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Abstract 

 
We evaluate the impact of network, and protocol 
heterogeneity on real-time application performance. We 
focus on TCP and UDP supportive role, also in the context 
of network stability and fairness. We reach several 
conclusions on the specific impact of wireless links, MPEG 
traffic friendliness, and TCP version efficiency. Beyond that, 
we also reach an unexpected result: UDP traffic is 
occasionally worse than TCP traffic when the right 
performance metric is used. 
 
 
1. Introduction 
 
      Quality of Service (QoS) is increasingly important for 
applications over the Internet. A main factor that complicates 
and even obstructs the efforts for efficient end-to-end QoS 
management is the heterogeneity of the Internet. However, 
identifying the presence of network heterogeneity is not 
enough. It is necessary to clarify and analyze all the 
heterogeneity parameters.  
      The application domain is generally classified into non-
real time (e.g. HTTP, FTP) and real-time traffic (e.g. 
multimedia streaming). Real-time applications are 
comparatively intolerant to delay and to variations of 
throughput and delay [4]. They are also affected by 
reliability parameters, such as packet loss and bit errors. 
Therefore, a real-time application delivers satisfactory 
performance only under certain QoS provisions, which may 
vary depending on the application task and the type of media 
involved. Real-time applications compete with other network 
traffic, as they often share the same channel with corporate 
FTP and HTTP traffic. However, how real-time traffic 
affects or might be affected by other network traffic is still 
an open issue.  
      A real-time application has the option to run over 
Transmission Control Protocol (TCP) or User Datagram 
Protocol (UDP). TCP is the dominant protocol for data 
transmission over the Internet. Although TCP is based on the 
unreliable datagram service offered by IP, it manages to 
provide a reliable data delivery service to Internet 
applications. TCP uses a variety of techniques to achieve 

reliability. Generally, the protocol combines retransmission 
in conjunction with the sliding window mechanism. In 
standard TCP, sliding window adjustments are implemented 
according to the Additive Increase Multiplicative Decrease 
(AIMD) algorithm proposed by Chiu and Jain [3]. TCP is 
designed to allocate the resources of a network channel 
equally to each application using this channel. However, the 
demand of competing flows often exceeds the channel 
bandwidth leading to congestion. Therefore, efficient 
congestion control is of high importance in order to avoid 
undesirable implications for the network, such as congestive 
collapse. A series of mechanisms have been proposed for 
congestion control, including Congestion Avoidance [9], 
Slow Start, Fast Retransmit and Fast Recovery. Congestion 
control is usually triggered after a single packet loss. 
However, in heterogeneous wired/wireless environments, 
apart from congestion, hand-offs and fading channels may 
result in packet loss [14]. Generally, TCP is unable to 
successfully detect the nature of the errors in such a network 
environment.  
     Although the reliable service of TCP and its congestion 
control are suitable for traditional network traffic, real-time 
applications often struggle to operate efficiently. The sliding 
window adjustments of TCP do not provide the regular flow 
required by real-time applications when transmitting data. In 
wireless environments, the congestion-oriented responses to 
wireless link errors lead to wasteful window adjustments. 
The effect of these awkward conditions is long and varying 
delays, which damage the timely delivery of real-time data. 
Several TCP protocol extensions have emerged to overcome 
the standard TCP limitations providing more efficient 
bandwidth utilization and sophisticated mechanisms for 
congestion control [1, 11, 18].  
     Alternatively, most real-time implementations run over 
UDP. UDP is a fast, lightweight protocol without any 
transmission or retransmission control. UDP does not have 
functionality to override application characteristics, such as 
its transmission rates. It simply transmits at application rate 
and pattern. Consequently, UDP appears to be more suitable 
for real-time applications which tolerate some packet losses. 
However, the lack of a congestion control mechanism is a 
significant shortfall for UDP, especially as the 
Internetworking functionality evolves towards punishing 
free-transmitting protocols. Furthermore, the design 



principles of UDP do not anticipate fairness. Thus, any 
applications running over UDP are not fair. Along these 
lines, our research work is motivated by the following 
questions: 
 
• How crucial is congestion control regarding real-time 

traffic? When the network load increases, does it 
contribute to efficiency as well? 

• What is the efficiency of TCP and UDP with real-
time traffic? When packet loss increases and UDP 
maintains its transmission rate, does it really maintain 
application efficiency as well? 

• Are traditional metrics comparative enough to 
evaluate real-time application performance? 

 
      We organize the rest of the paper as follows: in the 
sequel, we provide an overview of recent research proposals 
which manage QoS focusing on network and protocol 
design. In Section 3 we present our evaluation methodology 
and we define a new performance metric for real-time 
applications. In Section 4 we analyze the results of our 
experiments and in the last section we highlight our 
conclusions. 
 
2. Related Work 
 
     The impact of network heterogeneity on real-time 
application QoS has not been studied in depth. Relevant 
work includes [2], where the authors discuss the impact of 
mobility in QoS, and [4], where the QoS of real-time traffic 
along with its characteristics are analyzed. Authors in [5] 
discuss how streaming traffic competes with other TCP 
traffic over low bandwidth WAN links. Furthermore, there 
are remarkable research efforts towards the efficient QoS 
management of real-time applications focusing on protocol 
design. We discuss them in the rest of this section. 
 
2.1 TCP-friendly Protocols 
 
     The disqualification of standard TCP to meet the 
requirements of real-time applications was the motive for a 
new family of protocols. Authors in [6, 7, 16, 17] proposed a 
family of TCP compatible protocols, called TCP-friendly. 
TCP-friendly protocols achieve smooth window adjustments, 
while they manage to compete fairly with TCP flows. In 
order to achieve smoothness, this family of protocols use a 
gentle backward adjustment upon congestion. However, this 
modification has a negative impact on the protocol 
responsiveness.  
      TCP-Friendly Rate Control (TFRC) is a representative 
TCP-friendly, rate-based congestion control protocol. 
According to TFRC, the transmission rate is adjusted in 
response to the level of congestion as it is indicated by the 
loss rate [10]. Multiple packet losses in the same RTT are 
considered as a single loss event by TFRC and hence, the 
protocol follows a more gentle congestion control strategy. 
TFRC eventually achieves the smoothing of the transmission 

gaps and therefore, is suitable for applications requiring a 
smooth sending rate. However, this smoothness has a 
negative impact, as the protocol becomes less responsive to 
bandwidth availability [19]. 
      TCP-Real is a high-throughput transport protocol that 
incorporates congestion avoidance mechanism in order to 
minimize transmission-rate gaps. Therefore, this protocol is 
suited for real-time applications, as it enables better 
performance and reasonable playback timers. TCP-Real [18, 
15] employs a receiver-oriented and measurement based 
congestion control mechanism that significantly improves 
TCP performance over heterogeneous networks and over 
asymmetric paths. In TCP-Real, the receiver decides with 
better accuracy about the appropriate size of the congestion 
window. Slow Start and timeout adjustments are present, but 
they are only used whenever congestion avoidance fails.  
      TCP Westwood is a sender-side-only modification of 
TCP Reno congestion control, which exploits end-to-end 
bandwidth estimation to properly set the values of slow-start 
threshold and congestion window after a congestion episode. 
TCP Westwood significantly improves fair sharing of high-
speed networks capacity. The protocol performs an end-to-
end estimate of the bandwidth available along a TCP 
connection to adaptively set the control windows after 
congestion [11]. Although TCP Westwood does not 
incorporate any mechanisms to support error classification 
and the corresponding recovery tactics for wired/wireless 
networks, the proposed mechanism appears to be effective 
over asymmetric paths due to its efficient congestion control. 
 
2.2 Congestion Avoidance 
 
     A congestion episode usually has a negative impact on 
the performance of a real-time application, regardless of the 
effectiveness of the TCP congestion control mechanisms. 
Based on this observation, an approach dealing with 
congestion from another perspective has been proposed. The 
goal of this approach, called congestion avoidance, is to 
estimate the level of congestion before it takes place, and 
hence avoid it. Congestion avoidance may be achieved 
through packet dropping (i.e. RED) or otherwise through 
bandwidth and delay estimation, which trigger transport-
level adjustments prior to congestion. 
     A well-designed, congestion avoidance mechanism is 
TCP Vegas. Every RTT (Round Trip Time) the sender 
calculates the throughput rate which subsequently is 
compared to an expected rate [14]. Depending on the 
outcome of this comparison the transmission rate of the 
sender is adjusted accordingly. Based on [1] admissions, 
Vegas achieves better transmission rates than TCP Reno and 
TCP Tahoe. Although the protocol is compliant to the rules 
of fairness (AIMD algorithm), according to [8], Vegas can 
not guarantee fairness. 
     Reviewing all the proposed solutions, TCP-friendly 
protocols and the various approaches dealing with 
congestion extend further the heterogeneity of the network.  
 



3. Experimental Methodology 
 
3.1 Experimental Settings 
 
     The evaluation plan was implemented on the NS-2 
network simulator. In our experiments we used a high-speed 
single-bottleneck topology, known as dumbbell (Fig. 1). The 
capacity of the bottleneck is configured to 100Mbps, so that 
each flow has enough fair-share to expand its window. The 
buffer size of the router that forwards the packets to the 
receivers was adjusted in accordance with the delay x 
bandwidth product. The number of source and sink nodes are 
equal in all experiments.  
     Apart from a wired network, we also simulated an 
heterogeneous wired/wireless environment by inserting NS-2 
error models into the access links to the sink nodes. The 
error models were configured on both (forward and reverse) 
directions of the link traffic. The Bernoulli model was used 
in order to simulate link-level errors with packet error rate 
(PER) adjusted at 0.01. Furthermore, we included mobility 
in our wireless scenario in order to monitor the behavior of 
the network and its impact on the application in a situation of 
frequent handoffs. Thus, the protocols experience a situation 
where 5 handoff events occur and each one lasts 1 sec. 
      In our experiments, we used the MPEG-4 traffic 
generator proposed in [12] in order to simulate real-time 
traffic. The traffic generated closely matches the statistical 
characteristics of an original video trace. The model 
developed is based on Transform Expand Sample (TES) 
[13]. We used three separate TES models for modeling I, P 
and B frames respectively. The resulting MPEG-4 stream 
was generated by interleaving data obtained by the three 
models. The MPEG traffic generator was integrated into NS-
2 and provides the adjustment of the data rate of the MPEG 
stream, as well as useful statistical data (i.e. average bit-rate, 
bit-rate variance).  
      For each scenario we used different number of flows in 
order to have more productive results. For all the 
experiments, the simulation time was fixed at 60 seconds, an 
appropriate time-period for all the protocols to demonstrate 
their potential.  
 

 
Figure 1. Simulation topology 

 
      In order to evaluate TCP performance, we used two 
representative TCP protocols as reference: Reno and Vegas. 
However, in the last scenario, we included the TCP-friendly 
protocols TCP-Westwood and TCP-Westwood+ in order to 
evaluate their efficiency in comparison with the rest of TCP 
versions. 
 

3.2 Performance Metrics 
 
     System goodput was used to measure the overall system 
efficiency in bandwidth utilization. In order to evaluate the 
efficiency of selected flows, such as an MPEG flow 
competing with other FTP flows, we additionally measured 
the goodput of each flow separately. Fairness is measured by 
the Fairness Index, derived from the formula given in [3], 
and defined as: 
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where Throughputi is the throughput of the ith flow and n is 
the total number of flows. 
      In [15] Tsaoussidis and Zhang proposed a new metric for 
the performance evaluation of real-time traffic, called “x% 
Application Success Percentage”. Virtually, the metric 
captures the number of discrete time slots when the flow 
achieves at least x% of the Targeted Receiving Rate. The 
calculation of Application Success Percentage is based on 
the AllottedGoodput(i, j) which is the goodput of the ith flow 
within the jth second. Although this metric is more 
appropriate for the performance evaluation of real-time 
applications than goodput, it has some limitations. Its major 
shortfall is that it does not take into account packet 
interarrival time, which is a critical parameter for time-
sensitive applications. Therefore, the performance of such 
applications can not be effectively evaluated. 
     Targeting to a more efficient criterion for the justification 
of real-time traffic performance, we introduce a new metric, 
called Real-Time Performance. The basic observation that 
goodput can not be directly used for the performance 
evaluation of a real-time application called for the definition 
of such a performance metric. The key to evaluate the 
performance of a real-time application is to measure the 
packets that arrive at the receiver(s) on time, depending on 
the application requirements. Thus, Real-Time Performance 
index is the ratio of the number of timely received packets 
over the total number of packets sent by the application: 
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In order to measure the number of received packets that can 
be effectively used by the real-time application, an extension 
has been made to the functionality of the receiver. Each 
recipient, receiving packets from the MPEG streaming 
application, calculates the number of timely received packets 
based on the two versions of the algorithm. The first version 
of the algorithm (Algorithm 1) captures the number of timely 
received packets of the MPEG application running over 
TCP, while the alternative version (Algorithm 2) is used for 
UDP. The two versions of the algorithm have the same 
functionality, excluding the fact that the TCP version takes 
retransmission into account, whenever it takes place. 
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it is not used as reference (i.e. its sequence number and 
arrival time) for the next packet (Algorithm 1: lines 11-14). 
 
4. Results and Discussion 
 
     In order to evaluate the impact of the protocols and the 
network characteristics on the QoS of a real-time 
application, we conducted several experiments based on two 
separate scenarios. The basic parameters of each scenario are 
as described in the previous section. We carried out our 
experiments simulating both a wired and wireless topology.  
 
4.1 The Impact of MPEG on Corporate Traffic 
 

Algorithm 1. Timely Received Packets (TCP) 
 
  1:  if threshold > 0 then 
  2:     set packetTime = currentTime  
  3:     increase packets_received 
  4:     if seqNo - last_seqNo = 1 then 
  5:         if packetTime - lastPacketTime > threshold then 
  6:             increase uselessPackets 
  7:         end if 
  8:     else 
  9:         increase uselessPackets 
10:     end if 
11:     if currentPacket not retransmitted 
12:         set last_seqNo = seqNo 
13:         set last_packetTime = packetTime 
14:    end if 
15:    set usablePackets = packetsReceived - uselessPackets  
16: end if 
     In the first scenario, we simulated (i) 1 FTP flow (over 
TCP), (ii) 1 MPEG flow over TCP, and (iii) 1 MPEG flow 
over UDP, each one of them competing with a number of 
other FTP flows (1, 10, 20, 40 and 80 flows). We measured 
the aggregated goodput of all flows in the system except the 
first FTP/MPEG TCP/MPEG UDP flow, correspondingly. 
The data rate of the MPEG flow was adjusted, so that it can 
compete fairly with the FTP flow.  
     Our purpose here is to demonstrate the impact of the 
MPEG application on the other applications when they all 
share the same channel. We conducted the experiments 
simulating both a wired (Figs. 2, 4) and wireless topology 
(Figs. 3, 5). We used the TCP protocols Reno (Figs. 2, 3) 
and Vegas (Figs. 4, 5) for the FTP flows and the MPEG TCP 
flow. 
Algorithm 2. Timely Received Packets (UDP) 
 
  1:  if threshold > 0 then 
  2:     set packetTime = currentTime  
  3:     increase packets_received 
  4:     if seqNo - last_seqNo = 1 then 
  5:         if packetTime - lastPacketTime > threshold then 
  6:             increase uselessPackets 
  7:         end if 
  8:     else 
  9:         increase uselessPackets 
10:     end if 
11:     set last_seqNo = seqNo 
12:     set last_packetTime = packetTime 
13:     set usablePackets = packetsReceived - uselessPackets  
14: end if 
everal notations used in the pseudocode algorithms are 
llows: 

threshold       : inter-arrival threshold 
packetTime        : arrival time of the current packet 
seqNo             : sequence number of current packet 
last_seqNo       : sequence number of last packet 
lastPacketTime : arrival time of the last packet 
uselessPackets  : number of useless packets 
usablePackets   : number of packets that can be 

                             effectively used by the application 

oth versions of the algorithm basically use two criteria 
entify whether each received packet can be used by the 
t application. The first criterion is packet inter-arrival 
. We set here an inter-arrival time threshold at 100ms. 
ainly, this can be adjusted depending on the application, 

requirements and network delay. Each packet with 
arrival time greater than this threshold is considered as 
ss. Practically such packets are either discarded and 
idered lost, or at the worst they obstruct the proper 
nstruction of oncoming packets. Secondly, the algorithm 
 into account the sequence number of packets. An 
ing packet which is out of transmission order is also 
idered as useless. In the context of TCP, such a packet 
 be retransmitted. Since a retransmitted packet is useless, 
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Figure 2. Goodput of remaining FTP flows (Reno/Wired) 
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Figure 3. Goodput of remaining FTP flows (Reno/Wireless) 
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Figure 4. Goodput of remaining FTP flows (Vegas/Wired)  
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Figure 5. Goodput of remaining FTP flows (Vegas/Wireless) 

 
      The results clearly demonstrate the impact of the MPEG 
application on TCP network traffic. Using the results of the 
1st FTP flow as reference, we reach the conclusion that the 
MPEG flow over TCP does not affect the efficiency of the 
remaining FTP flows. However, we observe that the MPEG 
flow over UDP has a negative impact on the other flows in 
each case, as their aggregated goodput is decreased. This 
observation is in accordance with our expectations, 
considering the lack of any back-up policies of the UDP 
protocol. Indeed, UDP is not fair to the other applications. 
Therefore, any application sharing the same channel with 
UDP flows is in an unfavorable situation. Furthermore, the 
limited efficiency of the FTP flows is obvious in the context 
of wireless networking. Finally, TCP Vegas, due to its 
sophisticated congestion avoidance mechanism, is more 
efficient, since it achieves higher transmission rates than 
TCP Reno. 
 
4.2 TCP vs. UDP 
 
     The final scenario includes the simulation of (i) N MPEG 
flows over TCP, and (ii) N MPEG flows over UDP, where N 
is set to 10, 20, 40 and 80 successively. In these experiments, 
apart from the two referenced TCP versions (i.e. Reno, and 
Vegas), we additionally used TCP Westwood and TCP 
Westwood+. Our purpose is to evaluate the impact of each 
protocol on the real-time application QoS, when there are 
only MPEG TCP or MPEG UDP flows in the system. Our 
metrics include system goodput, the average of the Real-
Time Performance of each MPEG flow and Fairness Index. 
In this scenario many heterogeneity parameters are under 
evaluation, adding the wired and wireless topology. 
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Figure 6. System Goodput (Wired) 

  

0

10

20

30

40

50

60

70

80

90

100

1 10 20 40 80

Number of MPEG flows

M
bp

s

Reno
Vegas
Westwood
Westwood+
UDP

 
Figure 7. System Goodput (Wireless) 
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Figure 8. Average Real-Time Performance (Wired)  

 

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1 10 20 40 80

Number of MPEG flows

Reno
Vegas
Westwood
Westwood+
UDP

 
Figure 9. Average Real-Time Performance (Wireless) 
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Figure 10. Fairness Index (Wired) 
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Figure 11. Fairness Index (Wireless) 

 
     Taking into account the goodput results (Figs. 6, 7), we 
observe that all TCP protocols achieve higher goodput than 
UDP. This difference increases alongside with the number of 
flows. Either over TCP or UDP congestion episodes occur. 
Since TCP protocols incorporate congestion control or 
avoidance mechanisms, they deal with congestion more 
efficiently. UDP, with the absence of congestion control, is 
unable to control the congestion. The MPEG streaming 
application transmits packets over UDP ignoring the network 
condition, resulting in a large number of lost packets 
(especially at 40 and 80 flows). This phenomenon is 
reflected clearly in the Real-Time Performance results (Figs. 
8, 9), where UDP performs inadequately. Furthermore, UDP 
does not compete fairly with the rest of UDP flows (Fig. 10), 
since UDP is not designed to anticipate fairness. 
     A very interesting outcome of these results is the 
performance of TCP-friendly protocols Westwood and 
Westwood+. This family of protocols use smooth window 
adjustments which appear to be in accordance with real-time 
application requirements. However, during excessive 
congestion (i.e. 40 and 80 flows), the conservative policy of 
TCP-friendly protocols results in increased packet losses. 
Therefore, TCP-friendly protocols fail to accomplish their 
design goals, since they do not achieve any performance 
gains (i.e. Real-Time Performance: 40 and 80 flows).  
 
5. Conclusion 
 
      Reviewing our discussion and based on the above 
experimental results we reach the following conclusions: (i) 
Congestion control is mandatory and protocols which do not 
incorporate such mechanisms (i.e. UDP) have limited 
efficiency and potential. (ii) TCP has inadequate efficiency 
in wireless environments, due to its congestion-oriented 
responses to wireless errors and operations (e.g. handoffs). 
(iii) UDP is not fair to other flows sharing the same channel, 
no matter if these flows are over TCP or UDP. (iv) TCP-
friendly protocols do not provide the improved real-time 
performance their designers promised, due to their smooth 
window adjustments at periods of congestion. (v) TCP 
Vegas achieves higher transmission rates than standard TCP, 
especially when congestion occurs. (vi) Goodput is not an 
accurate criterion for the evaluation of real-time application 
performance. Since current protocol support for real-time 
applications does not meet their stringent QoS requirements, 

future work will be focused on the design of a protocol 
which will provide improved support for time-sensitive 
applications. More precisely, departing from current TCP-
Real, we intend to design and propose a partially reliable 
protocol. 
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