for (1) and (2)
to hold is in reverse proportion to the number of flows within
a fixed bandwidth channel; the smaller the number, the larger
the window and, therefore, the longer the convergence time.
Finally, the propagation delay has a direct impact on the time
required for TCP(«,) to reach a full-window size. Practically
(and deterministically) this means that for a window of 64 kB
and an RTT of 100 ms TCP(1, 1/2) needs at least 3.2 s to reach
the maximum window size.

Observation 1 reveals inherent characteristics of equation-
based TCP-friendly protocols, and is the ultimate reason for
some phenomena and observations described below. For ex-
ample, since TCP-friendly protocols are based on an equation
that gives the steady-state TCP throughput, in a dynamic envi-
ronment where traffic load changes rapidly, friendliness might
not be accomplished (Observation 3).

Observation 2: Throughput is not a direct function of the
sending window. Smooth protocols may gain throughput when
delay-bandwidth product is large, and reduce packet drops when
contention is high.

Equation (2) indicates that the protocols will always achieve
about the same throughput as the standard TCP. However, the
assumption of (1)—(3) that the system throughput increases in
proportion to the sending window, is inaccurate. We now give
an in-depth analysis.

Consider a simple dumbbell network topology, as shown in
Fig. 1, where n. TCP flows share a bottleneck link with capacity
of bw, and the round-trip propagation delay is RTT(. We define
the aggregated congestion window size at time ¢ as

cwnd(t) = Z cwnd; (t) (6)
i=1

1181

where cwnd;(t) is the window size of the ith flow. Conse-
quently, the system throughput at time ¢ can be given by the
following equation:
cwnd(t)
throughput(¢) = RIT()
_ cwnd ()
~ RTTy + qdelay(t)

(N

where qdelay(t) is the queueing delay at the bottleneck router
R;. As can be seen from (7), the throughput is not only a
function of the congestion window, but also a function of the
queueing delay, which was not incorporated into the analyses
in [3], [10], and [14].

Assume all flows are in the additive increase stage. First, con-
sider the case where cwnd(¢) is below the point knee [3]

cwndypee = RT Ty - bw. (8)
Then, there is no steady queue buildup? in R; (i.e., RTT(¢) =
RTTy), and according to (7), the throughput grows in propor-
tion to cwnd. The bottleneck capacity is not fully utilized until
cwnd increases to cwndgpee.

If cwnd(¢) increases further beyond cwndypee, however, the
system displays different dynamics. The bottleneck queue starts
to build up, after the bottleneck capacity is saturated. Rewrite
cwnd(t) as

cwnd(t) = ewndypee + Aw(t)(Aw(t) > 0).)
Since the bottleneck link can transmit at most cwndy,e. packets
in one RTTy [(see (8)], Aw(t) packets will linger in the queue.
Hence, the steady queueing delay at the bottleneck will be

Aw(t)

qdelay(t) = T

(10)

Intuitively, the system throughput is bounded by the physical
capacity bw, in spite of the increase of cwnd(¢) beyond the knee,
because qdelay(t) in the denominator of (7) grows as well. This
is confirmed by the following computation:

_ cwndgnee + Aw(t)

~ RTTg + qdelay(t)

_ RITy - bw + qdelay(t) - bw
B RTT, + qdelay(t)

throughput(¢)

= bw. (11)
The system dynamics can be continuously described by
(9)—(11), until the queue length Aw(t) reaches the maximum
buffer size, i.e., when cwnd touches the point cliff?

cwndesg = (RTTo + max qdelay) - bw. (12)
TCP senders then multiplicatively decrease their congestion
window, after packet losses due to buffer overflow are detected.

2There could be temporary queue buildup in this scenario, due to the traffic
burstiness. This is neglected to simplify our analysis.

3The intuitive concept of knee and cliff was first introduced in [3]. Here, we
give an analytical expression.

1182

It is important to note that the system throughput does not
always increases in proportion to the sending window. The
network capacity can be fully utilized when the window size
reaches the knee. The computation of (11) demonstrates that
increasing cwnd beyond the knee does not enhance further
the system throughput, but only results in increasing queueing
delay. Throughput may suddenly drop when the window size
increases beyond the point clif f, where the queue overflows
and packets may be dropped. However, our analysis also
indicates that some queue buildup is inevitable, in order to
provide fairness-oriented AIMD algorithm an operating scope,
where the system throughput fully exploits the bottleneck
bandwidth. More precisely, although multiplicative decrease
is necessary to accomplish fairness dynamically [3], it does
not necessarily mean that the throughput will be sacrificed, as
long as the system operates in the zone between the knee and
the cliff, where throughput is maximal... In order to prevent
the system from operating below the knee where bandwidth
is underutilized, and meanwhile maintain adequate AIMD
oscillation (which affects the speed to converge to fairness [8]),
an efficient window decreasing ratio could be

4= cwndgpee 1
cwndeig 1+ k
where — max qdelay _ max qdelay - bw
RTTy RTTy - bw
_ Buffer SIZG. (13)
I{Fqk)-bU)

When the bottleneck buffer size equals to delay-bandwidth
product, kK = 1 and 8 = 0.5.

We observe that in a homogeneous environment with high
bandwidth and small buffer size, a responsive TCP is more
likely to operate outside that zone at the beginning of the
congestion epoch. This degrades the protocol’s capability to
utilize the available bandwidth throughout the connection,
pace (2)’s projection. Although this may sound as a negative
property in a static environment where steady-state behaviors
dominate performances, it is indeed positive when the number
of competing flows frequently changes and responsiveness
becomes crucial. We will exploit this situation later on; at this
point, we conclude that throughput of smooth protocols is not,
as it is claimed, equal to the throughput of standard TCP.

Our simulations without wireless packet drops (i.e., with
wired networks or wireless networks with little interferences)
confirm the aforementioned statement. The number of flows
ranges from 10 to 100 in the experiments, and the system
goodput is measured on 10 and 100 Mb/s bottleneck, as shown
in Figs. 2 and 3, respectively. Although the results on 10 Mb/s
links comply with the projection of TCP-friendly equations, the
result with 100 Mb/s bottleneck are supportive to our analysis:
smooth TCPs outperform responsive TCPs with static and
large share of bandwidth. Note that the system goodput jumps
sharply after the number of flows increased from 10 to 20. That
is because the maximum window size allowed by standard TCP
header is 64 kB and, hence, ten flows cannot consume all of the
100 Mb/s capacity.

The system overhead of the above two simulations are
shown in Figs. 4 and 5. Although goodput performance of

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 6, JUNE 2005

(Mbps)

system goodput
N
|

—+— TCP (0.31, 0.875)
5 —©- TCP (0.583, 0.75)

---a-- TCP (1, 0.5)

—%- TCP (1.25, 0.25)

0

I I [I I I I I I I
0 10 20 30 40 50 60 70 80 90 100
number of flows

Fig. 2. Goodput over wired network (100 Mb/s bottleneck link).

100
8, 90
el]
2
P
2]
’8 80
9]
o
£
g]
2 70 875)
A 1 .75)
3 .25)
OF—T—T—T T T T T T T I
0 10 20 30 40 50 60 70 80 90 100
number of flows
Fig. 3. Goodput over wired network (100 Mb/s bottleneck link).

TCP(«,) protocols are indistinguishable with 10 Mb/s
bottleneck (Fig. 4), the metric overhead reveals that smooth
TCP(0.31, 0.875) causes significantly less packet drops due
to its moderated window adjustments, especially when the
number of flows increases and the contention is high. Cautious
window adjustments allow more time for flows to respond to
packet drops at the congested bottleneck, before the windows
grow further. Since the network is already congested, raising
additive increase speeds cannot increase bandwidth utiliza-
tion, but only cause mores packets drops and, hence, more
energy consumption. With 100 Mb/s bottleneck (Fig. 5), low
contention extends the congestion epoch and, hence, reduces
the packet drops. The difference between smooth TCPs and
responsive TCPs is negligible.

The protocol performance for CBR applications without any
wireless interference involved is shown in Fig. 6. We simulated a
scenario in a wired network. The number of flows ranges from
10 to 100 in the experiments, while the bottleneck bandwidth
varies from 10 to 100 Mb/s correspondingly, to guarantee ex-
actly 1 Mb/s bandwidth fair share for each flow. Fig. 6 depicts
the successful attempts of the application to read at least 90%

TSAOUSSIDIS AND ZHANG: DYNAMICS OF RESPONSIVENESS AND SMOOTHNESS IN HETEROGENEOUS NETWORKS

0.14 <
or2 2
4T .-)
0.10 1 A o7
T
P 0.08 —
K
o
> 0.06 -
(o]
0.04 — —+— TCP (0.31, 0.875)
—--0—-TCP (0.583, 0}75)
---A-- TCP (1, 0.5)
0.02 1 —%--TCP (1.25, 0.25)
0.00

T T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100
number of flows

Fig. 4. Overhead over wired network (10 Mb/s bottleneck link).

0.05
k
o 0.04 -
<
G
o
>
°© —+— TCP (0.31 , 0|875)
—--0--TCP (0.58, 0.}5)
0.03 ---5-- TCP (1, 0.5)
—-%--TCP (1.25, 0.25)
0.02 T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100
number of flows
Fig. 5. Overhead over wired network (100 Mb/s bottleneck link).

of the data sent. We can observe that a high [value results in
a smooth traffic and, therefore, high application success per-
centage. As it is anticipated by the design goals of TCP-friendly
protocols, the application success percentage of smooth TCPs is
significantly higher than responsive TCPs.

Observation 3: With dynamic traffic, smoothness has an
negative impact on system fairness when the load increases
gradually, while it has a cost on system goodput when the load
decreases gradually.

In a dynamic system where contention gradually increases,
with smooth TCPs, the gentle window adjustments of existing
flows may not guarantee fairness to incoming flows. A conclu-
sion of the control system presented in [3] is that the flows ap-
proach fairness faster when the window oscillations are larger.
Since improved smoothness (hence, degraded responsiveness)
implies more steps to reach the desired level of fairness, conver-
gence to fairness can be extended. Essentially, when new flows
enter a system of multiple smooth TCP flows at equilibrium, the
smooth backward adjustment is expected to extend the time to
converge to fairness. In such case, it is desirable that existing

1183

o 1.0

o

[0}

L 4

o

[0)

2 0.8

()

n" -

0]

o

0 0.6

0]

3 |

0

§ 04

-

is]

g 1 —+—TcPp (0.31, 0.875)
- —--0—--TCP (0.583, 0.75)
a 0.2

& ---A-- TCP (1, 0.5)

< { =—=2--TCP (1.25, 0.25)
S

o 0.0

T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100
number of flows

Fig. 6. 90% application success percentage (1 Mb/s fair share at bottleneck
and 10 Mb/s access link).

allotted fairness

—— TCP (0.31, 0.875)
-~--TCP (0.583, 0.75)
~--a-+ TCP (1, 0.5)

—-e--TCP (1.25, 0.25)
0.0 T T T
0 5 10 15 20 25 30

0.2

time (sec)

Fig.7. Allotted fairness with increasing number of flows (10 Mb/s bottleneck).

flows drop their sending rate quickly to make available band-
width for new flows.

Our first simulation of dynamic traffic is conducted over a
wired network with 100-Mb/s bottleneck link. The number of
flows N increases with time as follows:

12, (0<t<155)

25, (15<t<205s)
50, (20<t<255s)
100, (25<t<30s)

That is, N doubles every 5 s after a 15-s period. Note that
the metrics now are allotted fairness, as shown in Fig. 7. As it
is correctly claimed generally, generating smoother traffic im-
proves allotted fairness; this is confirmed in the time period from
to = 0tot; = 15 in Fig. 7. However, when new flows join
after 15 s, fairness displays a dependency on the throughput rate
of existing and incoming flows. In this context, the responsive
TCP achieves better fairness. When new flows come in, fairness
drops for all protocols. However, the fairness of TCP(1.25, 0.25)
recovers faster; after a 20-s period the responsive TCP displays
the highest fairness, as it was anticipated from our analysis. We
can also see in Fig. 7 what we also expected from the analysis
in Observation 1. The smaller the number of flows, the longer
the congestion epoch is and the longer it takes the smooth TCP
to converge to fairness when the fair share decreases.

1184

100

80 H

60

0.31, 0.875)

(
40 :0.538, 0.75)
(

allotted system goodput (Mbps)

1, 0.5)
1.25, 0.25)

T T
0 10 20 30

time (sec)

Fig. 8. Allotted goodput with decreasing number of flows (100 Mb/s
bottleneck).

As a result, the system becomes increasingly unfair with
smooth protocols.

On the other hand, when additional bandwidth becomes avail-
able, a responsive TCP approaches its fair share faster than a
smooth TCP. Hence, in a dynamic system of multiple, smooth
TCP flows, if a number of flows leaves the system earlier than
others, the remaining flows cannot exploit the bandwidth well.
It can be seen from Observation 1 that a smooth TCP extends
the duration of the congestion epoch. Due to a smaller «, the
protocol requires more steps to approach its fair share. When
some flows leave the system and bandwidth becomes available,
the increasing rate follows the same pattern. Hence, a smooth
TCP extends further the time needed to approach the new fair
share. Obviously, responsiveness is here too the dominant pa-
rameter of efficiency since it reflects the protocol’s capability to
exploit the available bandwidth.

In our next simulation, the number of flows gradually
decreases

100, (0<t<155)
N)30 (15<t<205)
125, (20<t<25s) "

12, (25<t<305)

That is, after a 15-s period, half of the flows complete their task
and leave the channel every 5 s. The results of allotted system
goodput are shown in Fig. 8. From ¢y = 0 to ¢t; = 15, when the
number of flows is fixed, the higher the 3, the higher the allotted
goodput. When flows start leaving the channel (after 15 s), the
available bandwidth gradually increases; the goodput initially
decreases for all protocols since the resource consumption sud-
denly drops. Obviously, aggressiveness is now a desirable be-
havior, and it is not surprising that TCP(0.31, 0.875) achieves
the lowest performance; this result justifies our projection that
smoothness has a negative impact when the load decreases. Due
to the tradeoff of o and 3, TCP(1, 0.5)’s goodput is the highest,
although TCP(1.25, 0.25)’s recovery speed is the fastest after
the step decrease of participating flows. The results in Fig. 8
are also justified by (4): the smaller the number of flows, the
larger the window and, hence, the longer it takes smooth TCP
to exploit the available bandwidth when the fair share gradually
increases.

Observation 4: In heterogeneous (wired/wireless) networks,
low responsiveness is not counterbalanced by gains in smooth-
ness, damaging the overall throughput, and energy efficiency.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 6, JUNE 2005

10
- —+— TCP (0.31, 0.8[5)
g \\\ --0- TCP (0.583, 0.[I5)
q AN ---A-- TCP(1, 0.5)
§ \\o —%- TCP(1.25, 0.25

system goodput
S
]

0 T T
0.00 0.01 0.02

I I
0.03 0.04

PER

0.05 0.06

Fig. 9. Goodput over heterogeneous network (ten flows, 10 Mb/s bottleneck).

Likewise, real-time application efficiency degrades when re-
sponsiveness is low.

According to (2), TCP(«,3) protocols achieve approxi-
mately the same throughput as the standard TCP, since the
protocol’s aggressiveness (conservativeness) caused by high
(low) 3 is canceled by the conservativeness (aggressiveness)
caused by low (high) «. A hidden assumption behind (2) is that
when packet drops occur at the end of the congestion epoch,
the window decreasing by a factor of (1 — (3) is applied only
once. However, multiple packet drops under high wireless
interferences could cause the window size to be decreased mul-
tiple times, or they could also cause the retransmission timer
to expire. At the end, it is possible that the window size and
the ssthresh could be decreased down to two segments, even
with smooth backward adjustments. Assuming that the window
starts with two segments at the beginning of the congestion
epoch, regardless of (3, (4) should be replaced by (14)

n= =Y prr.

a+1 14

Under such scenarios, the performance of applications (in-
cluding real-time applications) is not affected by how slowly
the sender reduces its sending rate, but rather by how fast it can
recover from the error and restore its sending rate. Note that our
scenario is not unrealistic. For example, in mobile networks,
burst correlated errors and handoffs generate this kind of error
pattern. The aggressiveness of responsive TCP is the desirable
behavior, because in this case the bandwidth is still available
though the packet dropping rate is high.

Our simulations confirmed that the protocols’ goodput perfor-
mance over heterogeneous (wired/wireless) networks highlight
the weakness of the high 3 choice. Results with 10 and 100 Mb/s
bottleneck links are depicted in Figs. 9 and 10, respectively.
When the error rate is low, smooth TCPs attain higher goodput.
With random transient errors increasing from 0 to 0.05 PER on
the wireless link, smooth TCP’s goodput performance degrades
faster and responsive TCP outperforms the smooth ones. Here,
the choice of § does not make much difference, while the high
« value of TCP(1.25, 0.25) permits a more aggressive behavior.

TSAOUSSIDIS AND ZHANG: DYNAMICS OF RESPONSIVENESS AND SMOOTHNESS IN HETEROGENEOUS NETWORKS

0.8}5)
0.75)

—_ 0.5)

2 0.2p)
Q

Z

s}

3

2

kS

o

3

o

£

[0]

D

n

>

n

0 T T T T T
0.00 0.01 0.02 0.03 0.04 005 0.06
PER

Fig. 10. Goodput over heterogeneous network (100 flows, 100 Mb/s
bottleneck, and 100 Mb/s wireless link).

0.12

overhead

Fig. 11. Goodput over heterogeneous network (ten flows, 10 Mb/s bottleneck).

Note that the high wireless error rate is different from high con-
gestion (see Fig. 2), although in both cases the window size can
be reduced to a small value due to high packet dropping rate.
In the former case, bandwidth is available; in the latter case, the
available bandwidth is low and the aggressiveness due to the
high a value does not improve the system goodput.

The system overhead of the above simulations is depicted
in Figs. 11 and 12. TCP(0.31, 0.875)’s overhead (hence, the
energy consumption) is even slightly higher than other proto-
cols, in contrast to the results in wired scenarios (Figs. 4 and 5).
This is consistent with the goodput performance demonstrated
in Figs. 9 and 10: Smooth TCP’s conservative behavior under
high wireless errors diminishes its efficiency in bandwidth uti-
lization; while responsive TCP reduces packet retransmissions
by taking the chance to grow, when wireless error is absent.

The next scenario presented here intends to provide a
framework for characterizing protocol aggressiveness when
bandwidth becomes available rapidly in heterogeneous net-
works. The 10 Mb/s throughput capacity of the wireless links is
interrupted by a handoff every 5 s, while the length of handoff

1185

el
I
9]
<
q
o
>
o

75)

.I5)

5)

0.06

Fig. 12. Overhead over heterogeneous network (100 flows, 100 Mb/s

bottleneck, and 10 Mb/s wireless link).

5

(U031, U.8757
(0.583, 0.75)
(1, 0.5)

(1.25, 0.25)

IS
1

allotted throughput (Mbps)

time (sec)

Allotted throughput with 500 ms handoff (one flow).

TCP (0.31, 0.875)
—-—-—--TCP (0.583, 0.75)
------ TCP (1, 0.5)

—-—- TCP (1.25, 0.25)

time (sec)

Fig. 14. Allotted throughput with 1 s handoff (one flow).

period is exponentially distributed. Figs. 13 and 14 plot the
allotted goodput of a flow with 500 ms and 1 s mean handoff
period, respectively. Since bandwidth becomes available im-
mediately after the handoff, a high sending rate reflects a
desirable behavior; the protocols need not to adjust the rate due
to congestion. If the handoff period is long enough (Fig. 14), all
protocols will reduce their window size and ssthresh to 2.
After the handoff period is over, a responsive TCP recovers
faster and attains smoother rates. However, since the length of
the handoff period is exponentially distributed, there are occa-
sions where the duration of the handoff period is short, enabling

1186
[0}
o
©
s
=
[0}
0
g
0
far
0
0
0
0
0
3
%)
o
0
-
IS
©
0
-
3
o,
oy
<
oe
o
~
0.00 0.01 0.02 0.03 0.04 0.05
PER
Fig. 15. 70% application success percentage (100 flows, 100 Mb/s bottleneck,

and 10 Mb/s wireless link).

a fast recovery to be triggered by three duplicate acknowledg-
ments (see the period of time from the 40th s to the 60th s in
Fig. 13). In such occasions, TCP (1, 0.5), due to its relatively
high 3 value, attains higher allotted goodput than TCP(1.25,
0.25) does, although the latter’s goodput performance, is also
relatively high.

The real-time performance comparison of the protocols is
shown in Fig. 15. We simulated 100 flows of CBR applica-
tions, with the wireless error rate varying from 0.0 to 0.4 in
experiments. Note that the metrics now are 70% application
success percentage. When the error rate is low, smooth TCP
outperforms responsive TCP, as anticipated by the design goals
of TCP-friendly protocols. However, when the error rate be-
comes dense the application success percentage of TCP(0.31,
0.875) degrades sharply. The reasoning behind this behavior is
that when the error rate is high, « is the dominant factor. Then,
the throughput smoothness, which affects the performance of
real-time applications, is not determined by how slowly the
sender reduces its sending rate upon packet loss, but rather by
how fast it can recover from the loss and restore an appropriate
sending rate after wireless interference is over.

Observation 5: In mobile WAN environment with diverse
RTTs, smooth TCP alone enhances system fairness, in contrast
to the deployment of RED.

TCPs bias against flows with large RTTs is a well-known
problem. In the same context, diverse RTTs are inherent
characteristics for TCP connections in mobile WAN environ-
ment. However, since smooth downward window adjustment
enhances the capability of bandwidth consumption for flows
experiencing large delay-bandwidth product, as argued by
Observation 2, the system unfairness to connections with large
RTTs can be slightly canceled by smooth TCP. Therefore, we
simulated flows with diverse RTTs sharing a 10 Mb/s bottle-
neck link. The minimum RTT was fixed at 30 ms, while the
maximum flow RTT varied from simulation to simulation. The
total number of flows is 20, and the ¢th flow’s RTT is given by
the following equation:

i*(max RTT — min RTT)
(20 — 1)(ms)

RTT; = minRTT +

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 6, JUNE 2005

1.0
\i
M=l
0.8 - Ao
5(‘\ \
4 ®
g 0.6 S
N) N TR
o \A.
[X~ S
- BN
o 0.4 R G
@ TNy
o 1—+— TCP(0.31, 0.875)
02_—-0—~TCP(0.583, 0.75)
“ |---a-- TCP(1, 0.5)
{=>--TCP(1.25, 0.25)
0.0

T Tt
100 200 300 400 500 600 700 800 900 1000
max RTT

Fig. 16. Fairness with drop-tail gateway (10 Mb/s bottleneck and 20 flows with
diverse RFFs).

w

0]

o

<

9

-

]

Lo

=

[0)

s

wn

o 1—+— TCP(0.31, 0.875)
02|~ ©- TCP(0.583, 0.75)
“7|--a-- Tcp(1, 0.5)

{=>- Tcp(1.25, 0.25)

0.0

T T T T T T T
100 200 300 400 500 600 700 800 900 1000
max RTT

Fig. 17. Fairness with RED gateway (10 Mb/s bottleneck and 20 flows with
diverse RTTs).

Thatis, flows’ RTTs are uniformly distributed between min RTT
and max RTT. The buffer sizes of routers are set to the product
of the min RTT and the bandwidth. The results shown in Fig. 16
corroborate our analysis. As the diversity of RTTs increases, the
fairness decreases for all protocols. However, due to the goodput
improvement for flows with large RTTs, smooth TCP slightly
enhances the system fairness as well.

We repeated the simulation, after turning on RED at [7] the
bottleneck router. The results confirm our early findings [15]
that RED can reduce the system throughput with large delay-
bandwidth product and small buffer sizes. More specifically,
RED reduces the throughput of smooth TCPs experiencing long
propagation delays. Therefore, the fairness of smooth TCPs de-
creases down to the level of responsive TCPs (Fig. 17). That is,
RED worsens TCP’s system unfairness in the context of diverse
RTTs.

TSAOUSSIDIS AND ZHANG: DYNAMICS OF RESPONSIVENESS AND SMOOTHNESS IN HETEROGENEOUS NETWORKS

IV. A PROPOSAL

Observation 6: A new parameter v, which handles con-
gestion avoidance, can favor smoothness without damaging
responsiveness.

By and large, targeting responsiveness by using an aggressive
additive increase or targeting smoothness by using a modest
reduction through multiplicative decrease, is not the appro-
priate strategy. We conclude that equation-based adjustments
are certainly a powerful mechanism for TCP-friendly con-
gestion control, but it can guarantee neither efficiency nor
friendliness on its own, in the context of heterogeneous net-
works, or under dynamic traffic loads. A supportive mechanism
for error classification and adaptive window adjustments may
complement the equation-based adjustments and produce pos-
itive dynamics.

On the aspect of error classification [11], previously, we have
proposed TCP-Real [12], which relies on a novel receiver-ori-
ented and measurement-based congestion control mechanism to
differentiate the error nature. If the packet loss is due to random
wireless losses, the congestion window is not reduced and the
transmission rate is maintained.

On the aspect of AIMD adjustment itself, it is also important
to realize that since throughput is not a direct function of
the sending window, adjusting the sending window will not
necessarily mean that throughput will drop. Hence, a smooth
protocol may drop its sending window without really dropping
its throughput. A more responsive protocol which adjusts the
sending window more rapidly may go well below the point
knee. That is, it will drop its throughput and underutilize the
network capacity. The real issue, therefore, is whether the
increase rate will suffice to keep the queue length at some level
that allows for continuous forwarding of packets at the router.
Although some of the above experiments show that responsive
protocols do not ensure the continuity of packet forwarding
due to their low [, it is indeed positive, due to its high «,
when contention decreases and bandwidth becomes available
rapidly. Equation (13) corroborates that an efficient window
decrease ratio depends on the network settings. It calls for a
measurement-based congestion control scheme that can adapt
the control parameters to the network condition.

Furthermore, a congestion avoidance strategy may be appro-
priate to reduce the number of congestive drops and, therefore,
the amount and scale of oscillations. Whenever this strategy
fails, a classic AIMD parameters (« = 1,8 = 0.5) may apply.
The question, therefore, is “Can we achieve smoothness through
an avoidance-oriented strategy that, in addition, guarantees a
fair and efficient channel multiplexing and utilization?” In fact,
we attempt to preserve the responsive capabilities of the trans-
port protocols, which are damaged when we apply smooth TCPs
to wireless networks or dynamic environments. One can start
off with a simple but—perhaps, at this point—powerful idea to
complement the o/ 3 with an additional parameter -y, which will
handle the congestion avoidance policy. Our question, there-
fore, becomes more specific: “How shall we set dynamically
parameter vy.”

1187

The standard congestion control is complemented with
the following congestion avoidance mechanism. The sender
measures the fine-grained RTT (see [17] for further details). It
records the minimum RTT and the maximum RTT perceived.
The queueing delay can be derived by deducting the minimum
RTT from the current RTT measured. Upon the detection of the
following condition:

adelay(t) _ RTT(t) —minRTT _
maxqdelay maxRTT — min RTT = = PP

15)

where the threshold T'hpper is experimentally set to be 0.5, the
congestion window is decreased after one RTT, with window
decrease ratio 7y set to be:

_cwndygpee bw - min RTT

~ cwnd(t) bw-RTT(t)

_ min RTT

" minRTT + Thypper - max qdelay

_ min RTT

- Thupper - max RTT + (1 — Thypper) min RTT
1

“ T Thpe F (16)
where k is defined in (13). Equation (16) bears some similarities
with (13). Both of them assume a synchronized model, and in-
tend to prevent the system from operating below the knee, based
on an adaptive congestion control parameter. In contrast to a
static multiplicative decrease ratio of standard TCP, both mul-
tiplicative decrease parameters in (13) and (16) are adjusted to
prevent the system from operating below the knee, according
the current network condition. However, from the perspective
of congestion control, v determines the window decreasing ratio
when the level of contention exceeds a threshold that indicates
an upcoming congestion. It avoids congestion by scheduling
backward window adjustments before the occurrence of conges-
tion. Therefore, transmission gaps due congestive packet drops
can be reduced. Since y-based multiplicative decrease is applied
when the system is half way between the knee and the cliff, ~y is
higher than (.

Another optional control parameter § can be introduced, in
order to enhance the additive increase speed when the network is
underutilized. More specifically, when the following condition
persists:

qdelay(t) RTT(f) — min RTT < Thigwer

max qdelay maxRTT — min RTT —

7)

the queue is relatively close to empty and the bandwidth is pos-
sibly underutilized. The additive increase adopts a faster speed:
6 = 2. The threshold Thjoye, is experimentally set to be 0.1.
Once the threshold is exceeded, 6 hands over the control to .
For evaluation, we selected five protocol configurations:
standard TCP Reno (o« = 1,58 = 0.5), Reno with RED [7]
configured at R, Reno with the ~ parameter, Reno with « and
6(= 2), and smooth TCP (o = 0.31,5 = 0.875) [14], and
TFRC [6]. TCP Vegas [2] was not selected because it does
not follow AIMD and, hence, the system does not converge

1188

1.0 F——F——F ¥ F i e
LOEER S SN P Sh- SIS S S S
o9 0- 0 -0 -0 00 ¢ -4
e
N — e e —

n (.8 ol Ao SRRV E)

$ A-cprm B p A A A

<]

4

-

o

[t

g 0.6

N

3

. —+— Reno + Gamma

;6 - - TCP(0.31, 0.875)

ﬁ 0.4 — ---A-- Reno
—-%--Reno + RED
—-—- TFRC

0.2

I I I [[I [I I
0 10 20 30 40 S50 60 70 80 90 100
number of flows

Fig. 18. Short-term fairness.
A--Br--tsmA A AL
0.5 : arr By
— X e . —
/x,-x--—-xmx‘/ X
- —+— Reno + Gammg
0.4 - 8- TCP(0.31, 0]|875)
---A-- Reno
—-%-- Reno + RED
5 0.3 —-—- TFRC
o} [8
o] ~o- O —@ — - -
° S o_.*/. 0~ ¢
0.2 - Y
-t Te-t—t— o1
-
014 4+ . — ;
0.0 T T T T T T T 1
0 10 20 30 40 S0 60 70 80 90 100
number of flows
Fig. 19. CoV.

to fairness [8]. We were particularly interested in the compar-
ison between the v mechanism and TCP(0.31, 0.875), whose
smoothness is achieved by increasing the window decrease
ratio, at the cost of lesser responsiveness. TFRC is an equa-
tion-based rate control mechanism for unicast applications.
Since TFRC is not a reliable transport control, it is somewhat
unreasonable to compare its performance with reliable TCP
protocols. Nonetheless, TFRC was included as a reference of
smoothness. Notably, our mechanism can be easily adapted for
unreliable media-streaming.

We first conducted ten simulations, with the number of
flows varied from 10 to 100. The bottleneck link capacity
scaled correspondingly, such that the fair share for each flow
was 1 Mb/s. The goodput performances of all protocols are
indistinguishable. If assessed by traditional fairness index, all
protocols achieve high level of fairness. The interesting metrics
here are short-term fairness and CoV measurements defined in
Section II.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 6, JUNE 2005

ST -
/ y e
8 F L

(Mbps)

Reno + Gamma

allotted throughput
S
1

i L ----TCP(0.31, 0.875)
2 I A TEP Reno
i /// —-—--Reno + Gamma + Delta
i
0 T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100

time (sec)

Fig. 20. Throughput with 1.0 s handoff.

The short-term fairness and CoV measurements are shown
in Figs. 18 and 19, respectively. Reno ++ achieves higher
short-term fairness and lower CoV (i.e., higher smoothness)
than Reno, Reno + RED, TCP(0.31, 0.875), and even TFRC.
Note that the smoothness of Reno 4+ is achieved not by in-
creasing the window decreasing ratio as with TCP(0.31, 0.875).
Since the buffer size is set to the round-trip propagation delay
times the bottleneck bandwidth, v is around 2/3, according to
(16). Smoothness is achieved by implementing coordinated
downward adjustments, taken before the occurrence of conges-
tion. Furthermore, how much to decrease can be adaptively set
according to the measurement on the network condition.

Moreover, the high smoothness of coordinated window
adjustments is achieved not at the cost of responsiveness. To
evaluate the protocol’s capability to exploit the bandwidth that
becomes available rapidly (i.e., the responsiveness), we also
created a scenario of temporary “blackouts” due to mobile
handoffs, during which all transmitted packets were lost. A
single flow runs on the 10 Mb/s bottleneck link. At time 20 s,
the wireless access link was interrupted by a 1 s handoff period,
during which all packets were lost. Since both cwnd and
ssthresh are reduced to minimum during the handoff, a high
sending rate increase is the desired behavior when the handoff
is over. The protocols’ aggressiveness after the handoff is
shown in Fig. 20. Due to the lesser responsiveness (« = 0.31),
as a result of TCP-friendly «/3 tradeoff, it takes 57 s for
TCP(0.31, 0.875) to fully recover the transmission speed, while
the recovery time for Reno or Reno ++ is 19 s, with @ = 1.
If the optional parameter 6 = 2 is enabled, the recovery time
can be further reduced to 10 s. As the condition of bandwidth
underutilization is detected after the handoff is over, a faster
additive increase step can be adopted.

V. CONCLUSION

Departing from our analysis in Section I, we presented a se-
ries of observations relevant to the dynamics of responsiveness
and smoothness. The gentle backward adjustments entail some
serious drawbacks in the presence of high error rates, mobility,
and contention decrease. We proposed an additional parameter
~ to enhance the /3 congestion control dynamics with a con-
gestion avoidance strategy.

TSAOUSSIDIS AND ZHANG: DYNAMICS OF RESPONSIVENESS AND SMOOTHNESS IN HETEROGENEOUS NETWORKS

(1]
(2]

[3]

[4]
(51

[6

—_

[7

—

(8]

(91
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

M. Allman, V. Paxson, and W. Stevens, “TCP congestion control,”
RFC2581, Apr. 1999.
L. S. Brakmo and L. L. Peterson, “TCP Vegas: End to end congestion
avoidance on a global Internet,” IEEE J. Sel. Areas Commun., vol. 13,
no. 8, pp. 1465-1480, Oct. 1995.
D.-M. Chiu and R. Jain, “Analysis of the increase and decrease algo-
rithms for congestion avoidance in computer networks,” Comput. Netw.
ISDN Syst., vol. 17, no. 1, pp. 1-14, 1989.
S. Floyd, “Congestion control principles,” RFC 2914, Sep. 2000.
S. Floyd, M. Handley, and J. Padhye. (2000) A comparison of
equation-based and AIMD congestion control. [Online]. Available:
http://www.aciri.org/tfrc/
S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based
congestion control for unicast applications,” in Proc. ACM SIGCOMM
2000, Aug. 2000.
S. Floyd and V. Jacobson, “Random early detection gateways for con-
gestion avoidance,” IEEE/ACM Trans. Netw., vol. 1, no. 4, pp. 397-413,
Aug. 1993.
A. Lahanas and V. Tsaoussidis, “Exploiting the efficiency and fairness
potential of AIMD-based congestion avoidance and control,” Comput.
Netw., vol. 43, no. 2, pp. 227-245, Oct. 2003.

NS-2, The Network Simulator. [Online]. Available: http://www.isi.
edu/nsnam/ns/
J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
throughput: A simple model and its empirical validation,” in Proc. ACM
SIGCOMM 1998, Aug. 1998.
V. Tsaoussidis and I. Matta, “Open issues on TCP for mobile com-
puting,” J. Wireless Commun. Mobile Comput., vol. 2, no. 1, pp. 3-20,
Feb. 2002.
V. Tsaoussidis and C. Zhang, “TCP-Real: Receiver-oriented congestion
control,” Comput. Netw., vol. 40, no. 4, pp. 477-497, Nov. 2002.
Y. R. Yang, M. S. Kim, and S. S. Lam, “Transient behaviors of TCP-
friendly congestion control protocols,” in Proc. IEEE INFOCOM 2001,
vol. 3, Apr. 2001, pp. 1716-1725.
Y. R. Yang and S. S. Lam, “General AIMD congestion control,” in Proc.
8th Int. Conf. Netw. Protocols, Osaka, Japan, Nov. 2000, pp. 187-198.
C. Zhang, M. Khanna, and V. Tsaoussidis, “Experimental assessment of
RED in wired/wireless networks,” Int. J. Commun. Syst., vol. 17, no. 4,
pp. 287-302, May 2004.
C. Zhang and V. Tsaoussidis, “The interrelation of TCP smoothness and
responsiveness in heterogeneous networks,” in Proc. 7th IEEE Symp.
Comput. Commun., Jul. 2002, pp. 291-297.
, “Improving TCP smoothness by synchronized and measurement-
based congestion avoidance,” presented at the NOSSDAV 2003, Mon-
terey, CA, Jun. 2003.

1189

Vassilis Tsaoussidis (M’97-SM’04) received
the B.Sc. degree in applied mathematics and the
Diploma in statistics and computer science from
the Aristotle University, Greece, and the Hellenic
Institute of Statistics, respectively, and the Ph.D.
degree in computer networks from Humboldt
University of Berlin, Germany, in 1995.

He has held faculty positions at Rutgers University,
New Brunswick, NJ, State University of New York
(SUNY) Stony Brook, Amherst, NY, and North-
eastern University, Boston, MA. In May 2003, he
joined the Department of Electrical and Computer Engineering, Demokritos
University, Xanthi, Greece. His research interests lie in the area of trans-
port/network protocols, i.e., their design aspects and performance evaluation.
He edited three journal special issues on related topics. He Chaired IC 2002,
the International Workshop on Wired/Wireless Internet Communications
(WWIC 2002), and WWIC 2004. He participates in several Technical Program
Committees in his area of expertise, such as INFOCOM, GLOBECOM, ICCN,
ISCC, EWCN, WLN, and several others.

Dr. Vassilis is an Associate Editor for [IEEE TRANSACTIONS ON MOBILE
COMPUTING and an Editor for the Journals Computer Networks and Wireless
Communications and Mobile Computing.

Chi Zhang (M’03) received the B.E. degree in elec-
tronic engineering from Shanghai Jiao Tong Univer-
sity, Shanghai, China, in 1996 and the Ph.D. degree
in computer science from Northeastern University,
Boston, MA, in 2003.

During the summer of 1999, he was a Research As-
= sistant at the Panasonic Information and Networking
Technologies Laboratory, Princeton, NJ. He is an As-
sistant Professor at Florida International University
(FIU), Miami, FL. He has published 16 papers and
issued 1 U.S. patent. His research interests lie in the
area of network protocols, mobile computing and QoS.

Dr. Zhang received the runner-up award at the IEEE ISCC 2002. He is a
member of the Phi Kappa Phi Honor Society. He has Chaired the organizing
committee of the First International Workshop on Wired/Wireless Internet Com-
munications (WWIC 2002) and was a TPC member of WWIC 2004/2005 and
IC 2003.

	toc
	The Dynamics of Responsiveness and Smoothness in Heterogeneous N
	Vassilis Tsaoussidis, Senior Member, IEEE, and Chi Zhang, Member
	I. I NTRODUCTION

	Fig. 1. Network topology.
	II. E XPERIMENTAL M ETHODOLOGY
	A. Performance Metrics

	III. O BSERVATIONS ON T HE D YNAMICS OF R ESPONSIVENESS AND S MO
	Observation 1: It takes several RTTs for a small $\alpha $ to pa
	Observation 2: Throughput is not a direct function of the sendin

	Fig. 2. Goodput over wired network (100 Mb/s bottleneck link).
	Fig. 3. Goodput over wired network (100 Mb/s bottleneck link).
	Fig. 4. Overhead over wired network (10 Mb/s bottleneck link).
	Fig. 5. Overhead over wired network (100 Mb/s bottleneck link).
	Observation 3: With dynamic traffic, smoothness has an negative

	Fig. 6. 90% application success percentage (1 Mb/s fair share at
	Fig. 7. Allotted fairness with increasing number of flows (10 Mb
	Fig. 8. Allotted goodput with decreasing number of flows (100 Mb
	Observation 4: In heterogeneous (wired/wireless) networks, low r

	Fig. 9. Goodput over heterogeneous network (ten flows, 10 Mb/s b
	Fig. 10. Goodput over heterogeneous network (100 flows, 100 Mb/s
	Fig. 11. Goodput over heterogeneous network (ten flows, 10 Mb/s
	Fig. 12. Overhead over heterogeneous network (100 flows, 100 Mb/
	Fig. 13. Allotted throughput with 500 ms handoff (one flow).
	Fig. 14. Allotted throughput with 1 s handoff (one flow).
	Fig. 15. 70% application success percentage (100 flows, 100 Mb/s
	Observation 5: In mobile WAN environment with diverse RTTs, smoo

	Fig. 16. Fairness with drop-tail gateway (10 Mb/s bottleneck and
	Fig. 17. Fairness with RED gateway (10 Mb/s bottleneck and 20 fl
	IV. A P ROPOSAL
	Observation 6: A new parameter γ, which handles congestio

	Fig. 18. Short-term fairness.
	Fig. 19. CoV.
	Fig. 20. Throughput with 1.0 s handoff.
	V. C ONCLUSION
	M. Allman, V. Paxson, and W. Stevens, TCP congestion control, RF
	L. S. Brakmo and L. L. Peterson, TCP Vegas: End to end congestio
	D.-M. Chiu and R. Jain, Analysis of the increase and decrease al
	S. Floyd, Congestion control principles, RFC 2914, Sep. 2000.
	S. Floyd, M. Handley, and J. Padhye . (2000) A comparison of equ
	S. Floyd, M. Handley, J. Padhye, and J. Widmer, Equation-based c
	S. Floyd and V. Jacobson, Random early detection gateways for co
	A. Lahanas and V. Tsaoussidis, Exploiting the efficiency and fai

	NS-2, The Network Simulator . [Online] . Available: http://www.i
	J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, Modeling TCP th
	V. Tsaoussidis and I. Matta, Open issues on TCP for mobile compu
	V. Tsaoussidis and C. Zhang, TCP-Real: Receiver-oriented congest
	Y. R. Yang, M. S. Kim, and S. S. Lam, Transient behaviors of TCP
	Y. R. Yang and S. S. Lam, General AIMD congestion control, in Pr
	C. Zhang, M. Khanna, and V. Tsaoussidis, Experimental assessment
	C. Zhang and V. Tsaoussidis, The interrelation of TCP smoothness

