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Abstract— We show that TCP timers, based solely on RTT
estimations and measurements, cannot capture with precision
the level of flow contention. We notice that increased contention
may stabilize RTT variation, minimize the deviation and, in turn,
shorten the timeout. We show that this behavior is undesirable
indeed, since it leads to unfair resource utilization. We propose
CA-RTO, an algorithm that incorporates a contention parameter
and a randomization technique into the Retransmission Timeout.
We report significant improvement in fairness, great reduction
of retransmitted packets and slight improvements in application
goodput.

I. I NTRODUCTION

Statistical Multiplexing, the main technology of packet net-
works, allows for bandwidth sharing on demand and cancels
the possibility for flow starvation. However, the level and
type of multiplexing is mainly determined by the transmission
policies of the flow senders - that is, the sum of all sender
transmissions determines current demand. Since transmission
adjustments are based on detected network conditions, re-
source demand fluctuates in accord. Therefore, the application
rates are not really reflected in the multiplexer but rather
this is determined by the transmission policy of the transport
protocol. Fair multiplexing therefore is clearly becomingan
issue of how fairly demand is currently reflected by the
transport protocol current windows or rates, and in turn, how
accurate and simultaneous is the network-condition detection
by the participating flows.

When the resource demand exceeds the supply, that is,
when flow contention grows, multiplexing exhibits different
characteristics. For example, since packets are dropped due to
high demand and limited supply, current demand, and con-
sequently the strategy for multiplexing is determined mainly
by the timeout algorithm. That is, the timeout becomes the
scheduler for the link.

Although the design of the timeout algorithm has been
studied extensively in the past [5], [8], [9], [13], its association
with link scheduling has not. In addition, its scheduling
properties have not really been evaluated adequately. Instead,
much attention has been paid on its ability to reflect network
delay accurately, allowing for speedy retransmission when
conditions permit and avoiding double submission due to
early expiration. However, network delay as it is captured by
measuring the RTT alone, cannot really capture network con-
tention. Hence, it is possible for contention to grow, whilethe

timeout shrinks, at least for those flows which experience less
delays in the queue. Specifically, flows with large windows,
a common situation when flow contention is low, do capture
network delay with precision: last packets of the same window
will experience more delays. The situation differs when each
flow is represented with a single-packet window, for example.

The problem of scheduling as it is associated with timeout
has another dimension as well. When flows are synchronized,
or becoming synchronized due to a congestion event, the
timeout is adjusted accordingly for all participating flows.
The existing policy to exclude the retransmitted (dropped)
packets from measurements leaves little space for timeout
differentiation among the participating flows, thus leading
to possibly synchronized retransmissions. Therefore, fairness
cannot be guaranteed since flows are not randomly transmitted,
but instead, are possibly partitioned into two or more groups:
the ones that utilize the link and the others that attempt to
enter at times when the link is utilized.

Flow synchronization does not appear only when flows enter
the system simoultaneously. In addition, since congestionis
a single and common point in time for all flows, it may
cause synchronization by itself. The situation is similar to cars
queuing on a red sign and restarting together. The degree of
synchronization here actually depends on the diversity of the
timeout, the level of contention and the capacity and algorithm
of the buffer; these factors determine how many flows will
have one or more of their packets dropped.

We depart from exploiting the aforementioned situation with
simulations. We confirm that the timeout as a scheduler may be
problematic indeed. Next, we attempt to introduce randomness
into the timeout algorithm in order to solve the aforementioned
synchronization problem and the associated fair resource uti-
lization problem. We achieve that by integrating a contention-
adaptive parameter into the timeout. Finally, we confirm
that different levels of contention call for distinct timeout
adjustments. As a side-effect, we realize that link goodputmay
also be improved. Driven by encouraging results, we analyze
the behavior of the new algorithm in detail1. We show that
a contention-adaptive timeout (i) may improve significantly
fairness (ii) has the potential to break synchronization due to
timeout and (iii) reduce amount of sender retransmission and

1given the space limitations



therefore it may also improve system goodput.
We used the following structure: In section II we summarize

the related work. In section III we present the timeout algo-
rithm currently deployed in TCP; we also discuss the problems
associated with the lack of contention-based adjustments.We
propose our solution in section IV; discuss our evaluation
methodology in section V; and present our results and their
justification in section VI. We draw the main conclusions in
section VII.

II. RELATED WORK

Many researchers have reported TCP’s timer problems.
Lixia Zhang in [13] states that timers have intrinsic limitations
in offering optimal performance: any timer is a ”guess-based”
scheduler. She concludes that high performance TCP should
be based on external notifications upon forthcoming failures
and that a timer should be used only as an auxiliary indication.
More recently, researchers focused on the fact that the timeout
algorithm is RTT-dependend and study the RTT variations in
order to optimize the timeout value. Most of the research that
takes place in that field targets the avoidance ofSpurious
Timeouts. For example, if an RTT measurement increases
that much to exceed the value of the retransmission timeout
that had been determined prior to packet transmission, the
timeout expires although data is still in flight. In this context,
Ludwig and Katz introduce the Eifel Algorithm [8] in order
to get aware of spurious timeouts. The Eifel algorithm uses
the timestamp options defined in [6]. Every retransmitted
packet includes a unique timestamp. The sender compares this
timestamp with the one that the corresponding ACK carries. If
the ACK’s timestamp is smaller, then this obviously indicates
a spurious timeout; the Eifel algorithm restores the connection
state saved before the timeout instead of backing off.

Another approach in the same context is presented in [2].
In the event of a timeout the sender retransmits and measures
the RTT until the corresponding ACK arrives. If this RTT is
smaller than the minimum RTT measured so far, then this
indicates that the ACK was already in flight when the sender
retransmitted (spurious timeout).

In [7] the authors propose two ways to improve TCP
throughput in wireless networks. The first way is to select
a timeout value higher than the standard one. In this way
timeout events are reduced. The second way is the technique
of selective repeat (SR) and go-back-N (GBN) policies upon
timeout expirations.

III. T IMEOUT SCHEDULING REQUIRES

CONTENTION-BASED ADJUSTMENTS

TCP [10], transmission policy is confined by the rules of
congestion control [1], [12], which is based, in principle,
on the Additive Increase-Multiplicative Decrease (AIMD) [3]
algorithm2. Due to TCP’s overriding transmission rules, appli-
cation rates (demand) may be reformed at the transport layer
and consequently at the link layer as well.

2AIMD is coupled in TCP with several other optimizing mechanisms

TCP’s transmission rules, however, dominate the transmis-
sion policy only when congestion is not really catastrophic;
when demand (contention) exceeds the supply significantly,
the timeout undertakes a more dominant role.

The timer is adaptive to varying delay: it is calculated
every RTT after smoothing out the measured samples, and
weighting recent history. Therefore, the timeout functionas a
projection of expected network delay. More precisely, given
a sample measurementM and a history of average RTTA,
the distance of the average is measured:

Diff = M − A,

the average is updated

A = A + gDiff ,

and the deviation is calculated as:

Dev = Dev + d(|Diff | − Dev).

Finally, the Retransmission Timeout is adjusted to

RTO = A + 4D,

where A is an estimator of the average RTT (smoothed
RTT) and D is the smoothed mean deviation.Diff is the
difference between the measured and the estimated RTT.
Factor g is set to 0.125 andd is set to 0.25 [9]. A higher
value ford causes RTO to respond faster to RTT variations.

The above equations do not allow for differentiation among
different flows that experience the same queuing delay. For
example, flows that enter a system simultaneously will be
ordered in the queue and possibly follow the same order
throughout the upcoming transmission rounds. Furthermore,
flows that enter the system when buffer is fully utilized, may
also be excluded in the next rounds as well, for the same rea-
son. Current timeout scheduling becomes very deterministic,
allowing only a particular set of participating flows to utilize
the link.

Clearly, the existing RTO formula depends on theaverage
(smoothed) RTT and on thesmoothed mean deviation alone.
However, based on simulations, we claim that contention
increase cancels the deviation gradually, and in turn, reduces
the RTO value falsely. Therefore, although deviation is indeed
an optimizing addition to RTO when contention is low, it
exhibits a contradicting role when contention grows. For
example, when the network is not congested, transmission
windows grow, resulting in large RTT variation within the
same window. Suppose a congestion window of 50 packets.
The 1st packet of the window occupies the1st position in
the router’s buffer, while the50th packet occupies the50th

position. The queing delay will obviously have impact on
both the RTT and thesmoothed mean deviation. Now suppose
that 100 flows compete for 1Mbps backbone link. Under
such conditions, TCP senders operate with small windows,



leading to minimal deviation within the same window. Given
a possible synchronization, deviation is also minimal between
the different rounds; not only between different packets
within the same window. Suppose a TCP sender sends a
window of 5 packets. Arriving at the router these packets
will either get dropped or occupy the last positions in the
router’s buffer. In this case, the RTT will not vary, but instead
it will continuously get the larger value measured for this
connection3. Since there is no RTT variation, thesmoothed
mean deviation approaches 0. The RTO formula gives:

RTO ≈ A, since4D → 0.

The above analysis, is confirmed by the next set of simula-
tions. We simulate a contention decrease scenario. Initially,
until the 250th second, we simulate 1 flow over a 1Mbps
backbone link (dumbbell network topology). After the250th

second 99 more flows enter the system.
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Fig. 2. Smoothed RTT (RTO = A + 4D)

Figure 1 captures the RTT variation of the first flow we
plotted however, similar graphs for the rest of the flows. We
observe that RTT variation is canceled in case of high con-
tention. Incoming packets (at the bottleneck buffer) either get
dropped or occupy the last position in the queue. Cancelation
of the RTT variation leads to aMean Deviation that approaches
0 (Figure 3). Thus, the RTO (Figure 4) in this case depends

3the larger value corresponds to the last position in the router’s buffer
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Fig. 3. Mean Deviation (RTO = A + 4D)
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Fig. 4. Retransmission Timeout

only on the Smoothed Average RTT (Figure 2). Based on the
above analysis for the timeout algorithm, we conclude that
it does not behave in the desired manner when it becomes
the sole link scheduler. Although there isn’t link and buffer
underutilization, due to the high contention, the above situation
results in degraded system fairness, unnecessary timeout expi-
rations and bad link distribution among the competing flows.
We validate the above statements by extensive simulations and
present the results in Section VI.

IV. CA-RTO: THE PROPOSEDALGORITHM

A. The Design Goals

We propose an enhancement to the timeout formula, which
makes the timeoutcontention dependent. The purpose of
the CA-RTO algorithm (Contention-Adaptive Retransmission
Timeout) is twofold:

1) To incorporate contention. The major design goal of
the proposed algorithm is tomeasure contention and
reflect it into the timeout by increasing its value in
proportion.

2) To introduce retransmission randomness.The second
design goal is to randomly adjust/extend the timeout
value in case of high contention, in order tobreak
possible synchronization.

We measure contention by means of the congestion window.
More precisely, we employ the following idea:
During communication, the sender records themax congestion
window (max cwnd ) prior to congestion. When contention



increases, the sender may experience congestion with much
smaller window. That is, it can detect contention, approxi-
mately, by measuring the difference between the current win-
dow and the max recorded window. The larger the difference,
the higher contention is. We implement this as follows:

We introduce a factorc, where

c = 1

cwnd

We measure contention difference as:

cont diff = max cwnd − cwnd

In order to break synchronization, we introduce factor
p to adjust the temporal properties of retransmission as
follows: When contention is increased the timeout which
triggers retransmission is randomly selected from a wider
range of distinct timeslots. When contention is low, the time
scale adjusts back to a smaller range of distinct slots.

We achieve this by using the space(0, cont diff ) for
calculatingp:

p = Random(0, cont diff )

wherecont diff has been adjusted earlier to correspond to
the timeout scale as:

cont diff = cont diff ∗ 100%

Finally, the RTO is calculated as:

RTO = A + 4D + c ∗ p

B. CA-RTO Response To Contention

In case of static network conditions,p gets a small value
and the productc∗p depends mostly on thec factor, which has
minimal impact when contention is low. In case of dynamic
network conditions (e.g. Contention Increase)p gets a larger
value. That is, in case of Contention Increase factorc grows
due to the large denominator, while factorp grows as well due
to extendedcont diff . As a result,c∗p product gets a large
value. Thus, each flow randomly chooses a timeout value from
the range of(RTO, RTO + c ∗ p)

The following Figures 5, 6 monitor both the behavior of
the c ∗ p product and of the proposedContention-Adaptive
Retransmission Timeout. The simulation scenario is the same
as the one presented in Figures 1, 2, 3, 4. The impact of the
c∗p product on the RTO value is clear. The proposed algorithm
adjusts the timeout value according to the network conditions.
The algorithm randomly extends the retransmission timeout
value when the network is congested.
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Fig. 6. Contention-Adaptive Retransmission Timeout

V. EVALUATION METHODOLOGY

A. Simulation Testbed

We have implemented our evaluation plan on the ns-2
network simulator. The network topology used as a test-bed
is the typical single-bottleneck dumbbell, as shown in Figure
7. The link’s capacity (bwbottleneck) is either 1Mbps or
10Mbps. The bwsrc is 1Mbps, and the bwdst is 0.5Mbps. We
used equal number of source and sink nodes. We simulated
an heterogeneous (wired and wireless) network with ns-2 error
models which were inserted into the access links at the sink
nodes. The Bernoulli model was used to simulate link-level
errors with configurable packet error rate (PER). The number
of flows occasionally changes for the different scenarios. The
simulation time was fixed at 500 seconds, a time-period that
seemed appropriate to allow all protocols to demonstrate their
potential.

Fig. 7. Simulation Topology

In order to validate our statements, we selected and eval-
uated the TCP Reno protocol with both DropTail and RED
queuing algorithms. Note that theContention-Adaptive Re-
transmission Timeout is implemented in TCP-Reno. The buffer
size is 50 packets, unless it is explicitly stated otherwiseand



the min andmax thresholds for the RED algorithm are set to
15 and 45 respectively [4].

VI. SIMULATION RESULTS

We present a set of experiments that show the potential of
CA-RTO in high-contention environments. We also show that
the retransmission timeout value is not affected in case of low
contention. In other words, the proposed algorithm is being
activated only when it should be. In Figures 8, 9, 10, 11 the
bw bottleneck is 1Mbps and the buffer size is set to 50 packets.
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Fig. 8. Fairness
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Fig. 10. Goodput (y axis measures Bps)
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Fig. 11. Retransmitted Packets (y axis measures packets)

The results in Figures 8, 9, 10, 11 clearly show that a
contention-adaptive retransmission timeout achieves fairer and
more efficient link scheduling. More precisely, in Figure 8
we see that CA-RTO can achieve better fairness up to 0,2
Index Points (70 flows). Figure 9 shows that CA-RTO does
not achieve major Throughput performance gains, due to the
high number of retransmissions (Figure 11). We can observe
that TCP-Reno makes approximately 4000 more (unnecessary)
retransmissions (compared to CA-RTO), something that leads
to increased Throughput performance due to large amount of
overhead. However, this performance of standard TCP is not
invested in Goodput.

The results are even more encouraging when contention
further increases. In the following scenario (Figures 12, 13)
the bwbottleneck is 10Mbps and the buffer size is set to 100
packets. Figure 12, shows that CA-RTO’s Fairness Index is
always at least 0,15 points higher than the traditional TCP-
Reno. CA-RTO has approximately 25% less retransmissions
than TCP-Reno (Figure 13). That is, in this case about 4500
more retransmitted packets.
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Fig. 12. Fairness

Flows
110 120 130 140 150 160 170 180 190 200

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

reno caRTO

Fig. 13. Retransmitted Packets (y axis measures packets)

Next, we show that the proposed algorithm does not affect
the timeout calculation when congestion events occur sparcely.
The backbone link (bwbottleneck) is 100Mbps. TCP senders
grow their windows, since there is enough fair-share. In this
case, factorc gets a very low value and consequently the CA-
RTO algorithm avoids the timeout extension. Figure 14 shows
that the difference in Goodput approches 0, in this case.

In Figure 15 the bwbottleneck is 100Mbps, we use the
RED algorithm and deploy a graduated contention decrease.
All flows enter the system within the first two seconds. For
the rest 498 seconds there is graduated contention decrease,
starting from 10 flows and repeating the experiment for 20,
30, up to 70 flows. At each stage we reduce the number of
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Fig. 14. Goodput (y axis measures Bps)

flows to half everydecrease step, wheredecrease step, is the
step needed in order for the last flow to exit at the 500th

second. Although contention decreases, RED forces packet
drops, resulting in continuous timeout events. However, not
all timeouts happen because of packet drops. By randomly
extending the timeout value, CA-RTO avoids unnecessary
timeouts leading to approximately 1700 less retransmitted
packets (Figure 15, 60 flows).
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Fig. 15. Retransmitted Packets, RED

Finally, we simulate a wireless environment in order to
monitor how CA-RTO responds in case of random errors. The
bw bottleneck is 1Mbps the buffer holds up to 150 packets
and we inject 10% Packet Error Rate. The interesting point
here is that although there is a rather high level of contention,
the difference in the fairness index is not outstanding (as it
was previously).
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Fig. 16. Fairness

In this scenario, the performance difference between the
two protocols is reduced (compared to previous results). As
shown in [11], random link errors can break synchronization
themselves, leading in this way to fairer link utilization.
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Fig. 17. Goodput (y axis measures Bps)
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Fig. 18. Retransmitted Packets (y axis measures packets)

VII. C ONCLUSIONS

We measure Goodput, Throughput, Fairness and Re-
transmitted Packets with a new algorithm, the CA-RTO
(Contention-Adaptive RTO). The algorithm proved to have a
twofold impact: it satisfied the major goal to improve fairness
and achieved a somewhat unexpected result: it improved
goodput as well. Although unexpected (i.e. originally was not
a design goal) the result is also well-justified. Timeout random-
ization caused less unsuccessful retransmission attempts, thus
allowing for less overhead and hence better link utilization.
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