CA-RTO:
A Contention-Adaptive Retransmission Timeout

|. Psaras, V. Tsaoussidis, L. Mamatas
Dept. of Electrical and Computer Engineering
Demokritos University of Thrace
Xanthi, Greece
Email: {ipsaras, vtsaousi, emamat@ee.duth.gr

Abstract—We show that TCP timers, based solely on RTT timeout shrinks, at least for those flows which experiense le
estimations and measurements, cannot capture with precish delays in the queue. Specifically, flows with large windows,
the level of flow contention. We nofice that increased contéion 5 ¢ommon situation when flow contention is low, do capture
may stabilize RTT variation, minimize the deviation and, inturn, twork del ith ision: last kets of th ind
shorten the timeout. We show that this behavior is undesirale ng wor _eay with precision: las pa_c e.s 0 : € same wmdo
indeed, since it leads to unfair resource utilization. We popose Will experience more delays. The situation differs whenheac

CA-RTO, an algorithm that incorporates a contention parameer flow is represented with a single-packet window, for example

and a randomization technique into the Retransmission Timeut. The problem of scheduling as it is associated with timeout

We report significant improvement in faimess, great reducion ¢ 506ther dimension as well. When flows are synchronized

of retransmitted packets and slight improvements in appliation . .) . '

goodput. or becoming synchronized due to a congestion event, the
timeout is adjusted accordingly for all participating flows

l. INTRODUCTION The existing policy to exclude the retransmitted (dropped)

Statistical Multiplexing, the main technology of packet-ne packets from measurements leaves little space for timeout
works, allows for bandwidth sharing on demand and canceldferentiation among the participating flows, thus leagin
the possibility for flow starvation. However, the level ando possibly synchronized retransmissions. Thereforendas
type of multiplexing is mainly determined by the transnmossi cannot be guaranteed since flows are not randomly transinitte
policies of the flow senders - that is, the sum of all sendéut instead, are possibly partitioned into two or more gsoup
transmissions determines current demand. Since trarismisghe ones that utilize the link and the others that attempt to
adjustments are based on detected network conditions, eeter at times when the link is utilized.
source demand fluctuates in accord. Therefore, the agplicat Flow synchronization does not appear only when flows enter
rates are not really reflected in the multiplexer but rathéie system simoultaneously. In addition, since congestion
this is determined by the transmission policy of the tramspa single and common point in time for all flows, it may
protocol. Fair multiplexing therefore is clearly becomiag cause synchronization by itself. The situation is simitacars
issue of how fairly demand is currently reflected by thqueuing on a red sign and restarting together. The degree of
transport protocol current windows or rates, and in turw hosynchronization here actually depends on the diversitjhef t
accurate and simultaneous is the network-condition detecttimeout, the level of contention and the capacity and afhori
by the participating flows. of the buffer; these factors determine how many flows will

When the resource demand exceeds the supply, thathaye one or more of their packets dropped.
when flow contention grows, multiplexing exhibits diffeten We depart from exploiting the aforementioned situatiornwit
characteristics. For example, since packets are droppedodusimulations. We confirm that the timeout as a scheduler may be
high demand and limited supply, current demand, and coproblematic indeed. Next, we attempt to introduce rand@sne
sequently the strategy for multiplexing is determined ryaininto the timeout algorithm in order to solve the aforememgio
by the timeout algorithm. That is, the timeout becomes thgnchronization problem and the associated fair resouice u
scheduler for the link. lization problem. We achieve that by integrating a contemti

Although the design of the timeout algorithm has beesdaptive parameter into the timeout. Finally, we confirm
studied extensively in the past [5], [8], [9], [13], its as&ion that different levels of contention call for distinct timeo
with link scheduling has not. In addition, its schedulingidjustments. As a side-effect, we realize that link goodpay
properties have not really been evaluated adequatelgddst also be improved. Driven by encouraging results, we analyze
much attention has been paid on its ability to reflect netwotke behavior of the new algorithm in detail We show that
delay accurately, allowing for speedy retransmission whencontention-adaptive timeout (i) may improve significantl
conditions permit and avoiding double submission due tairness (ii) has the potential to break synchronizatioa thu

early expiration. However, network delay as it is capturgd himeout and (iii) reduce amount of sender retransmissiah an
measuring the RTT alone, cannot really capture network con-

tention. Hence, it is possible for contention to grow, witiie Lgiven the space limitations

therefore it may also improve system goodput. TCP’s transmission rules, however, dominate the transmis-

We used the following structure: In section Il we summariz&on policy only when congestion is not really catastrophic
the related work. In section Il we present the timeout algavhen demand (contention) exceeds the supply significantly,
rithm currently deployed in TCP; we also discuss the proklerthe timeout undertakes a more dominant role.
associated with the lack of contention-based adjustm#&vés. The timer is adaptive to varying delay: it is calculated
propose our solution in section IV; discuss our evaluatievery RTT after smoothing out the measured samples, and
methodology in section V; and present our results and theieighting recent history. Therefore, the timeout functamna
justification in section VI. We draw the main conclusions iprojection of expected network delay. More precisely, give
section VII. a sample measuremefnf and a history of average RTA,

the distance of the average is measured:
1. RELATED WORK

Many researchers have reported TCP’s timer problems.Diff = M — A,
Lixia Zhang in [13] states that timers have intrinsic lintibes
in offering optimal performance: any timer is a "guess-isethe average is updated
scheduler. She concludes that high performance TCP should
be based on external notifications upon forthcoming faslure A = A+ gDiff,
and that a timer should be used only as an auxiliary indinatio
More recently, researchers focused on the fact that theotimeand the deviation is calculated as:
algorithm is RTT-dependend and study the RTT variations in
order to optimize the timeout value. Most of the research tha Dev = Dev + d(|Dif f| — Dev).
takes place in that field targets the avoidanceSpéirious
Timeouts. For example, if an RTT measurement increasédnally, the Retransmission Timeout is adjusted to
that much to exceed the value of the retransmission timeout
that had been determined prior to packet transmission, theRTO = A + 4D,
timeout expires although data is still in flight. In this cexi,
Ludwig and Katz introduce the Eifel Algorithm [8] in orderwhere A is an estimator of the average RTT (smoothed
to get aware of spurious timeouts. The Eifel algorithm us&IT) and D is the smoothed mean deviatioif f is the
the timestamp options defined in [6]. Every retransmittedifference between the measured and the estimated RTT.
packet includes a unique timestamp. The sender compases Héictor g is set to 0.125 andl is set to 0.25 [9]. A higher
timestamp with the one that the corresponding ACK carrfes.Value ford causes RTO to respond faster to RTT variations.
the ACK'’s timestamp is smaller, then this obviously indésat The above equations do not allow for differentiation among
a spurious timeout; the Eifel algorithm restores the cotiaec different flows that experience the same queuing delay. For
state saved before the timeout instead of backing off. example, flows that enter a system simultaneously will be

Another approach in the same context is presented in [2fdered in the queue and possibly follow the same order
In the event of a timeout the sender retransmits and measufggughout the upcoming transmission rounds. Furthermore
the RTT until the corresponding ACK arrives. If this RTT iglows that enter the system when buffer is fully utilized, may
smaller than the minimum RTT measured so far, then thso be excluded in the next rounds as well, for the same rea-
indicates that the ACK was already in flight when the send&en. Current timeout scheduling becomes very determgnisti
retransmitted (spurious timeout). allowing only a particular set of participating flows to izd

In [7] the authors propose two ways to improve TCHhe link.
throughput in wireless networks. The first way is to select Clearly, the existing RTO formula depends on twerage
a timeout value higher than the standard one. In this wégmoothed) RTT and on thesmoothed mean deviation alone.
timeout events are reduced. The second way is the technidi@vever, based on simulations, we claim that contention
of selective repeat (SR) and go-back-N (GBN) policies updicrease cancels the deviation gradually, and in turn,ceslu

timeout expirations. the RTO value falsely. Therefore, although deviation isied
an optimizing addition to RTO when contention is low, it
I1l. TIMEOUT SCHEDULING REQUIRES exhibits a contradicting role when contention grows. For
CONTENTION-BASED ADJUSTMENTS example, when the network is not congested, transmission

TCP [10], transmission policy is confined by the rules ofindows grow, resulting in large RTT variation within the
congestion control [1], [12], which is based, in principleS@me window. Suppose a congestion window of 50 packets.
on the Additive Increase-Multiplicative Decrease (AIMDB][The 1°* packet of the window occupies th* position in
algorithn?. Due to TCP's overriding transmission rules, applithe router’s buffer, while th&0"" packet occupies tha0""

cation rates (demand) may be reformed at the transport lap@gition. The queing delay will obviously have impact on
and consequently at the link layer as well. oth the RTT and themoothed mean deviation. Now suppose

that 100 flows compete for 1Mbps backbone link. Under
2AIMD is coupled in TCP with several other optimizing mechsms such conditions, TCP senders operate with small windows,

leading to minimal deviation within the same window. Given N eviaion
a possible synchronization, deviation is also minimal teet

the different rounds; not only between different packets
within the same window. Suppose a TCP sender sends a
window of 5 packets. Arriving at the router these packets
will either get dropped or occupy the last positions in the

Timeout Variation

router’s buffer. In this case, the RTT will not vary, but ieat! \H ' m ‘ ‘ M

it will continuously get the larger value measured for this W

connectioA. Since there is no RTT variation, thsenoothed

mean deviation approaches 0. The RTO formula gives: S - T e
RTO ~ A, since4D — 0. Fig. 3. Mean Deviation RT'O = A + 4D)

The above analysis, is confirmed by the next set of simula-
tions. We simulate a contention decrease scenario. lijtial
until the 250" second, we simulate 1 flow over a 1Mbps
backbone link (dumbbell network topology). After tRg0t"
second 99 more flows enter the system.

Retransmission Timeout

sion Timeout

Round-Trip Time

CR R e m S s S
Fig. 4. Retransmission Timeout

only on the Smoothed Average RTT (Figure 2). Based on the

RTT

omarrine ° w - above analysis for the timeout algorithm, we conclude that
it does not behave in the desired manner when it becomes
Fig. 1. RTT Measurement the sole link scheduler. Although there isn't link and buffe

underutilization, due to the high contention, the abougagibn
results in degraded system fairness, unnecessary timgpiat e

Smoothed RTT rations and bad link distribution among the competing flows.
We validate the above statements by extensive simulatioths a
present the results in Section VI.

/WMWMWWW ,V IV. CA-RTO: THE PROPOSEDALGORITHM

A. The Design Goals

(We propose an enhancement to the timeout formula, which
W makes the timeoutontention dependent. The purpose of
the CA-RTO algorithm (Contention-Adaptive Retransmissio

Timeout) is twofold:

1) To incorporate contention. The major design goal of
the proposed algorithm is tameasure contention and
reflect it into the timeout by increasing its value in
proportion.

2) To introduce retransmission randomnessThe second
design goal is to randomly adjust/extend the timeout

‘Smothed RTT

w0 s w0
Simulation Time (s)

Fig. 2. Smoothed RTTRTO = A + 4D)

Figure 1 captures the RTT variation of the first flow we
plotted however, similar graphs for the rest of the flows. We
observe that RTT variation is canceled in case of high con- _ _) .
tention. Incoming packets (at the bottleneck buffer) eithet value in case of high contention, in order tweak
dropped or occupy the last position in the queue. Cancelatio ~ POSSible synchronization.
of the RTT variation leads tolean Deviation that approaches Ve measure contention by means of the congestion window.

0 (Figure 3). Thus, the RTO (Figure 4) in this case depenli¥pre precisely, we employ the following idea:
During communication, the sender records thex congestion

Sthe larger value corresponds to the last position in theersubuffer window (max_cwnd_) prior to congestion. When contention

increases, the sender may experience congestion with much - @
smaller window. That is, it can detect contention, approxi-
mately, by measuring the difference between the current win
dow and the max recorded window. The larger the difference,
the higher contention is. We implement this as follows:

We introduce a factoe, where

. i

Simuton T

We measure contention difference as:

cont_dif f- = mazx_cwnd_ — cwnd- Revansmission —

In order to break synchronization, we introduce factor
p to adjust the temporal properties of retransmission as
follows: When contention is increased the timeout which WMJ H.
triggers retransmission is randomly selected from a wider ;=MKV‘M‘“v‘/\‘ﬂ/‘z\f
range of distinct timeslots. When contention is low, theetim I | Al
scale adjusts back to a smaller range of distinct slots. / UMWMM | MM‘M
We achieve this by using the spa¢@, cont_dif f_) for TTE R R R % e,
calculatingp:

|

Il

Fig. 6. Contention-Adaptive Retransmission Timeout

p = Random(0, cont_dif f_)

wherecont_dif f- has been adjusted earlier to correspond to V. EVALUATION METHODOLOGY
the timeout scale as: A. Smulation Testbed
We have implemented our evaluation plan on the ns-2
contdif f-= cont_dif f-*100% network simulator. The network topology used as a test-bed
is the typical single-bottleneck dumbbell, as shown in Fégu
Finally, the RTO is calculated as: 7. The link's capacity (bubottleneck) is either 1Mbps or
10Mbps. The bwsrc is 1Mbps, and the hwist is 0.5Mbps. We
RTO=A+4D+cx*p used equal number of source and sink nodes. We simulated

an heterogeneous (wired and wireless) network with ns& err

models which were inserted into the access links at the sink

nodes. The Bernoulli model was used to simulate link-level

B. CA-RTO Response To Contention errors with configurable packet error rate (PER). The number
of flows occasionally changes for the different scenaridge T

simulation time was fixed at 500 seconds, a time-period that

In case of static network conditiong,gets a small value ' i
seemed appropriate to allow all protocols to demonstrate th

and the product*p depends mostly on thefactor, which has .
minimal impact when contention is low. In case of dynamiEOtent'al'
network conditions (e.g. Contention Increagedets a larger
value. That is, in case of Contention Increase factgrows
due to the large denominator, while facipgrows as well due

to extendedont_dif f_. As a resulte x p product gets a large
value. Thus, each flow randomly chooses a timeout value from
the range of RTO, RTO + ¢ p)

The following Figures 5, 6 monitor both the behavior of
the ¢ x p product and of the propose@ontention-Adaptive Fig. 7. Simulation Topology
Retransmission Timeout. The simulation scenario is the same
as the one presented in Figures 1, 2, 3, 4. The impact of thdn order to validate our statements, we selected and eval-
cxp product on the RTO value is clear. The proposed algorithnated the TCP Reno protocol with both DropTail and RED
adjusts the timeout value according to the network conafitio queuing algorithms. Note that th€ontention-Adaptive Re-
The algorithm randomly extends the retransmission timeamansmission Timeout is implemented in TCP-Reno. The buffer
value when the network is congested. size is 50 packets, unless it is explicitly stated othervaisd

the min and max thresholds for the RED algorithm are set to The results in Figures 8, 9, 10, 11 clearly show that a

15 and 45 respectively [4]. contention-adaptive retransmission timeout achievesrfaind
more efficient link scheduling. More precisely, in Figure 8
VI. SIMULATION RESULTS we see that CA-RTO can achieve better fairness up to 0,2

IBPleX Points (70 flows). Figure 9 shows that CA-RTO does
t achieve major Throughput performance gains, due to the

igh number of retransmissions (Figure 11). We can observe
at TCP-Reno makes approximately 4000 more (unnecessary)

We present a set of experiments that show the potential
CA-RTO in high-contention environments. We also show th
the retransmission timeout value is not affected in casewf |

contention. In other words, the proposed algorithm is beirl o dto CA-RTO hing thatslead
activated only when it should be. In Figures 8, 9, 10, 11 gf&transmissions (compared to CA-), something thatslea

bw_bottleneck is 1Mbps and the buffer size is set to 50 packegg.increased Throughp_ut performance due to large amognt of
overhead. However, this performance of standard TCP is not

invested in Goodput.
The results are even more encouraging when contention
further increases. In the following scenario (Figures 12) 1
the bwbottleneck is 10Mbps and the buffer size is set to 100
packets. Figure 12, shows that CA-RTO’s Fairness Index is
always at least 0,15 points higher than the traditional TCP-
Reno. CA-RTO has approximately 25% less retransmissions
Test 7T T than TCP-Reno (Figure 13). That is, in this case about 4500
more retransmitted packets.

Fig. 8. Fairness

uuuuu

aaaaa

50
40000 Flows

Fig. 12. Fairness

11111
nnnnn
aaaaa

uuuuu
«««««

oo Fig. 13. Retransmitted Packets (y axis measures packets)

Next, we show that the proposed algorithm does not affect
the timeout calculation when congestion events occur sparc
The backbone link (bvbottleneck) is 100Mbps. TCP senders
grow their windows, since there is enough fair-share. Is thi
- case, factor gets a very low value and consequently the CA-

RTO algorithm avoids the timeout extension. Figure 14 shows

that the difference in Goodput approches 0, in this case.
In Figure 15 the bwbottleneck is 100Mbps, we use the

RED algorithm and deploy a graduated contention decrease.

- N All flows enter the system within the first two seconds. For
" the rest 498 seconds there is graduated contention decrease

starting from 10 flows and repeating the experiment for 20,

Fig. 11. Retransmitted Packets (y axis measures packets) 30, up to 70 flows. At each stage we reduce the number of

Fig. 10. Goodput (y axis measures Bps)

;;;;;;

zzzzz

16406

nnnnn

0
Flows Flows

Fig. 14. Goodput (y axis measures Bps) Fig. 17. Goodput (y axis measures Bps)

uuuuu

flows to half everydecrease step, wheredecrease step, is the
step needed in order for the last flow to exit at the "800
second. Although contention decreases, RED forces packet
drops, resulting in continuous timeout events. Howevet, no
all timeouts happen because of packet drops. By randomly .

extending the timeout value, CA-RTO avoids unnecessary R
timeouts leading to approximately 1700 less retransmitted
packets (Figure 15, 60 flows). Fig. 18. Retransmitted Packets (y axis measures packets)

8000 -

VII. CONCLUSIONS

We measure Goodput, Throughput, Fairness and Re-
transmitted Packets with a new algorithm, the CA-RTO
(Contention-Adaptive RTO). The algorithm proved to have a
- twofold impact: it satisfied the major goal to improve faisse

. i and achieved a somewhat unexpected result: it improved

. goodput as well. Although unexpected (i.e. originally wasg n
a design goal) the result is also well-justified. Timeouti@am-
Fig. 15. Retransmitted Packets, RED ization caused less unsuccessful retransmission attethpts

allowing for less overhead and hence better link utilizatio

Finally, we simulate a wireless environment in order to ACKNOWLEDGMENT

monitor how CA-RTO responds in case of random errors. TheThis work was funded by the European Commission and
bw_bottleneck is 1Mbps the buffer holds up to 150 packeEﬁe project PENED 2003 ofyGSRT P

and we inject 10% Packet Error Rate. The interesting poin
here is that although there is a rather high level of comenti REFERENCES

the difference in the fairness index is not outstanding (as[i] M. Allman, V. Paxson, and W, Stevens (April 1999) "TCP Gestion

was previously). Control’, RFC2581.
[2] M. Allman, V.Paxson (September 1999) " On Estimating EoeEnd
Network Path Properties”, ACM SIGCOMM 1999.
g [3] D.-M. Chiu and R. Jain (1989) "Analysis of the Increasel ddecrease
o0 Algorithms for Congestion Avoidance in Computer NetworkS8dmputer
Networks and ISDN Systems, 17(1):1-14, 1989.
os [4] S. Floyd, and V. Jacobson (August 1993) "Random Early eDitn
os gateways for Congestion Avoidance”, IEEE/ACM Transactiam Net-
o working, 1(4):397-413.
[5] A. Gurtov, R. Ludwig "Responding to Spurious TimeoutsTi@P”, IEEE
o Infocom 2003.
’ A [6] V. Jacobson, R. Braden, D. Borman (May 1992), "TCP Extams for
fows High Performance, RFC 1323.
[7] Kin K. Leung, T. Klein, C. Mooney and M. Haner "Methods tomprove
) . TCP Throughput in Wireless Networks With High Delay Varlapi
Fig. 16. Fairness [8] R. Ludwig and H. Katz (January 2000) "The Eifel Algorithriviaking
TCP Robust Against Spurious Retransmissions” ACM CompQ@em-
munication Review.
In this scenario, the performance difference between tte¢ V. Paxson, M. Allman (November 2000) "Computing TCP'stR@smis-

two protocols is reduced (compared to previous results). As_sion Timer’, RFC 2988.

h in 11 d link b K h . .C{lo] J. Postel (September 1981) "Transmission Controldealt, RFC 793.
shown n []’ random link errors can break synchronizati @1] |. Psaras and V. Tsaoussidis "Good and Bad Symptoms ¢&& T@er

themselves, leading in this way to fairer link utilization. Wireless Links” Submitted.

[12] W. Stevens (January 1997) "TCP Slow Start, Congestionideance,
Fast Retransmit, and Fast Recovery Algorithms”, RFC 2001.
[13] Lixia Zhang "Why TCP Timers Don’'t Work Well”

