
BOTTLENECK-QUEUE BEHAVIOR:
How much can TCP know about it?

L. Mamatas1, V. Tsaoussidis1 and C. Zhang2

1 Dept. Of Electrical and Computer Engineering, Demokritos University of Thrace, Greece

2 Dept. Of Computer Science, Florida International University, USA

Abstract

We start off with an analysis on the effect of queuing delay on throughput. Departing from there, we claim that
RTT alone is a better estimator than throughput. We investigate the potential of RTT-based metrics to approach
the bottleneck queue behavior from TCP and we characterize the accuracy of our estimation.

Keywords

TCP, RTT, Queue

1. Introduction

End-to-end congestion avoidance and control as well as fair network resource management
would have great benefit, had the TCP sender known the behavior of the bottleneck queue.
Several methodologies have been developed to estimate bandwidth and bottleneck queue
based on temporary measurements of throughput, inter-packet gap, or RTT. For example,
TFRC [Handley, M., Floyd et al. (2003)] calculates throughput via a throughput equation that
incorporates the loss event rate, round-trip time and packet size. TCP-Vegas [L. Brakmo and
L. Peterson (1995)] estimates the level of congestion using throughput-based measurements.
TCP-Vegas demonstrates that measurement-based window adjustments is a viable
mechanism, however, the corresponding estimators can be improved. In TCP-Westwood [C.
Casetti, M. Gerla et al. (2002)], the sender continuously measures the effective bandwidth
used by monitoring the rate of returned ACKs. TCP-Real [V. Tsaoussidis and C. Zhang
(2002)] uses wave patterns: a wave consists of a number of fixed-sized data segments sent
back-to-back, matching the inherent characteristic of TCP to send packets back-to-back. The
protocol computes the data-receiving rate of a wave, which reflects the level of contention at
the bottleneck link. Bimodal congestion avoidance and control mechanism [P. C. Attie, A.
Lahanas et al. (2003)] computes the fair-share of the total bandwidth that should be allocated
for each flow, at any point, during the system’s execution. TCP-Jersey [K.Xu, Y.Tian et al.
(2004)] operates based on an “available bandwidth” estimator to optimize the window size
when network congestion is detected. The Packet-Pair technique [S. Keshav (1991)] estimates
the end-to-end capacity of a path using the difference in the arrival times of two packets of the
same size traveling from the same source to the same destination. Recently, several
investigations have been also carried out regarding the accuracy of the proposed estimators,
like [M. Jain and C. Dovrolis (2004)].

Initially, we do not attempt to introduce a new estimator but rather to characterize how
accurately TCP estimators can approach the queue behavior during communication. We

discuss pitfalls of throughput estimation and we emphasize further on behavior-estimation
methodologies based on RTT measurements. We attempt to address the following issues:
- Can TCP sender detect flow synchronization? Synchronized flows do not allow for end-to-
end detection of queue size for all participating flows. We estimate packet position per flow.
We note that the prescribed behavior of TCP sources leads to a prescribed packet position in
the queue when synchronization is present, depending on the number of participating flows in
the system.
- Can we estimate accurately the queue behavior in the absence of synchronization? When the
participating flows utilize large windows and packets are presumably (due to lack of
synchronization) interleaved, the max-packet-delay per window may give sufficient feedback
on the current queuing delay.
- Does the accuracy depend on the window size and the scale of packet interleaving? When
the number of participating flows increases, windows are becoming smaller and samples do
not suffice to select a value for max-packet-delay which is close to the real queuing delay.
Sampling technique needs then to be adjusted to a predetermined number of packets. The
more we increase the sample, the better accuracy we achieve but the less responsive a
protocol can be due to further abstracting of the sampling scale.

2. Throughput vs RTT

First we extend the analysis model of [D.-M. Chiu and R. Jain (1989)] by taking into account
the role of bottleneck queue. Consider a simple network topology shown in figure 1, in which
the link bandwidth and propagation delay are labeled. In our scheme, n TCP flows share a
bottleneck link with capacity of bw, and the round trip propagation delay is RTT0 = 2 *
(src_delay + delay + sink_delay). Since our focus in this subsection is on the overall system
behavior, we define the aggregated congestion window size at time t as:

∑
=

=
n

i
i tcwndtcwnd

1
)()((1)

where cwndi(t) is the window size of the ith flow. Consequently, the system throughput at time
t can be given by the following equation:

0

() ()()
() ()

cwnd t cwnd tthroughput t
RTT t RTT qdelay t

= =
+

 (2)

where qdelay(t) is the queuing delay at the bottleneck router. As can be seen from (2), the
throughput is not only a function of the congestion window, but also a function of the queuing
delay, which was not incorporated into the analyses in [D.-M. Chiu and R. Jain (1989), J.
Padhye, V. Firoiu et al. (1998)].

Assume all flows are in the additive increase stage. First consider the case where cwnd(t) is
below the point knee [D.-M. Chiu and R. Jain (1989)]:

bwRTTcwndknee ⋅= 0
 (3)

Then there is no steady queue build-up1 in R1 (i.e. RTT(t) = RTT0), and according to (2), the
throughput grows in proportion to cwnd. The bottleneck capacity is not fully utilized until
cwnd increases to cwndknee.

1 There could be temporary queue build-up in this scenario, due to the traffic burstiness. This is neglected to
simplify our analysis.

If cwnd(t) increases further beyond cwndknee, however, the system displays different
dynamics. The bottleneck queue starts to build up, after the bottleneck capacity is saturated.
Rewrite cwnd(t) as:

)0)(()()(>∆∆+= twtwcwndtcwnd knee
 (4)

Since the bottleneck link can transmit at most cwndknee packets in one RTT0 (see (3)),)(tw∆
packets will linger in the queue. Hence the steady queuing delay at the bottleneck will be:

bwtwtqdelay /)()(∆= (5)

Intuitively, the system throughput is bounded by the physical capacity bw, in spite of the
increase of cwnd(t) beyond the knee, because qdelay(t) in the denominator of (2) grows as
well. This is confirmed by the following computation:

bw
tqdelayRTT

bwtqdelaybwRTT
tqdelayRTT
twcwnd

tthroughput knee

=
+

⋅+⋅
=

+
∆+

=

)(
)(

)(
)(

)(

0

0

0

 (6)

The system dynamics can be continuously described by equations (4) – (6), until the queue
length)(tw∆ reaches the maximum buffer size, i.e. when cwnd touches the point cliff 2

bwqdelayRTTcwndcliff ⋅+=)max(0
 (7)

TCP senders then multiplicatively decrease their congestion window, after packet losses due
to buffer overflow are detected.

Although the above analysis is based on a simplified model, it provides useful insights into
the dynamics of congestion control, and a guideline for protocol improvement. Such
guidelines can be found in [V. Tsaoussidis and C. Zhang (2005)]. The computation of (6)
demonstrates that increasing cwnd beyond the knee does not enhance further the system
throughput, but only results in increasing queuing delay. Can we use throughput to monitor
network conditions? One can detect, perhaps, the knee threshold. Experience with TCP-Vegas
has shown that the level of flow throughput at the time the threshold was crossed cannot be
uniformly detected by all flows. Therefore, adjustments based on this information may lead to
unfair bandwidth sharing. However, while estimators using throughput for measuring
congestion may fail, estimators based on the RTT measurements could provide more accurate
indication of the network condition.

3. ESTIMATING BOTTLENECK QUEUE SIZE

We focus on the estimation of the bottleneck queue size at the sender. We claim that using an
appropriate RTT-based mechanism, the sender can measure with sufficient accuracy at what
percentage the bottleneck queue is full. Such information may enhance the sophistication of
the transport protocol regarding:

- the detection and avoidance of flow synchronization.
- its capability to distinguish congestive from non-congestive errors.
- its flexibility to implement a corresponding back-off or keep-on strategy, when the
queue is getting full or remains unexploited, accordingly.
- the possibility to apply an adaptive scheme relevant to the detected network conditions.

2 The intuitive concept of knee and cliff was first introduced in [D.-M. Chiu and R. Jain (1989)]. Here we give
an analytical expression.

Our analysis on RTT-based estimation of queue behavior departs from a three-case
categorization of network-traffic. Our main target is to investigate if, how and when specific
packet-RTT measurements could correspond to the level of queuing delay experienced in the
system. Maximum queuing delay corresponds to the max queue length. Naturally, our
categorizing criterion is statistically oriented: What is the level of packet interleaving in the
system? Increased interleaving leads to higher probability of experiencing max delay by all
participating streams. On the contrary, synchronization leads to wrong estimation of max
queuing delay. For example, a flow can have always its packets in the start of the queue and
consequently follow a wrong estimation of an empty queue. We claim that this situation can
be predicted when packet position in the queue follows the pattern of TCP window
adjustments. That is, the expected position under conditions of flow synchronization would be
a certain position in the queue. Given the window increase strategy of TCP, the expected
position would follow a corresponding increase as well.

We examine different sampling techniques for measuring RTT. We show that measuring
every RTT (ERTT) to estimate the queue dynamics may fail when synchronization exists;
however, synchronization itself can be occasionally detected. Window-based sampling
(WRTT) of largest RTT fails for small windows; and a predetermined number of packets
works only when the link is fully utilized.

Otherwise, when there are periods of unutilized queue, a technique based on measuring
MaxRTT for a predetermined number of packets (PRTT) may fail. In conclusion, our
sampling methodology corresponds to three types of congestion: (i) persistent congestion
where packets are interleaved, (ii) transient congestion with small windows and synchronized
flows and (iii) transient congestion with unsynchronized flows.

Our estimators are currently based on the following assumptions:

- When sample RTT reaches maximum RTT, we assume that the bottleneck’s buffer is
full (when the measured maxRTT is taken out of a sufficient sample3).

- Similarly, when sample RTT approaches the minimum RTT, we assume that the
bottleneck’s buffer is Empty.

We introduce initially the Occupied Queue Size (OQS) index. The OQS index records the
fraction of the bottleneck queue, which is full, based on the current packet position4 in the
queue:

OQS = (Sample_RTT – MinRTT) / (MaxRTT – MinRTT)

The OQS index gets values between 0 and 1 since minRTT<maxRTT if the number of packets
per window n >1, packets following the same route.
When OQS gets the value 0, we estimate an empty buffer (sample RTT=MinRTT). Similarly,
OQS=1 indicates a full buffer (sample RTT=MaxRTT) and hence
OQS=EstimatedQueueLength.
For the sake of the experiments, when the bottleneck-queue length is known, we use the
following metric:

3 We investigate here what is a sufficient sample.
4 For which the RTT has been measured

PP= Estimated_Queue_Length x (Sample_RTT – MinRTT) / (MaxRTT – MinRTT) =>

PP= EQL x OQS

The Packet Position (PP) metric is therefore the product of the OQS index and the bottleneck-
queue’s length. The PP metric reveals the position of the last acknowledged packet in the
bottleneck queue. We use this metric in contrast to the real position of the packet, in order to
initially evaluate our estimator. However, we note that the estimated packet position is always
equal to or less than the real packet position. We also estimate the mean and maximum
deviation from the real position, categorizing the distinctive effects of different scenarios to
deviation.

4. EXPERIMENTAL METHODOLOGY

4.1 Evaluation Plan

We have implemented our evaluation plan on the ns-2 network simulator. The network
topology used as a test-bed is the typical single-bottleneck dumbbell, as shown in Figure. 1.
The link's capacity at the receivers (bw_3) is 1Mbps. We used equal number of source and
sink nodes. The simulation time was fixed at 60 seconds, a time-period deemed appropriate to
allow protocols to exploit their dynamics.

Source 1

Sourse N

Sink 1

Sink N

10ms
bw_2

10ms
bw_1

10ms
bw_3

10ms
bw_1

10ms
bw_3

Figure 1. Simulation topology

In our scenarios, ftp flows are entering the system within the first two seconds. All flows are
fixed, during the rest 58 seconds.

 Bw_1 Bw_2 Bw_3
Scenario 1 1 Mbps 100 Mbps 1 Mbps
Scenario 2 100 Mbps 10 Mbps 1 Mbps

Table 1. Experiments

We carried out experiments using the above two scenarios (Table 1). We adjusted values for
Bw_1, Bw_2 in order to move the bottleneck in different queues (queue 3 or queue 1). We
traced all the packets of the last flow (the 10th) and record all the positions they got in all
available queues. We use these results for the evaluation of the OQS and PP estimators. All
queues have 50 packets length.

In order to evaluate how efficiently our mechanisms can work, we have also experimented
with dynamic scenarios with graduated contention increase/decrease and different queuing

algorithms (like RED [S. Floyd, and V. Jacobson (1993)]). The results were similar with the
ones reported.

5. EVALUATION RESULTS

5.1 Scenario 1 (bw_1=1 MBps, bw_2=100Mbps)

In the following figure (figure 2), we observe the behavior of the three queues in contrast to
our estimation mechanism. In this experiment, we measure every RTT (ERTT sampling). We
show that this estimation mechanism works very well, under the given network conditions. In
fact, the estimation mechanism follows queue 3. In figure 3, we show the per-flow mean and
max deviation of our estimation to the actual position of the packets. Consequently, we show
that our estimation works effectively by the viewpoint of all ten flows. We got similar results
using a RED queue.

Figure 2. DropTail Queue

Figure 3. Maximum & Mean Deviation

Figure 4. RED Queue

5.2 Scenario 2 (bw_1=100 MBps, bw_2=10Mbps)

When we used a first link of 100Mbps and a second of 10Mbps, we noticed that our
estimation follows the first queue (using both DropTail and RED – Figures 5, 7). The mean
deviation of our estimation (figure 6) is under five packets. The scenario with graduate
contention decrease (figure 8) points out that the measurement gets refined with less number
of flows.

Figure 5. DropTail Queue

Figure 6. Maximum & Mean Deviation

Figure 7. RED Queue

Figure 8. DropTail Queue with Contention Decrease

6. CONCLUSIONS & ONGOING WORK

We investigated the capability of different estimators to discover the bottleneck queue
behavior. We conclude that RTT-based estimators occasionally fail to capture the queue
dynamics. Depending on the conditions, one estimator may outperform another. The results
call for a new design where the estimator adapts its strategy to detected network conditions.
We intent to graft such an estimator to TCP sender.

7. REFERENCES

P. C. Attie, A. Lahanas and V. Tsaoussidis (2003), "Beyond AIMD: Explicit fair-share calculation", In
Proceedings of ISCC 2003, June, 2003.
L. Brakmo and L. Peterson (1995), "TCP Vegas: End to end congestion avoidance on a global Internet", IEEE
Journal on Selected Areas in communication, 13(8):1465--1480, October 1995
C. Casetti, M. Gerla, Saverio Mascolo, M.Y. Sansadidi, and Ren Wang (2002), "TCP Westwood: End-to-End
Congestion Control for Wired/Wireless Networks" In Wireless Networks Journal 8, 467-479, 2002
D.-M. Chiu and R. Jain (1989), “Analysis of the Increase and Decrease Algorithms for Congestion Avoidance in
Computer Networks”, Computer Networks and ISDN Systems, 17(1):1-14, 1989.
S. Floyd, and V. Jacobson (1993), “Random Early Detection gateways for Congestion Avoidance”, IEEE/ACM
Transactions on Networking, 1(4):397-413, August 1993.
Handley, M., Floyd, S., Pahdye, J., and Widmer, J (2003), “TCP Friendly Rate Control (TFRC): Protocol
Specification”, RFC 3448
M. Jain and C. Dovrolis (2004), “Ten Fallacies and Pitfalls in End-to-End Available Bandwidth Estimation”,
ACM Internet Measurements Conference (IMC), Sicily Italy, October 2004.
S. Keshav (1991), “Congestion Control in Computer Networks”, PhD Thesis, UC Berkeley, published as UCB
TR 91/649
J. Padhye, V. Firoiu, D. Towsley, and J. Kurose (1998), "Modeling TCP Throughput: A Simple Model and its
Empirical Validation", In Proceedings of ACM SIGCOMM ’98, August 1998
V. Tsaoussidis and C. Zhang (2002), “TCP-Real: Receiver-Oriented Congestion Control”, Computer Networks
Journal (Elsevier), Vol. 40, No. 4, November 2002.
V. Tsaoussidis and C. Zhang (2005), "The dynamics of responsiveness and smoothness in heterogeneous
networks”, IEEE Journal on Selected Areas in Communications, (JSAC) Special issue on Mobile Computing
and Networking, March 2005
K.Xu, Y.Tian and N.Ansari (2004), "TCP-Jersey for wireless IP communications", IEEE JSAC, vol.22, no.4,
pp.747-756, 2004.

