
The Impact of Network and Protocol Heterogeneity
on Real-Time Application QoS

Panagiotis Papadimitriou, Vassilis Tsaoussidis and Sofia Tsekeridou
Demokritos University of Thrace, Electrical & Computer Engineering Department

E-mail: {ppapadim, vtsaousi, tsekerid}@ee.duth.gr

Abstract

We evaluate the impact of network, and protocol
heterogeneity on real-time application performance. We
focus on TCP and UDP supportive role, also in the context
of network stability and fairness. We reach several
conclusions on the specific impact of wireless links, MPEG
traffic friendliness, and TCP version efficiency. Beyond that,
we also reach an unexpected result: UDP traffic is
occasionally worse than TCP traffic when the right
performance metric is used.

1. Introduction

 Quality of Service (QoS) is increasingly important for
applications over the Internet. A main factor that complicates
and even obstructs the efforts for efficient end-to-end QoS
management is the heterogeneity of the Internet. However,
identifying the presence of network heterogeneity is not
enough. It is necessary to clarify and analyze all the
heterogeneity parameters.
 The application domain is generally classified into non-
real time (e.g. HTTP, FTP) and real-time traffic (e.g.
multimedia streaming). Real-time applications are
comparatively intolerant to delay and to variations of
throughput and delay [4]. They are also affected by
reliability parameters, such as packet loss and bit errors.
Therefore, a real-time application delivers satisfactory
performance only under certain QoS provisions, which may
vary depending on the application task and the type of media
involved. Real-time applications compete with other network
traffic, as they often share the same channel with corporate
FTP and HTTP traffic. However, how real-time traffic
affects or might be affected by other network traffic is still
an open issue.
 A real-time application has the option to run over
Transmission Control Protocol (TCP) or User Datagram
Protocol (UDP). TCP is the dominant protocol for data
transmission over the Internet. Although TCP is based on the
unreliable datagram service offered by IP, it manages to
provide a reliable data delivery service to Internet
applications. TCP uses a variety of techniques to achieve

reliability. Generally, the protocol combines retransmission
in conjunction with the sliding window mechanism. In
standard TCP, sliding window adjustments are implemented
according to the Additive Increase Multiplicative Decrease
(AIMD) algorithm proposed by Chiu and Jain [3]. TCP is
designed to allocate the resources of a network channel
equally to each application using this channel. However, the
demand of competing flows often exceeds the channel
bandwidth leading to congestion. Therefore, efficient
congestion control is of high importance in order to avoid
undesirable implications for the network, such as congestive
collapse. A series of mechanisms have been proposed for
congestion control, including Congestion Avoidance [9],
Slow Start, Fast Retransmit and Fast Recovery. Congestion
control is usually triggered after a single packet loss.
However, in heterogeneous wired/wireless environments,
apart from congestion, hand-offs and fading channels may
result in packet loss [14]. Generally, TCP is unable to
successfully detect the nature of the errors in such a network
environment.
 Although the reliable service of TCP and its congestion
control are suitable for traditional network traffic, real-time
applications often struggle to operate efficiently. The sliding
window adjustments of TCP do not provide the regular flow
required by real-time applications when transmitting data. In
wireless environments, the congestion-oriented responses to
wireless link errors lead to wasteful window adjustments.
The effect of these awkward conditions is long and varying
delays, which damage the timely delivery of real-time data.
Several TCP protocol extensions have emerged to overcome
the standard TCP limitations providing more efficient
bandwidth utilization and sophisticated mechanisms for
congestion control [1, 11, 18].
 Alternatively, most real-time implementations run over
UDP. UDP is a fast, lightweight protocol without any
transmission or retransmission control. UDP does not have
functionality to override application characteristics, such as
its transmission rates. It simply transmits at application rate
and pattern. Consequently, UDP appears to be more suitable
for real-time applications which tolerate some packet losses.
However, the lack of a congestion control mechanism is a
significant shortfall for UDP, especially as the
Internetworking functionality evolves towards punishing
free-transmitting protocols. Furthermore, the design

principles of UDP do not anticipate fairness. Thus, any
applications running over UDP are not fair. Along these
lines, our research work is motivated by the following
questions:

• How crucial is congestion control regarding real-time

traffic? When the network load increases, does it
contribute to efficiency as well?

• What is the efficiency of TCP and UDP with real-
time traffic? When packet loss increases and UDP
maintains its transmission rate, does it really maintain
application efficiency as well?

• Are traditional metrics comparative enough to
evaluate real-time application performance?

 We organize the rest of the paper as follows: in the
sequel, we provide an overview of recent research proposals
which manage QoS focusing on network and protocol
design. In Section 3 we present our evaluation methodology
and we define a new performance metric for real-time
applications. In Section 4 we analyze the results of our
experiments and in the last section we highlight our
conclusions.

2. Related Work

 The impact of network heterogeneity on real-time
application QoS has not been studied in depth. Relevant
work includes [2], where the authors discuss the impact of
mobility in QoS, and [4], where the QoS of real-time traffic
along with its characteristics are analyzed. Authors in [5]
discuss how streaming traffic competes with other TCP
traffic over low bandwidth WAN links. Furthermore, there
are remarkable research efforts towards the efficient QoS
management of real-time applications focusing on protocol
design. We discuss them in the rest of this section.

2.1 TCP-friendly Protocols

 The disqualification of standard TCP to meet the
requirements of real-time applications was the motive for a
new family of protocols. Authors in [6, 7, 16, 17] proposed a
family of TCP compatible protocols, called TCP-friendly.
TCP-friendly protocols achieve smooth window adjustments,
while they manage to compete fairly with TCP flows. In
order to achieve smoothness, this family of protocols use a
gentle backward adjustment upon congestion. However, this
modification has a negative impact on the protocol
responsiveness.
 TCP-Friendly Rate Control (TFRC) is a representative
TCP-friendly, rate-based congestion control protocol.
According to TFRC, the transmission rate is adjusted in
response to the level of congestion as it is indicated by the
loss rate [10]. Multiple packet losses in the same RTT are
considered as a single loss event by TFRC and hence, the
protocol follows a more gentle congestion control strategy.
TFRC eventually achieves the smoothing of the transmission

gaps and therefore, is suitable for applications requiring a
smooth sending rate. However, this smoothness has a
negative impact, as the protocol becomes less responsive to
bandwidth availability [19].
 TCP-Real is a high-throughput transport protocol that
incorporates congestion avoidance mechanism in order to
minimize transmission-rate gaps. Therefore, this protocol is
suited for real-time applications, as it enables better
performance and reasonable playback timers. TCP-Real [18,
15] employs a receiver-oriented and measurement based
congestion control mechanism that significantly improves
TCP performance over heterogeneous networks and over
asymmetric paths. In TCP-Real, the receiver decides with
better accuracy about the appropriate size of the congestion
window. Slow Start and timeout adjustments are present, but
they are only used whenever congestion avoidance fails.
 TCP Westwood is a sender-side-only modification of
TCP Reno congestion control, which exploits end-to-end
bandwidth estimation to properly set the values of slow-start
threshold and congestion window after a congestion episode.
TCP Westwood significantly improves fair sharing of high-
speed networks capacity. The protocol performs an end-to-
end estimate of the bandwidth available along a TCP
connection to adaptively set the control windows after
congestion [11]. Although TCP Westwood does not
incorporate any mechanisms to support error classification
and the corresponding recovery tactics for wired/wireless
networks, the proposed mechanism appears to be effective
over asymmetric paths due to its efficient congestion control.

2.2 Congestion Avoidance

 A congestion episode usually has a negative impact on
the performance of a real-time application, regardless of the
effectiveness of the TCP congestion control mechanisms.
Based on this observation, an approach dealing with
congestion from another perspective has been proposed. The
goal of this approach, called congestion avoidance, is to
estimate the level of congestion before it takes place, and
hence avoid it. Congestion avoidance may be achieved
through packet dropping (i.e. RED) or otherwise through
bandwidth and delay estimation, which trigger transport-
level adjustments prior to congestion.
 A well-designed, congestion avoidance mechanism is
TCP Vegas. Every RTT (Round Trip Time) the sender
calculates the throughput rate which subsequently is
compared to an expected rate [14]. Depending on the
outcome of this comparison the transmission rate of the
sender is adjusted accordingly. Based on [1] admissions,
Vegas achieves better transmission rates than TCP Reno and
TCP Tahoe. Although the protocol is compliant to the rules
of fairness (AIMD algorithm), according to [8], Vegas can
not guarantee fairness.
 Reviewing all the proposed solutions, TCP-friendly
protocols and the various approaches dealing with
congestion extend further the heterogeneity of the network.

3. Experimental Methodology

3.1 Experimental Settings

 The evaluation plan was implemented on the NS-2
network simulator. In our experiments we used a high-speed
single-bottleneck topology, known as dumbbell (Fig. 1). The
capacity of the bottleneck is configured to 100Mbps, so that
each flow has enough fair-share to expand its window. The
buffer size of the router that forwards the packets to the
receivers was adjusted in accordance with the delay x
bandwidth product. The number of source and sink nodes are
equal in all experiments.
 Apart from a wired network, we also simulated an
heterogeneous wired/wireless environment by inserting NS-2
error models into the access links to the sink nodes. The
error models were configured on both (forward and reverse)
directions of the link traffic. The Bernoulli model was used
in order to simulate link-level errors with packet error rate
(PER) adjusted at 0.01. Furthermore, we included mobility
in our wireless scenario in order to monitor the behavior of
the network and its impact on the application in a situation of
frequent handoffs. Thus, the protocols experience a situation
where 5 handoff events occur and each one lasts 1 sec.
 In our experiments, we used the MPEG-4 traffic
generator proposed in [12] in order to simulate real-time
traffic. The traffic generated closely matches the statistical
characteristics of an original video trace. The model
developed is based on Transform Expand Sample (TES)
[13]. We used three separate TES models for modeling I, P
and B frames respectively. The resulting MPEG-4 stream
was generated by interleaving data obtained by the three
models. The MPEG traffic generator was integrated into NS-
2 and provides the adjustment of the data rate of the MPEG
stream, as well as useful statistical data (i.e. average bit-rate,
bit-rate variance).
 For each scenario we used different number of flows in
order to have more productive results. For all the
experiments, the simulation time was fixed at 60 seconds, an
appropriate time-period for all the protocols to demonstrate
their potential.

Figure 1. Simulation topology

 In order to evaluate TCP performance, we used two
representative TCP protocols as reference: Reno and Vegas.
However, in the last scenario, we included the TCP-friendly
protocols TCP-Westwood and TCP-Westwood+ in order to
evaluate their efficiency in comparison with the rest of TCP
versions.

3.2 Performance Metrics

 System goodput was used to measure the overall system
efficiency in bandwidth utilization. In order to evaluate the
efficiency of selected flows, such as an MPEG flow
competing with other FTP flows, we additionally measured
the goodput of each flow separately. Fairness is measured by
the Fairness Index, derived from the formula given in [3],
and defined as:

∑

∑

=

== n

i

n

i

0

2
i

0

2
i

)Throughput(n

)Throughput(
Index Fairness

where Throughputi is the throughput of the ith flow and n is
the total number of flows.
 In [15] Tsaoussidis and Zhang proposed a new metric for
the performance evaluation of real-time traffic, called “x%
Application Success Percentage”. Virtually, the metric
captures the number of discrete time slots when the flow
achieves at least x% of the Targeted Receiving Rate. The
calculation of Application Success Percentage is based on
the AllottedGoodput(i, j) which is the goodput of the ith flow
within the jth second. Although this metric is more
appropriate for the performance evaluation of real-time
applications than goodput, it has some limitations. Its major
shortfall is that it does not take into account packet
interarrival time, which is a critical parameter for time-
sensitive applications. Therefore, the performance of such
applications can not be effectively evaluated.
 Targeting to a more efficient criterion for the justification
of real-time traffic performance, we introduce a new metric,
called Real-Time Performance. The basic observation that
goodput can not be directly used for the performance
evaluation of a real-time application called for the definition
of such a performance metric. The key to evaluate the
performance of a real-time application is to measure the
packets that arrive at the receiver(s) on time, depending on
the application requirements. Thus, Real-Time Performance
index is the ratio of the number of timely received packets
over the total number of packets sent by the application:

1
packetssent #

packets receivedtimely # Index ePerformanc Time-Real ≤=

In order to measure the number of received packets that can
be effectively used by the real-time application, an extension
has been made to the functionality of the receiver. Each
recipient, receiving packets from the MPEG streaming
application, calculates the number of timely received packets
based on the two versions of the algorithm. The first version
of the algorithm (Algorithm 1) captures the number of timely
received packets of the MPEG application running over
TCP, while the alternative version (Algorithm 2) is used for
UDP. The two versions of the algorithm have the same
functionality, excluding the fact that the TCP version takes
retransmission into account, whenever it takes place.

 S
as fo

1.
2.
3.
4.
5.
6.
7.

 B
to id
clien
time
Cert
user
inter
usele
cons
reco
takes
arriv
cons
may

it is not used as reference (i.e. its sequence number and
arrival time) for the next packet (Algorithm 1: lines 11-14).

4. Results and Discussion

 In order to evaluate the impact of the protocols and the
network characteristics on the QoS of a real-time
application, we conducted several experiments based on two
separate scenarios. The basic parameters of each scenario are
as described in the previous section. We carried out our
experiments simulating both a wired and wireless topology.

4.1 The Impact of MPEG on Corporate Traffic

Algorithm 1. Timely Received Packets (TCP)

 1: if threshold > 0 then
 2: set packetTime = currentTime
 3: increase packets_received
 4: if seqNo - last_seqNo = 1 then
 5: if packetTime - lastPacketTime > threshold then
 6: increase uselessPackets
 7: end if
 8: else
 9: increase uselessPackets
10: end if
11: if currentPacket not retransmitted
12: set last_seqNo = seqNo
13: set last_packetTime = packetTime
14: end if
15: set usablePackets = packetsReceived - uselessPackets
16: end if
 In the first scenario, we simulated (i) 1 FTP flow (over
TCP), (ii) 1 MPEG flow over TCP, and (iii) 1 MPEG flow
over UDP, each one of them competing with a number of
other FTP flows (1, 10, 20, 40 and 80 flows). We measured
the aggregated goodput of all flows in the system except the
first FTP/MPEG TCP/MPEG UDP flow, correspondingly.
The data rate of the MPEG flow was adjusted, so that it can
compete fairly with the FTP flow.
 Our purpose here is to demonstrate the impact of the
MPEG application on the other applications when they all
share the same channel. We conducted the experiments
simulating both a wired (Figs. 2, 4) and wireless topology
(Figs. 3, 5). We used the TCP protocols Reno (Figs. 2, 3)
and Vegas (Figs. 4, 5) for the FTP flows and the MPEG TCP
flow.
Algorithm 2. Timely Received Packets (UDP)

 1: if threshold > 0 then
 2: set packetTime = currentTime
 3: increase packets_received
 4: if seqNo - last_seqNo = 1 then
 5: if packetTime - lastPacketTime > threshold then
 6: increase uselessPackets
 7: end if
 8: else
 9: increase uselessPackets
10: end if
11: set last_seqNo = seqNo
12: set last_packetTime = packetTime
13: set usablePackets = packetsReceived - uselessPackets
14: end if
everal notations used in the pseudocode algorithms are
llows:

threshold : inter-arrival threshold
packetTime : arrival time of the current packet
seqNo : sequence number of current packet
last_seqNo : sequence number of last packet
lastPacketTime : arrival time of the last packet
uselessPackets : number of useless packets
usablePackets : number of packets that can be

 effectively used by the application

oth versions of the algorithm basically use two criteria
entify whether each received packet can be used by the
t application. The first criterion is packet inter-arrival
. We set here an inter-arrival time threshold at 100ms.
ainly, this can be adjusted depending on the application,

requirements and network delay. Each packet with
arrival time greater than this threshold is considered as
ss. Practically such packets are either discarded and
idered lost, or at the worst they obstruct the proper
nstruction of oncoming packets. Secondly, the algorithm
 into account the sequence number of packets. An
ing packet which is out of transmission order is also
idered as useless. In the context of TCP, such a packet
 be retransmitted. Since a retransmitted packet is useless,

0

10

20

30

40

50

60

70

80

90

100

1 10 20 40 80

Number of FTP flows

M
bp

s

FTP

MPEG TCP
MPEG UDP

Figure 2. Goodput of remaining FTP flows (Reno/Wired)

0

10

20

30

40

50

60

70

80

90

100

1 10 20 40 80

Number of FTP flows

M
bp

s

FTP

MPEG TCP
MPEG UDP

Figure 3. Goodput of remaining FTP flows (Reno/Wireless)

0

10

20

30

40

50

60

70

80

90

100

1 10 20 40 80

Number of FTP flows

M
bp

s

FTP

MPEG TCP
MPEG UDP

Figure 4. Goodput of remaining FTP flows (Vegas/Wired)

0

10

20

30

40

50

60

70

80

90

100

1 10 20 40 80

Number of FTP flows

M
bp

s

FTP

MPEG TCP
MPEG UDP

Figure 5. Goodput of remaining FTP flows (Vegas/Wireless)

 The results clearly demonstrate the impact of the MPEG
application on TCP network traffic. Using the results of the
1st FTP flow as reference, we reach the conclusion that the
MPEG flow over TCP does not affect the efficiency of the
remaining FTP flows. However, we observe that the MPEG
flow over UDP has a negative impact on the other flows in
each case, as their aggregated goodput is decreased. This
observation is in accordance with our expectations,
considering the lack of any back-up policies of the UDP
protocol. Indeed, UDP is not fair to the other applications.
Therefore, any application sharing the same channel with
UDP flows is in an unfavorable situation. Furthermore, the
limited efficiency of the FTP flows is obvious in the context
of wireless networking. Finally, TCP Vegas, due to its
sophisticated congestion avoidance mechanism, is more
efficient, since it achieves higher transmission rates than
TCP Reno.

4.2 TCP vs. UDP

 The final scenario includes the simulation of (i) N MPEG
flows over TCP, and (ii) N MPEG flows over UDP, where N
is set to 10, 20, 40 and 80 successively. In these experiments,
apart from the two referenced TCP versions (i.e. Reno, and
Vegas), we additionally used TCP Westwood and TCP
Westwood+. Our purpose is to evaluate the impact of each
protocol on the real-time application QoS, when there are
only MPEG TCP or MPEG UDP flows in the system. Our
metrics include system goodput, the average of the Real-
Time Performance of each MPEG flow and Fairness Index.
In this scenario many heterogeneity parameters are under
evaluation, adding the wired and wireless topology.

0

10

20

30

40

50

60

70

80

90

100

1 10 20 40 80

Number of MPEG flows

M
bp

s

Reno
Vegas
Westwood
Westwood+
UDP

Figure 6. System Goodput (Wired)

0

10

20

30

40

50

60

70

80

90

100

1 10 20 40 80

Number of MPEG flows

M
bp

s

Reno
Vegas
Westwood
Westwood+
UDP

Figure 7. System Goodput (Wireless)

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1 10 20 40 80

Number of MPEG flows

Reno
Vegas
Westwood
Westwood+
UDP

Figure 8. Average Real-Time Performance (Wired)

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1 10 20 40 80

Number of MPEG flows

Reno
Vegas
Westwood
Westwood+
UDP

Figure 9. Average Real-Time Performance (Wireless)

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1 10 20 40 80

Number of MPEG flows

Reno
Vegas
Westwood
Westwood+
UDP

Figure 10. Fairness Index (Wired)

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1 10 20 40 80

Number of MPEG flows

Reno
Vegas
Westwood
Westwood+
UDP

Figure 11. Fairness Index (Wireless)

 Taking into account the goodput results (Figs. 6, 7), we
observe that all TCP protocols achieve higher goodput than
UDP. This difference increases alongside with the number of
flows. Either over TCP or UDP congestion episodes occur.
Since TCP protocols incorporate congestion control or
avoidance mechanisms, they deal with congestion more
efficiently. UDP, with the absence of congestion control, is
unable to control the congestion. The MPEG streaming
application transmits packets over UDP ignoring the network
condition, resulting in a large number of lost packets
(especially at 40 and 80 flows). This phenomenon is
reflected clearly in the Real-Time Performance results (Figs.
8, 9), where UDP performs inadequately. Furthermore, UDP
does not compete fairly with the rest of UDP flows (Fig. 10),
since UDP is not designed to anticipate fairness.
 A very interesting outcome of these results is the
performance of TCP-friendly protocols Westwood and
Westwood+. This family of protocols use smooth window
adjustments which appear to be in accordance with real-time
application requirements. However, during excessive
congestion (i.e. 40 and 80 flows), the conservative policy of
TCP-friendly protocols results in increased packet losses.
Therefore, TCP-friendly protocols fail to accomplish their
design goals, since they do not achieve any performance
gains (i.e. Real-Time Performance: 40 and 80 flows).

5. Conclusion

 Reviewing our discussion and based on the above
experimental results we reach the following conclusions: (i)
Congestion control is mandatory and protocols which do not
incorporate such mechanisms (i.e. UDP) have limited
efficiency and potential. (ii) TCP has inadequate efficiency
in wireless environments, due to its congestion-oriented
responses to wireless errors and operations (e.g. handoffs).
(iii) UDP is not fair to other flows sharing the same channel,
no matter if these flows are over TCP or UDP. (iv) TCP-
friendly protocols do not provide the improved real-time
performance their designers promised, due to their smooth
window adjustments at periods of congestion. (v) TCP
Vegas achieves higher transmission rates than standard TCP,
especially when congestion occurs. (vi) Goodput is not an
accurate criterion for the evaluation of real-time application
performance. Since current protocol support for real-time
applications does not meet their stringent QoS requirements,

future work will be focused on the design of a protocol
which will provide improved support for time-sensitive
applications. More precisely, departing from current TCP-
Real, we intend to design and propose a partially reliable
protocol.

References

[1] L. Brakmo and L. Peterson, “TCP Vegas: End to End

Congestion Avoidance on a Global Internet”, IEEE Journal
on Selected Areas of Communications, October 1995

[2] D. Chalmers, M. Sloman, “A Survey of Quality of Service in
Mobile Computing Environments”, IEEE Communication
Surveys, 1999

[3] D. Chiu, R. Jain, “Analysis of the increase/decrease
algorithms for congestion avoidance in computer networks”,
Journal of Computer Networks, 17(1), 1989

[4] D. D. Clark, S. Shenker, L. Zhang, “Supporting Real-Time
Applications in an Integrated Services Packet Network:
Architecture and Mechanism”, In Proc. of SIGCOMM '92, pp.
14-26, August 1992

[5] R. Doshi and P. Cao, “Streaming Traffic Fairness over Low
Bandwidth WAN Links”, In Proc. of 3rd IEEE Int/nal
Workshop on Internet Applications, San Jose, June 2003

[6] S. Floyd, M. Handley and J. Padhye, “A Comparison of
Equation-based and AIMD Congestion Control”, May 2000

[7] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-
Based Congestion Control for Unicast Applications”, In Proc.
of ACM SIGCOMM 2000, August 2000

[8] U. Hengartner, J. Bolliger, and T. Cross, “TCP Vegas
Revisited”, In Proc. of IEEE INFOCOM 2000, March 2000

[9] V. Jacobson, “Congestion avoidance and control”, In Proc. of
ACM SIGCOMM ‘88, August 1988

[10] L. Mamatas and V. Tsaoussidis, “Protocol Behavior: More
Effort, More Gains?”, In Proc. of 15th IEEE PIMRC,
Barcelona, September 2004

[11] S. Mascolo, C. Casetti, M. Gerla, M. Sanadidi, and R. Wang,
“TCP Westwood: Bandwidth Estimation for Enhanced
Transport over Wireless Links”, In Proc. of MobiCom’01,
July 2001

[12] A. Matrawy, I. Lambadaris and C. Huang, “MPEG4 Traffic
Modeling using the Transform Expand Sample
Methodology”, In Proc. of 4th IEEE Int/nal Workshop on
Network Applicances, Gaithersburg, 2002

[13] B. Melamed, “An Overview of TES Processed and Modeling
Methodology”, Performance Evaluation of Computer and
Communication Systems, 1993

[14] V. Tsaoussidis and I. Matta, “Open issues on TCP for Mobile
Computing”, Journal of Wireless Communications and
Mobile Computing, 2(2), Feb. 2002

[15] V. Tsaoussidis and C. Zhang, “TCP Real: Receiver-oriented
congestion control”, Computer Networks, 40(4), Nov. 2002

[16] Y.R. Yang, M.S. Kim and S.S. Lam, “Transient Behaviors of
TCP-friendly Congestion Control Protocols”, In Proc. of
IEEE INFOCOM 2001, April 2001

[17] Y.R. Yang and S.S. Lam, “General AIMD Congestion
Control”, In Proc. of 8th ICNP, Osaka, Japan, November 2000

[18] C. Zhang and V. Tsaoussidis, “TCP Real: Improving Real-
time Capabilities of TCP over Heterogeneous Networks”, In
Proc. of 11th IEEE/ACM NOSSDAV, June 2001

[19] C. Zhang and V. Tsaoussidis, “The interrelation of TCP
Responsiveness and Smoothness”, In Proc. of 7th IEEE ISCC,
July 2002

	1. Introduction
	2. Related Work
	3. Experimental Methodology
	where Throughputi is the throughput of the ith flow and n is

	4. Results and Discussion
	5. Conclusion
	References

