
Approaches to Congestion Control in packet

networks

L. Mamatas and V. Tsaoussidis a

aDept. of Electrical & Computer Engineering

Demokritos University

Xanthi, Greece

{emamatas, vtsaousi}@ee.duth.gr

Chi Zhang e

eSchool of Computer Science

Florida International University

czhang@cs.fiu.edu

Abstract

We discuss congestion control algorithms, using network awareness as a criterion
to categorize different approaches. The first category (”the box is black”) consists of
a group of algorithms that consider the network as black box, assuming no knowl-
edge of its state, other than the binary feedback upon congestion. The second cat-
egory (”the box is grey”) groups approaches that use measurements to estimate
available bandwidth, level of contention or even the temporary characteristics of
congestion. Due to the possibility of wrong estimations and measurements, the net-
work is considered a grey box. The third category (”the box is green”) contains the
bimodal congestion control, which calculates explicitly the fair-share, as well as the
network-assisted control, where the network communicates its state to the transport
layer; the box now is becoming green.

We go beyond a description of the different approaches to discuss the tradeoffs of
network parameters, the accuracy of congestion control models and the impact of
network and application heterogeneity on congestion itself.

Key words: Congestion Control, TCP, Performance, TCP-Friendly



1 Introduction

A network is considered congested when too many packets try to access the
same router’s buffer, resulting in an amount of packets being dropped. In
this state, the load exceeds the network capacity. During congestion, actions
need to be taken by both the transmission protocols and the network routers
in order to avoid a congestive collapse and furthermore to ensure network
stability, throughput efficiency and fair resource allocation to network users.
Indeed, during a collapse, only a fraction of the existing bandwidth is utilized
by traffic that finally reaches the receiver.

Congestion is considered, in general, as a catastrophic event. However, conges-
tion itself is associated with different properties, depending on the characteris-
tics of the underlying networks, the mechanisms of the transmission protocols,
the traffic characteristics of the contenting flows, the level of flow contention,
and the functionality of network routers. Therefore, the impact of congestion
may be temporary and easily controllable; or it may be catastrophic. Con-
sider, for example, a high speed network which hosts a number of competing
flows that increases or decreases. The window of each flow also increases and
decreases. However, unlike the traditional networks, the time it takes for the
flows to exploit the available bandwidth is certainly longer; the amount of
loss upon congestion is certainly higher; and the duration of congestion itself
throughout the overall communication time may be relatively smaller.

Since the nature of congestion itself cannot be prescribed or even accurately
defined in general, congestion control becomes a complex task. Furthermore,
complexity increases due to the multipurpose-task of congestion control al-
gorithms. They need to control congestion and avoid collapses, maximize
bandwidth utilization, guarantee network stability, and ensure fair resource
allocation.

Considering the network as a black box that only provides a binary feedback to
network flows upon congestion, shifts all the burden to end users and calls for
solutions that are more generic and perhaps less responsive. That is, regard-
less of the network particularity or the network current state, the algorithm
will react similarly in all cases. This is not strange. The goal of each sender is
to operate independently but nevertheless to adjust its rate (or window) in a
manner that the total bandwidth of the network will be expended fairly and
effectively. From its algorithmic perspective the above problem is challenging
because the distributed entities (sources) do not have any prior or present
knowledge of the other entities’ states; nor do they know the system’s capac-
ity and the number of competitors. Hence, the goal of fairness and efficiency
appears initially difficult to attain. However, if the system is entitled to a
prescribed behavior and the entities agree on common transmission tactics,

2



convergence 1 to fairness becomes feasible [32]. AIMD, the traditional conges-
tion control algorithm of the Internet, operates within that scope: it increases
additively the rate of the senders (by a value α) until the system reaches con-
gestion. Upon congestion, all senders decrease their rate multiplicatively using
a decrease ratio β.

On the other hand, one can measure network conditions, estimate the avail-
able bandwidth or even flow contention, and obtain some knowledge about the
network. However, measurements are taken at time-instances which may not
necessarily represent current network dynamics, or may not correspond to the
overall conditions; consequently, protocols may not manage to accurately esti-
mate the load and predict its duration, resulting in either wrong estimations or
wrong recovery strategies. Furthermore, some generic questions cannot really
be addressed with certainty: How frequently should we measure the network?
How far can we trust our measurements? How responsive should the recovery
strategy be? How shall we associate the instantaneous measurements of con-
gestion with the network load over some sufficiently long but also sufficiently
recent time period? That said, the network may not be a black box but it is
certainly not better than grey, involving occasionally a considerable risk.

One can go beyond the blind algorithms or the high risk of estimations and
actually ask the network 2 for help. Of course, precision comes at some cost.
Besides the practical difficulty of layer collaboration and the issue of convinc-
ing people to add functionality (and invest money) to their network, the issue
of recovery strategies remains. That is, even when the network is really a green
box (which practically is very difficult), changes may be so rapid and unpre-
dictable that our costly and painful effort to obtain some information may go
wasted.

Beyond our attempt to provide a categorized description of different conges-
tion control strategies, we also attempt to introduce a manner to characterize
them comparatively. Hence, we discuss an evaluation framework, which we use
to highlight the advantages of different approaches, to exploit the way they
handle the tradeoffs of network parameters, and to understand their impact
on the network itself or the network applications. In order for us to explore
the complexity of the issue, we discuss the nature of congestion itself along
with other open issues. Finally, we discuss the open issues that arise mainly
from the diversity of applications, the heterogeneity of internetworks, and the
interrelation of network parameters.

1 Convergence to fairness should be perceived in this paper as the procedure which
enables different flows that consume different amount of resources each, to balance
their resource usage.
2 An approach to calculate the fair-share without any network support was pub-
lished recently in [3]

3



More specifically, we introduce the control models for congestion and define
congestion-related terms, goals and metrics in section 2. In section 3 we discuss
end-to-end congestion avoidance and control algorithms that belong in the first
category, including the blind AIMD and AIMD-FC algorithms, equation-based
congestion control. In section 4 we detail measurement-based avoidance. We
present the explicit calculation of the fair-share along with network-assisted
schemes in the 5th section. Having discussed the major approaches, we high-
light in section 6 some issues which are yet to be solved.

2 Goals, Metrics and Models

In the context of our work, we define the following measurement units:

The window is a mechanism in the transport layer which limits the number
of packets put into the network and the rate describes packets per second or
the bits per second. The window or rate can be dynamically adjusted as the
total load on the system changes.

A cycle is the phase between two seriates feedbacks of 1 (indicating conges-
tion). Hence, a cycle consists of one decrease step triggered by congestion
and a number of additive increase steps. A step describes a single window
adjustment in response to a single feedback (either 0 or 1).

The system is in an equilibrium state, when resource usage of all flows in
a bottleneck is balanced. AIMD based congestion control algorithms have
guaranteed convergence to equilibrium (due to multiplicative load decrease).
In congestion avoidance algorithms this is not always guaranteed.

A non-TCP network protocol is called TCP-friendly when it yields the same
throughput as TCP and its flows are working fairly together with TCP flows.
TCP-friendly protocols are generally optimized for multimedia applications.

Goals we set in the evaluation process of a congestion avoidance/control algo-
rithm are:

• To achieve high bandwidth utilization.
• To converge to fairness faster.
• To minimize the length of oscillations.
• To maintain high responsiveness.
• To coexist fairly and be compatible with traditional widely-used (AIMD

based) protocols.

Although the sources discover their fair-share early on, the dynamics of real
systems in practice prohibit a straight-forward adjustment, but instead, they

4



Fig. 1. Synchronous control system model of m users sharing a network.

call for continuous oscillations as a means of discovering the available band-
width.

Our metrics for the system performance are as follows:

Efficiency Efficiency is the average flows throughput per step (or per RTT),
when the system is in equilibrium.

Fairness Fairness characterizes the fair distribution of resources between
flows in a shared bottleneck link. A well-known metric is [7]:

F (x) =

∑
(xi)

2

n
∑

(x2
i )

(1)

This index is bounded between 0 and 1.
Convergence speed Convergence speed describes time passed till the equi-

librium state.
Smoothness Smoothness is reflected by the magnitude of the oscillations

during multiplicative decrease. It depends on the oscillations size.
Responsiveness Responsiveness is measured by the number of steps (or

RTTs) to reach an equilibrium (i.e. to equate the windows in order to be in
a fair state).

A synchronous-feedback control system model is shown in Fig. 1. In congestion
control, the load change is the response in one occurred event. This occurred
event is a binary feedback. The synchronous model is characterized by a syn-
chronous generation of responses, in congruity with [7]. The system response
is 1 when bandwidth is available and 0 when bandwidth is exhausted. The
instruction to the system entities (sources) is to increase or decrease their
data rate, respectively. Note that in real networks, the responsive behavior of
the system is not administered by any centralized authority with additional
knowledge of the network dynamics-it is simply a packet drop due to conges-
tion that naturally happens when bandwidth is exceeded.

The system has m users (flows) and the instantaneous throughput for the
ith flow is Wi. The system’s goal is to operate at an optimal point Xgoal.

5



Note that this point is not necessarily bandwidth B, since throughput might
decrease before we reach B. We assume that responses are synchronous and
consequently the duration of RTTs is common for all flows. Hence, the sources
respond uniformly by decreasing their windows in response to a 0 signal; they
increase their windows by one in response to a signal of 1 (in case of traditional
AIMD).

The limitations of the system are derived from the dynamics of packet net-
works:

• Bandwidth B is limited.
• Each flow is not aware of the throughput rates (window sizes) of other flows.
• Each flow is not aware of the number of competitors in the channel.
• No flow is aware of the size of bandwidth B.

Although the synchronous model is widely adopted, it is associated with a
number of assumptions and/or simplifications, which may not really hold in
real networks. We note that some drawbacks of the simplified synchronous
model are somewhat canceled experimentally, due to the wide use of long ftp
flows. Gorinsky in [19] shows that the choice of the model has a direct impact
on the results and extends further the model of Chiu and Jain to include dif-
ferent RTTs and consequently asynchronous feedback. MIMD (Multiplicative
Increase Multiplicative Decrease), which is not stable in Chiu-Jain model,
does converge to fair-states under the more realistic assumption of propor-
tional negative feedback. A new Gorinsky’s approach is [18].

In a very recent work [33] Lahanas and Tsaoussidis described an asynchronous-
feedback model, which corresponds to the diverse round-trip times (RTTs)
of competing flows within the same communication channel. In this system,
authors show that congestion epoch, which equals 3 to the RTT of a flow times
the number of additive increases, is a common knowledge among all competing
flows. Based on this knowledge they proposed a new algorithm that increases
the consumption rate proportionally to the RTT of the flow using a mechanism
which adjusts the sizes of the windows of the competing flows at the end of
each congestion epoch. Long RTT flows are relatively favored because their
window is increased faster than in traditional AIMD scheme. The system
reaches a window-based equilibrium. This mechanism, named τ -AIMD, has
an extra adjustive component τ to the additive increase formula of AIMD.

In paper [57] authors compare AIMD and MAIMD (Multiplicative additive
increase and multiplicative decrease). They show that the convergence speeds
to fair states of AIMD and MAIMD are close to each other. Furthermore,

3 This is not an exact equality because the RTT is variable [21] and increases with
the load of the system. However, the definition gives an intuition of the relation
between congestion epoch and the number of additive increases

6



MAIMD has some advantages. For example, its speed to use available network
bandwidth can be much faster than AIMD. Authors have also investigated a
more realistic asynchronous system model, where round-trip-times differ.

Additionally, many researchers are working on solutions which rely on network
congestion game theory (like [25]). The majority of papers in this category
consider congestion as a resoult of route selection. Game theory seems very
efficient in solving route selection problems. For example, flows can be modeled
as selfish players. Each flow transfers data from its own source node to its
own destination node, while perceiving appropriate individual service quality.
Each player is assigned an either fixed, or player-specific cost for each resource
that it uses, which corresponds to the amount of traffic directed through the
selected resource at that time. The objective of each player is to determine
a strategy that maximizes its own utility function. In the following we refer
to utility as a function of individual QoS paramters describing user perceived
satisfaction minus cost. A collection of (mixed in general) strategies for all the
players is called a (mixed) strategies profile. A mixed profile is said to be at
Nash equilibrium (NE), if there is no player that can alter unilaterally its own
strategy and get a positive increase in its cumulative utility. A global measure,
the global (social) optimum of the game, has been proposed for performance of
the whole network, as a function of traffic patterns that all the players adopt
(e.g., the total utility achieved by all traffic patterns). The maximum utility
over all possible profiles is called the social optimum of the game. The ratio
of the minimum utility over all profiles at NE to the social optimum of the
game is the so-called price of anarchy (PoA) of the game [29].

Traditional congestion games focus on routing decisions for fixed demands
made by the user under fixed delay-dependent utility functions. Such games
has been studied extensively in [13–15,28,36]. A more general version of the
above congestion-way game can also be considered. In particular, a dynamic
version of the above game allow the players to alter their (private) utility
functions on the resources that they are willing to use at the expense of some
amount from their own private budget. Upon congestion at some resource,
the priorities of the traffic using the specific resource at that time are used
in order to enforce individual service (eg, by dropping packets). Secondly,
the traditional decision space of flows can also be extended. Besides routing,
packet rate, labelling of packets, and the amount of budget they spend for
this pattern as part of the players’ strategies can also be used. Thus, a more
sound basis for ambient solutions for multiservice networks can be considered.
However, due to the increased model complexity these are highly challenging
to achieve. Typical questions that arise are the following:

• Construction of a NE of this dynamic congestion game.
• Determination of the price of anarchy.
• Determination of the optimal priority policies for the system design that

7



assure the minimum possible price of anarchy, given the selfish behavior of
the players.

The goal of determining/altering the rules of a game so that the PoA of
the induced game is minimized has been recently studied in the literature
of network congestion games ([45,30,16]). The most interesting approaches in
the literature are: Via Coordination Mechanisms, via alteration of the game’s
network structure, or, via Taxation.

3 The Box is Black: Blind Congestion Control

The Additive Increase Multiplicative Decrease (AIMD) algorithm is used to
implement TCP window adjustments; based on the analysis of Chiu and Jain
the algorithm achieves stability and converges to fairness in situations where
the demand (of competing flows) exceeds the channel’s bandwidth [7].

The congestion control in the traditional TCP, is based on the basic idea of
AIMD. In TCP-Tahoe and TCP-Reno the additive increase phase is adopted
exactly as in AIMD, when the protocols are in the Congestion Avoidance
phase. In case of a packet drop, instead of the multiplicative decrease a more
conservative tactic is used in TCP-Tahoe. The congestion window resets and
the protocol enters again the slow-start phase. On the other hand, in TCP-
Reno, when the sender receives 3 DACKS, a multiplicative decrease is used in
both window and slow-start threshold. In such case, the protocol remains in
the Congestion Avoidance phase. When the retransmission timeout expires,
TCP-Reno enters the slow-start phase like in TCP-Tahoe.

3.1 AIMD-FC

A recent improvement to AIMD, Additive Increase Multiplicative Decrease
with Fast Convergence (AIMD-FC) was proposed in [31]. AIMD-FC impacts
positively both efficiency and fairness. It is not based on a new algorithm,
but rather on an optimization of AIMD during the convergence procedure
that enables the algorithm to converge faster and achieve higher efficiency.
AIMD-FC increases the bandwidth utilization of AIMD from 3/4 to 5/6.

Authors, highlighted the following four observations which were the basis of
this work:

(1) During the additive increase phase, equal amount of system resources is
being allocated to the flows. This amount (’k’) is a public or common
knowledge (i.e. it is known to every flow in the system).

8



(2) AIMD affects both the initial windows and the amount of system re-
sources (k), that has been fairly allocated, during the multiplicative de-
crease phase. Note that the manipulation of the initial (and unknown)
windows is the real target for achieving fairness.

(3) The distance between the bandwidth limit (see figure x) line and the
efficiency line when the system is in equilibrium depends only on the
multiplicative decrease factor [7].

(4) Two algorithms may need the same number of cycles to converge to fair-
ness: for example, two variants of AIMD with different additive increase
rate but the same multiplicative decrease ratio. The number of steps de-
termines the relative efficiency of the algorithm to converge to fairness.

Practically, fairness is achieved in AIMD-FC by releasing (through multiplica-
tive adjustments of the windows) the (unknown to other flows) initial resources
of the flows, because during the additive increase phase the flows increase their
resource consumption uniformly. So, it is becoming apparent that the dis-
tinctive difference of AIMD and AIMD-FC is centered on the portion of the
congestion window that is affected by multiplicative decrease (this portion is
called decrease window).

Furthermore, there are some open issues related to AIMD-FC:

• The efficiency boundaries of AIMD have not yet been exploited.
• Further modifications can be made in order for AIMD-FC to favor respon-

siveness or smoothness.

The same authors improved in [31] furthermore the efficiency, smoothness and
fairness of AIMD-FC and proposed a new algorithm named AIMD-FC+.

3.2 Binomial Mechanisms

Bansal and Balakrishnan presented in [5] a new class of nonlinear congestion
control algorithms named Binomial Congestion Control Algorithms. Those al-
gorithms are called binomial because their control is based on the involvement
of two additional algebraic terms with different exponents.

While an AIMD control algorithm may be expressed as:

Increase : Wt+R ← Wt + a; a > 0 (2)

Decrease : Wt+δt ← (1− β)Wt; 0 < β < 1 (3)

authors generalized the AIMD rules in the following way:

9



Increase : Wt+R ← Wt +
a

W k
t

; a > 0 (4)

Decrease : Wt+δt ← Wt − βW l
t ; 0 < β < 1 (5)

where I refers to the increase in window as a result of the receipt of one window
of acks within a single RTT, D refers to the decrease in window upon detection
of congestion by the sender, Wt the window size at time t, R the flow’s RTT,
and a, b, k, l are constants.

For example, for k=0, l=1 we get AIMD. Authors proposed, in the (k, l)
space, two AIMD variations (which are also TCP-compatible). IIAD (with
k=1 and l=0) and SQRT (with k=1/2 and l=1/2) algorithms. The first is
called Inverse Increase Additive Decrease (IIAD) because its increase rule
is in inverse proportion to the current window. The second is called SQRT
because both its increase is inversely proportional and decrease proportional
to the square-root of the current window.

Authors in [5] concluded the following:

• A binomial algorithm is TCP-compatible if and only if k + l = 1 and l 6 1
for suitable a and b.
• Those algorithms may compete unfairly across a drop-tail gateway. Use of

a RED active queue management scheme at the bottleneck link alleviates
this unfairness problems.
• AIMD is aggressive in probing for available bandwidth for given a and b

and is the most efficient and best suited binomial algorithm for applications
that can tolerate large bandwidth adjustments.
• Due to the fact that binomial algorithms are nonlinear, for a given two flows

with initial windows x1 and x2, the smaller of the two values increases more
than the larger one. This leads to a fairer allocation of resources.
• The parameter k represents the aggressiveness of probing and the variable

l represents the conservativeness of response to congestion. So, there is a
trade-off between k and l in order for a binomial protocol to achieve a
certain amount of throughput (at some given loss rate).

3.3 SIMD

Another TCP-friendly nonlinear congestion control algorithm is SIMD [24].
SIMD is the first congestion control algorithm which utilizes history informa-
tion.

The control rules of SIMD is defined as:

10



Increase : Wt+R ← Wt + a
√

Wt −W0; a > 0 (6)

Decrease : Wt+δt ← Wt − βWt; 0 < β < 1 (7)

where w0 is the window size after the last decrease and Wt is the continuous
approximation of the window size at time t (in RTTs) elapsed since the window
started to increase. Authors show that:

w(t) = w0 + a2 t2

4
(8)

It uses multiplicative decrease like AIMD. But SIMD uses a different increase
rule from those used by AIMD and binomial algorithms. A rule which is based
on history information.

If two SIMD flows are competing, the flow with the smaller window size is
more aggressive due to the nonlinear nature of SIMD. This results in bet-
ter convergence behavior. Authors show also that SIMD converges faster than
memory-less AIMD and binomial controls. Authors evaluated in [24] the TCP-
friendliness of SIMD and showed that SIMD can maintain smoothness in
steady state.

3.4 Equation-based Congestion Control

3.4.1 GAIMD

General AIMD Congestion Control (GAIMD) is a parameterized TCP-friendly
protocol which generalizes AIMD congestion control by parameterizing the
additive increase value a and multiplicative decrease ratio b. Authors of [58]
extended the throughput equation for standard TCP, proposed in [42], to
include parameters α, β:

Ta,b(p, RTT, T0, b) =
1

RTT
√

2b(1−β)
α(1+β)

p + T0min(1, 3
√

(1−β2)b
2α

p)p(1 + 32p2)
(9)

where p is the loss rate; T0 is the retransmission timeout value; b is the num-
ber of packets acknowledged by each ACK. The overall throughput of TCP-
Friendly (a, b) protocols is bounded by the average throughput of standard

11



TCP (a=1, b=0.5), which means that equation (11), which is derived from
(10) (see [58]) could provide a rough guide to achieve friendliness.

Ta,b(p, RTT, T0, b) = T1,0.5(p, RTT, T0, b) (10)

Authors of [58] derive from (1) and (2) a simple relationship for a and b:

a =
4(1− b2)

3
(11)

Based on experiments, they proposed a b=7/8 as the appropriate value for
the reduced the window (i.e. Less rapidly than TCP does). For b=7/8, (3)
gives an increase value a=0.31.

3.4.2 TFRC

TFRC is also a measurement-based protocol and will be discussed in section
4.

3.4.3 RAP

Rate Adaptation Protocol (RAP) [48] is a rate-based transport protocol friendly
to TCP. It employs additive increase and multiplicative decrease algorithm. It
decouples network congestion control from application level reliability. How-
ever, smoothness is not a design criterion for RAP, compared to TFRC.

3.4.4 Ideally Scalable Congestion Control (ISCC)

Another rate-based congestion control is Ideally Scalable Congestion Control
(ISCC) in [35]. ISCC method is based on the idea of ”Ideal Scalability”. A
scheme is defined to have ideal scalability, if Sn is constant for all flows. Where
parameter Sn specifies how fast packet loss increases when more flows share
a common link and directly relates to the scheme’s ability to support a large
number of flows.

12



4 The Box is Grey: Measurement-based Congestion Control

Standard TCP relies on packet losses as a congestion indication, or a signal
from overloaded links. However, packet loss is not a sufficient indication of
congestion, in its own right, for a number of reasons:

(1) Packet loss can be caused by random bit corruption when bandwidth is
still available.

(2) Acknowledgement-based loss detection at the sender side can be affected
by the cross-traffic on the reverse path.

(3) Packet loss, as a binary feedback, cannot indicate the level of contention
before the occurrence of congestion.

Therefore, an efficient window adjustment tactic should adapt to various net-
work conditions, which cannot be signaled simply by packet drops. Several
measurement-based transport protocols are based on more precise informa-
tion on network conditions.

4.1 TCP-VEGAS

A well-designed, measurement-based congestion avoidance mechanism is TCP
Vegas [6]. Vegas defines BaseRTT to be the minimum of all measured RTTs,
and ExpectedRate to be the ratio of the congestion window to BaseRTT.
The sender measures the ActualRate based on the sample RTTs. If the dif-
ference between the ExpectedRate and ActualRate is below a lower bound,
the congestion window increases linearly during the next RTT; if the differ-
ence exceeds an upper bound, TCP Vegas decreases the congestion window
linearly during the next RTT. According to [6], Vegas achieves better trans-
mission rates than Reno and Tahoe. However, [20] shows that Vegas can not
guarantee fairness. Plus, cannot distinguish nature of error. From the research
perspective of the present work it is important to consider that the authors of
Vegas demonstrated effectively that measurement-based window adjustment
is a viable mechanism.

4.2 TCP-REAL

TCP-Real [59,55] employs a receiver-oriented and measurement-based con-
gestion control mechanism that significantly improves TCP performance over
heterogeneous (wired/wireless) networks and over asymmetric paths. TCP-
Real goes beyond the limitation of ack-based binary feedback. It estimates

13



the level of contention and distinguishes the reason of packet losses. TCP-
Real relies on:

• Receiver-oriented congestion detection that abrogates the impact of false
assessments at the sender due to lost or delayed acknowledgments on a lossy
reverse path. The receiver measures the network condition and attaches the
results to the ACKs sent back to the sender.
• Measurements based on wave patterns that distinguish the nature of a

packet loss (due to congestion or transient wireless errors

A wave [54] consists of a number of fixed-sized data segments sent back-to-
back, matching the inherent characteristic of TCP to send packets back-to-
back. The receiver computes the data-receiving rate of a wave, which reflects
the level of contention at the bottleneck link. If a packet drop is due to a
wireless error, the data-receiving rate shall not be affected by the gap of miss-
ing packets, since the wave size is published to the receiver. The congestion
window is multiplicatively reduced only when a drop is associated with con-
gestion.

4.3 TCP-WESTWOOD

In TCP-Westwood [38] (TCPW), the sender continuously measures the rate of
the connection by monitoring the rate of returning ACKs. Upon three dupli-
cate acknowledgments or timeout, the slow start threshold and the congestion
window are set in consistence with the effective bandwidth used at the time
the packet loss is experienced. No specific mechanism exists to support error
classification and the corresponding recovery tactics for wired/wireless net-
works, albeit the proposed mechanism appears to be effective over symmetric
wireless links due to its efficient congestion control. An optimized version of
TCP-Westwood is TCP-Westwood+ [39].

4.4 TFRC

TFRC is a TCP-Friendly, rate-based congestion control protocol, which in-
tends to compete fairly for bandwidth with TCP flows. The sending data rate
is adjusted in response to the level of congestion as it is indicated by the
loss rate. This adjustment is ”gentle”; that is, its instantaneous throughput
has, in general, a much lower variation over time, compared with TCP. The
smoothing of the transmission gaps makes TFRC suitable indeed for stream-
ing media, telephony or other applications requiring a smooth sending rate.
However, smoothness has its own price: the protocol becomes less responsive
to bandwidth availability [60].

14



Furthermore, TFRC is designed for applications that use fixed sized packets.
In case of applications with a variance in their packet size (eq. some audio
applications), TRFC’s congestion control mechanism cannot be used. A TFRC
variant named TFRC-PS (for TFRC-PacketSize) can be used instead. There
is no draft available for TFRC-PS yet, but several researchers are still working
on these issues.

TFRC introduces the ”loss event” instead of the traditional packet loss. A loss
event is defined as one or more lost or marked packets from a window of data
(a marked packet refers to a congestion indication from Explicit Congestion
Notification). TFRC uses a receiver-based mechanism for the calculation of
loss event rate. Such a mechanism is suitable for multicast congestion control
and also fits in the case of a large server handling many concurrent requests
from clients with more memory and the CPU cycles available. The receiver
measures the loss event rate and then passes this information to the sender.
The sender calculates throughput using a throughput equation that incorpo-
rates the loss event rate, round-trip time and packet size.

In summary, TFRC’s congestion control mechanism works as follows:

• The receiver measures the loss event rate (based on lost or marked packets
from ECN, in a single window) and then feeds this information back, to the
sender.
• The sender uses this information, also, to measure the round-trip time

(RTT).
• The loss event rate, round-trip time and packet size are used in the through-

put calculation function (12). The sender adjusts its sending data rate to
match the calculated rate.

X =
s

R ·
√

2·β·p
3

+ (t RTO · (3 ·
√

3·β·p
8

) · p · (1 + 32 · p2))
(12)

Where:
X is the transmit rate in bytes/second.
s is the packet size in bytes.
R is the round trip time in seconds.
p is the loss event rate, between 0 and 1.0, of the number of loss events as a
fraction of the number of packets transmitted.
t RTO is the TCP retransmission timeout value in seconds.
b is the number of packets acknowledged by a single TCP acknowledgement.

It may be useful to associate each information fed back to the sender with a
statistical figure, which indicates the possibility of a potential wrong decision.

15



Then, based on this data either an aggressive or a conservative strategy can
be chosen.

4.5 TCP-JERSEY

Authors of [56] proposed recently a new TCP scheme, called TCP-Jersey.
They focused on the capability of the transport mechanism to distinguish the
wireless from congestion packet losses. TCP-Jersey introduces on available
bandwidth estimation (ABE) algorithm and the congestion warning (CW)
router configuration. ABE continuously estimates the available bandwidth and
directs the sender to adjust the transmission rate according to the estimation.
The CW-configured-routers mark packets when there is a sign of an incipient
congestion to notify the sender, who inturn, classifies errors accordingly.

The performance of the above transport mechanisms is tightly coupled with
the robustness of their estimators. Several investigations (such as [22]) have
been carried out regarding the accuracy of the proposed estimators.

5 The Box is Green

5.1 Bimodal Mechanism

Bimodal congestion avoidance and control mechanism [3] measures the fair-
share of the total bandwidth that should be allocated for each flow, at any
point, during the system’s execution. If the fair-share were known, then the
sources could avoid congestion by adjusting immediately after the fair-share
was discovered, to a new state where the bandwidth allocation of each flow is
exactly its fair-share. However, bandwidth availability is not only a matter of
channel capacity but is also dependent upon the number of participating flows,
and the transmitting behavior of the sources. So, fair-share can be measured
only in an equilibrium state.

Authors proposed in [3] a bimodal mechanism, which is based on the idea
that upwards and downwards adjustments need to operate in association with
the system state. Action is determined based on whether the system is in
equilibrium (fair-share is known) or not (fair-share is unknown).

When the fair-share is unknown, the algorithm behaves like AIMD, until two
congestion cycles have passed, which is sufficient to recalculate the fair-share.

16



The algorithm then sets the bandwidth allocation for flow f to (1− ε) 4 times
the calculated fair-share, and shifts to known fair-share mode. So, bimodal
congestion control algorithm explicitly calculates the fair share and converges
in two congestion cycles to the fair share. In this mode, the algorithm continues
to use additive increase and multiplicative decrease, but the multiplicative
decrease factor is α instead of β.

This algorithm is distinguished from the class of TCP-friendly algorithms.
TCP-friendly algorithms favor smoothness at the cost of fairness. This algo-
rithm calculates fair-share explicitly, and so fairness is not compromised in this
approach. Furthermore, since this algorithm restricts its flows to use only their
fair share, it can be used in conjunction with any other transport protocols
(e.g. standard AIMD) without monopolizing for itself most of the available
bandwidth. This is in contrast with the TCP-friendly protocols, which at-
tempt to grab all available bandwidth. Of course, this algorithm will not work
well in conjunction with other protocols that aggressively (and unfairly) grab
a disproportionate share of the bandwidth for their flows.

There are also some open issues related to the bimodal mechanism:

• The more the gain we have in goodput (i.e. by using a smaller ε) the less
the free space left for incoming flows when contention increases.
• Investigating the optimal value of ε in conjunction with the dynamics of

specific environments is a subject of future work.
• The modification of the algorithm for the asynchronous scenario by inte-

grating the RTT into the fair-share calculation. For example, bandwidth
allocation of a flow can be increased when the RTT of its packets decreases
and be decreased when the RTT increases.
• The integration of such ideas with a receiver-oriented feedback approach

(like TCP-Real [59]).

5.2 Network-Assisted Congestion Control

Red Gateways [12] drop packets when congestion is about to happen. RED
randomly drops packets, triggering multiplicative decrease in some flows when
the length of the queue exceeds a predetermined threshold. RED can function
without requiring any change to the current transport level infrastructure.

Ramakrishnan and Floyd in [46] proposed an Explicit Congestion Notification
(ECN) to be added to the IP protocol in order to trigger TCP congestion
control. Unlike RED, ECN enables routers to probabilistically mark a bit in
the IP header, rather than drop the packet, to inform end hosts of pending

4 where ε is a small tunable parameter

17



congestion when the length of the queue exceeds a threshold. End hosts multi-
plicatively reduce their congestion windows upon receiving packets with ECN
bit set, before the router buffer overflows and packet drops are inevitable. A
duality is served with ECN: TCP performance can be enhanced by means of
avoiding losses of data windows due to limited buffer space at the bottleneck
router, and congestive collapse can be avoided.

Recent work [40] presents a critical discussion of the performance expectations
with RED. An interesting observation about RED and ECN is that they could,
somehow, confine future evolution. Imagine a more sophisticated TCP which
distinguishes between congestion and wireless losses. Since RED drops packets
in proportion to sending rates, it is unclear how fair RED would be to the
sophisticated TCP which just happens not to unnecessarily back off in case of
transient wireless losses [27].

In [10] Floyd and Fall introduced mechanisms based on the identification of
high-bandwidth flows from the drop-history of RED. The RED-PD algorithm
(RED with Preferential Dropping) [37] uses per-flow preferential dropping
mechanisms. Two other approaches that use per-flow preferential dropping
with FIFO scheduling are Core-Stateless Fair queuing (CSFQ) [51] and Flow
Random Early Detection (FRED) [34]. CSFQ marks packets with an estimate
of their current sending rate. The router uses this information in conjuction
with the flow’s fair share estimation in order to decide whether a packets needs
to be dropped. FRED does maintain a state although only for the flows which
have packets in the queue. The flows with many buffered packets are having
an increased dropping propability.

Authors of [43] continued the CSFQ and CHOKe [44] approaches. Their pro-
posed mechanism keeps a sample of arriving traffic. A flow with several packets
in the sample, has an increased dropping probability.The Stochastic Fair Blue
(SFB) [8] uses multiple levels of hashing in order to identify high-bandwidth
flows. As the authors state, their mechanism works well only with a few high-
bandwidth flows. Anjum and Tassiulas proposed in [2] a mechanism that drops
packets based on the buffer occupancy of the flow while ERUF [47] uses source
quench to have undeliverable packets dropped at the edge routers. On the
other hand, SRED [41] caches the recent flows in order to determine the high-
bandwidth flows.

6 Discussion

There was recently a significant effort to distinguish congestion-related errors
from wireless errors. That effort invested mainly in distinguishing the locus of
the error [4,50,17], rather than focusing on the dynamics from the combination

18



of both errors. For example, persistent congestion which may be experienced
in some router in a wired network may change to a more transient one when
wireless errors are introduced at the last mile, where some wireless receivers
reside. Furthermore, higher contention can be tolerated under the same cir-
cumstances of congestion. In a similar context, in a high-speed network con-
gestion may cause more losses due to the fact that congestion windows may
grow to very high values; however, it will last less and potentially, it will ap-
pear much less frequently [1,9,23,26,49]. The dynamics of combined wired and
wireless errors appears to be far more important issue than the ability to ge-
ographically locate the error and apply the well-known techniques. Transient
congestion combined with higher contention may not call for conservative re-
covery as this is implemented through the extension of the timeout and the
shrinkage of the congestion window.

What mechanisms are appropriate to detect the presence of combined conges-
tion and transient random wireless errors? A recent probing scheme appears
to measure network performance but also combines the ability to deal with
wireless errors: it freezes the timeout and holds still the congestion window
without transmitting any data when wireless errors do not allow the probing
mechanism to be completed [53]. Other mechanisms measure contention and
decouple wireless errors from others. With what precision can we estimate
really network conditions? How can we take into account the risk of wrong
estimation in order to avoid false recovery strategies. Or, in another context,
what are the situations which may tolerate some risk? And, beyond detection,
what strategies correspond to each distinctive new class of errors that are de-
tected? How can we evaluate them? For example, authors in [52] have shown
that congestion control determines the aggressive/conservative protocol be-
havior, which in turn affects energy consumption. This issue calls certainly for
further investigation.

On another end, applications themselves generate different traffic patterns and
hence are associated with different congestion patterns as well. How can we
justify our practice to conduct experiments only with ftp traffic? How much
different is congestion due to a large number of flows (larger than the potential
capacity of a network) than congestion due to limited number of flows with
large windows? That is, what is the contribution and interrelation of each of
the timeout and the congestion window mechanisms?

The TCP-related work discussed above raises another important question:
where is the right place to add the required functionality? This question does
not have a clear answer; error control is not exclusively a management property
of the router or the base station, nor is it exclusively assigned to the transport
layer. A widely accepted approach, presented by the end-to-end argument [11],
states that we can only implement a function at a lower layer, if that layer
can perform the complete function. Since the lower level cannot have enough

19



information about the application’s requirements, protocol parameters, and
device constraints, it cannot implement the whole function of error control; it
can only be used to optimize the function of the higher layer.

Clearly, it could be beneficial for the sender to know with precision that
congestion is about to happen. However, in the context of heterogeneous
wired/wireless networks ECN contribution might be limited: by not receiv-
ing an explicit notification the TCP sender will not be able to safely assume
that a detected drop was not caused due to congestion. The desired preci-
sion of ECN capable TCP senders would be better approached if the level of
congestion could also be indicated in order to allow TCP to implement more
sophisticated recovery. Precision, however, comes at a cost: the functionality
of the routers is more complex, modifications are required to both routers and
TCP itself and, finally, the return might be small due to heterogeneity, i.e.
Some routers are not ECN-capable.

One can go beyond architectural optimization criterions and worry about po-
tential false strategies due to the locality of router decisions. For example,
when a router experiences congestion or progresses towards congestion, it
takes action. The action is taken in association with an inherent assump-
tion: that the portion of the network that follows will not change the major
traffic characteristics of the flows - something not necessarily true when a
wireless network is deployed at the receivers’ end. Certainly TCP throughput
allows for assuming a monotonic behavior. However, when our assumption is
violated, there is no indication that our strategy is still correct.

Departing from the same point, we justified earlier the logic behind measurement-
based protocols. There is a significant difference however; the receivers have
indeed the capability to measure flow traffic throughout the whole network
path, hence they do not fall into wrong assessments due to limited view of
the network. Perhaps one can trust end-to-end protocols on that aspect, more
than network mechanisms.

By the same token, when many flows compete for a limited bandwidth, a
window back-off strategy will not yield any significant gain. For example, a
large number of flows over a 10Mbps network would probably operate with
single-packet windows that do not permit further shrinkage. Obviously, under
such contention of packets, efficiency of the algorithm does not really become
an issue. Only a proper timeout adjustment can permit all flows to use the
network fairly.

Finally, evaluation of congestion control is an important issue in its own right.
Several authors have proposed modifications to existing mechanisms; however,
only a few of them have seen even a minor deployment. This fact can be mainly
justified based on four distinct observations that we summarize below:

20



(1) The nature of the problem itself; its complexity due to the wide number
of parameters that have impact on system’s performance does not always
allow for effective evaluation.

(2) The nature of congestion in the modern Internet is not really known;
for example, how can we characterize different levels of congestion? How
frequently do they happen? What is an extreme condition of congestion,
how long does it last and what percentage of packets is dropped?

(3) The locus of congestion is not well-determined; where does Internet con-
gestion occur? For example, congestion might appear in the backbone
gateway or a local router. The locus is associated with the number of
flows that cross the congested router.

(4) The goal of congestion control also changes. In today’s network conges-
tive collapse is not a primary concern; smoothness and responsiveness
becomes more important.

A Biographies

Lefteris Mamatas is a Phd student in the Demokritos University of Thrace.
He graduated in 2003 from the Dept of Electrical and Computer Engineer-
ing, Demokritos University of Thrace. His research interests are focused on
transport protocols over wired/wireless networks.

Vassilis Tsaoussidis received a B.Sc in Applied Mathematics from Aristo-
tle University, Greece; a Diploma in Statistics and Computer Science from
the Hellenic Institute of Statistics; and a Ph.D in Computer Networks from
Humboldt University, Berlin, Germany (1995). Vassilis held faculty positions
in Rutgers University, New Brunswick, SUNY Stony Brook and Northeastern
University, Boston. In May 2003, Vassilis joined the Department of Electrical
and Computer Engineering of Demokritos University, Greece. His research in-
terests lie in the area of transport/network protocols, i.e. their design aspects
and performance evaluation. His COMNET (Computer Networks) Research
Group includes 7 Ph.D students. Vassilis is an editor for IEEE Transactions in
Mobile Computing the Journal of Computer Networks the journal of Wireless
Communications and Mobile Computing and the journal of Mobile Multime-
dia. He participates in several Technical Program Committees in his area of
expertise, such as INFOCOM, GLOBECOM, ICCN, ISCC, EWCN, WLN,
and several others. Vassilis graduated 2 Ph.D students in the United States:
Adrian Lahanas, now a lecturer at the University of Cyprus; and Chi Zhang,
now Asst. Professor at Florida International University.

Chi Zhang received his PhD (2003) and MS (2001) in Computer Science
from Northeastern University. He received his BE in Electronic Engineering
(1996) and BE in International Finance (1996) from Shanghai Jiao Ton Uni-

21



versity. Chi joined Florida International University as an assistant professor
of Computer Science in 2003. His current research interests lie in computer
networks, with focus on TCP over wireless, and congestion control for real-
time applications. Chi published 14 research papers, and was a TPC member
for the 4th International Conference on Internet Computing (IC 2003).

References

[1] I. Akyildiz, G. Morabito, and S. Palazzo. TCP Peach: A New Congestion
Control Scheme for Satellite IP Networks. IEEE/ACM Transactions on
Networking, 9(3):307–321, June 2001.

[2] F. M. Anjum and L. Tassiulas. Fair bandwidth sharing among adaptive and
non-adaptive flows in the internet. In IEEE InfoCom 99, March 1999.

[3] P. C. Attie, A. Lahanas, and V. Tsaoussidis. Beyond AIMD: Explicit fair-share
calculation. In In Proccedings of ISCC 2003, June 2003.

[4] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz. Improving TCP/IP
Performance over Wireless Networks. In Proceedings of of ACM Mobicom ’95,
November 1995.

[5] D. Bansal and H. Balakrishnan. Binomial Congestion Control Algorithms. In
Proceedings of the IEEE INFOCOM’01, 2001.

[6] L. Brakmo and L. Peterson. TCP Vegas: End to End Congestion Avoidance
on a Global Internet. IEEE Journal on Selected Areas of Communications,
October 1995.

[7] D. Chiu and R. Jain. Analysis of the Increase/Decrease Algorithms for
Congestion Avoidance in Computer Networks. Journal of Computer Networks
and ISDN, 17(1):1–14, June 1989.

[8] W. Feng, D. Kandlur, D. Saha, and K. G. Shin. BLUE: A new class of active
queue management algorithms. Technical Report CSE-TR-387-99, April 1999.

[9] S. Floyd. Highspeed tcp for Large Congestion Windows. RFC 3649, December
2003.

[10] S. Floyd and K. Fall. Promoting the use of end-to-end congestion control in
the Internet. IEEE/ACM Transactions on Networking, 7(4):458–472, 1999.

[11] S. Floyd and K. Fall. Promoting the Use of End-to-End Congestion Control in
the Internet. IEEE/ACM Transactions on Networking, 7(4):458–472, August
1999.

[12] S. Floyd and V. Jacobson. Random early detection gateways for congestion
avoidance. IEEE/ACM Transactions on Networking, 1(4):397–413, 1993.

22



[13] D. Fotakis, S. Kontogiannis, E. Koutsoupias, M. Mavronicolas, and P. Spirakis.
The structure and complexity of nash equilibria for a selfish routing game. In In
the 29th International Colloquium on Automata, Languages and Programming
(ICALP’02), 2002.

[14] D. Fotakis, S. Kontogiannis, and P. Spirakis. Selfish unsplittable flows.
In 31st International Colloquium on Automata, Languages and Programming
(ICALP’04), 2004.

[15] D. Fotakis, S. Kontogiannis, and P. Spirakis. Symmetry in network congestion
games: Pure equilibria and anarchy cost. In In 3rd Workshop on Approximation
and Online Algorithms (WAOA’05), 2005.

[16] K. G. and K. S. Edge pricing of multicommodity networks for heterogeneous
selfish users. In In IEEE Symposium on Foundations of Computer Science
(FOCS04).

[17] T. Goff, J. Moronski, and D. Phatak. Freeze-TCP: A True end-to-end
Enhancement Mechanism for Mobile Environments. In Proceedings of the
INFOCOM, (Israel), 2000, 2000.

[18] S. Gorinsky. Feedback Modeling in Internet Congestion Control. In Proceedings
of the NEW2AN’04, 2004.

[19] S. Gorinsky and H. Vin. Extended Analysis of Binary Adjustment algorithms.
Technical report, University of Texas, Austin, 2000.

[20] U. Hengartner, J. Bolliger, and T. Cross. TCP Vegas Revisited. In In
Proceedings of IEEE INFOCOM 2000, March 2000.

[21] V. Jacobson. Congestion Avoidance and Control. In Proceedings of the ACM
SIGCOMM ’88, August 1988.

[22] M. Jain and C. Dovrolis. Ten fallacies and pitfalls on end-to-end available
bandwidth estimation. In Internet Measurement Conference 2004, pages 272–
277, 2004.

[23] C. Jin, D. Wei, and S. Low. Fast TCP: motivation, architecture, algorithms,
performance. In Proceedings of the IEEE Infocom, March 2004.

[24] S. Jin, L. Guo, I. Matta, and A. Bestavros. TCP-friendly SIMD Congestion
Control and Its Convergence Behavior. In Proceedings of the ICNP’2001,
November 2001.

[25] R. Karp, E. Koutsoupias, C. Papadimitriou, and S. Shenker. Optimization
Problems in Congestion Control. In IEEE Symposium on Foundations of
Computer Science, pages 66–74, November 2000.

[26] D. Katabi, M. Handley, and C. Rohrs. Congestion Control for High Bandwidth-
Delay Product Networks. In In the proceedings on ACM Sigcomm 2002, 2002.

[27] M. Khanna, C. Zhang, and V. Tsaoussidis. Experimental evaluation of RED
in Heterogeneous Environments. The International Journal of Communication
Systems IJCS.

23



[28] S. Kontogiannis and P. Spirakis. Atomic selfish routing in networks: A survey.
In In the Workshop on Internet and Network Economics (WINE 2005), 2005.

[29] E. Koutsoupias and C. H. Papadimitriou. Worst-case equilibria. In In STACS
1999, 1999.

[30] F. L., J. K., and M. M. Tolls for heterogeneous selfish users in multicommodity
networks and generalized congestion games. In In IEEE Symposium on
Foundations of Computer Science (FOCS04).

[31] A. Lahanas and V. Tsaoussidis. Additive Increase Multiplicative Decrease -
Fast Convergence (AIMD-FC). In Proccedings of Networks 2002, August 2002.

[32] A. Lahanas and V. Tsaoussidis. Exploiting the efficiency and fairness potential
of AIMD-based congestion avoidance and control. Computer Networks,
Elsevier, 43(2):227–245, October 2003.

[33] A. Lahanas and V. Tsaoussidis. t-AIMD for Asynchronous Receiver Feedback.
In Proceedings of the ISCC 2003, 2003.

[34] D. Lin and R. Morris. Dynamics of random early detection. In SIGCOMM ’97,
pages 127–137, Cannes, France, september 1997.

[35] D. Loguinov and H. Radha. End-to-end Rate-Based Congestion Control:
Convergence Properties and Scalability Analysis. IEEE/ACM Transactions
on Networking, 11, August 2003.

[36] M. M. and S. P. The price of selfish routing. In In STOC 2001, 2001.

[37] R. Mahajan, S. Floyd, and D. Wetherall. Controlling high-bandwidth flows at
the congested router, 2001.

[38] S. Mascolo, C. Casetti, M. Gerla, M. Sanadidi, and R. Wang. TCP Westwood:
Bandwidth Estimation for Enhanced Transport over Wireless Links. In
Proceedings of the MobiCom’01, July 2001.

[39] S. Mascolo, L. A. Grieco, R. Ferorelli, P. Camarda, and G. Piscitelli.
Performance evaluation of westwood+ tcp congestion control. In Internet
performance symposium (IPS 2002), volume 55, pages 93–111, 2002.

[40] M. May, T. Bonald, and J. Bolot. Analytic Evaluation of RED Performance.
In INFOCOM 2000, August 2000.

[41] T. J. Ott, T. V. Lakshman, and L. H. Wong. SRED: Stabilized RED. In
Proceedings of INFOCOM, volume 3, pages 1346–1355, 1999.

[42] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP Throughput:
A Simple Model and its Empirical Validation. In Proceedings of the ACM
SIGCOMM, 1998.

[43] R. Pan, L. Breslau, B. Prabhakar, and S. Shenker. Approximate fairness through
differential dropping, 2001.

24



[44] R. Pan, B. Prabhakar, and K. Psounis. CHOKe - A stateless queue management
scheme for approximating fair bandwidth allocation. March 2000.

[45] C. R., D. Y., and R. T. Pricing network edges for heterogeneous selfish users.
In In ACM Symposium on Theory of Computing (STOC03).

[46] K. Ramakrishnan and S. Floyd. A Proposal to add Explicit Congestion
Notification (ECN) to IP. RFC 2481, January 1999.

[47] A. Rangarajan. Early regulation of unresponsive flows. Technical Report
TRCS99-26, July 1999.

[48] R. Rejaie, M. Handley, and D. Estrin. RAP: An end-to-end rate-based
congestion control mechanism for realtime streams in the internet. In
INFOCOM (3), pages 1337–1345, 1999.

[49] S. Shalunov. Tcp Armonk (tcpar). Technical report, September 2002.

[50] P. Sinha, T. Nandagopal, N. Venkitaraman, R. Sivakumar, and V. Bharghavan.
WTCP: A reliable transport protocol for wireless wide-area networks. Wireless
Networks, 8(2-3):301–316, 2002.

[51] I. Stoica, S. Shenker, and H. Zhang. Core -stateless fair queueing: Achieving
approximately fair bandwidth allocations in high speed networks. In
SIGCOMM, pages 118–130, 1998.

[52] V. Tsaoussidis, H. Badr, X. Ge, and K. Pentikousis. Energy / Throughput
Tradeoffs of TCP Error Control Strategies. In Proceedings of the 5th IEEE
Symposium on Computers and Communications, ISCC, 2000.

[53] V. Tsaoussidis and A. Lahanas. Exploiting the Adaptive Properties of a
Probing Device for TCP in Heterogeneous Networks. The Journal of Computer
Communications, 26, February 2003.

[54] V. Tsaoussidis, A. Lahanas, and C. Zhang. The Wave and Probe
Communication Mechanisms. The Journal of Supercomputing, Kluwer
Academic Publishers, June 2001.

[55] V. Tsaoussidis and C. Zhang. Tcp-real: Receiver-oriented congestion control.
Computer Networks Journal (Elsevier), 40(4), November 2002.

[56] K. Xu, Y. Tian, and N. Ansari. TCP-jersey for wireless IP communications.
IEEE JSAC, 22(4):747–756, May 2004.

[57] R. Yang, M. S. Kim, X. Zhang, and S. S. Lam. Two problems of tcp aimd
congestion control. Technical Report TR-00-13, Department of Computer
Sciences, University of Texas at Austin, June 2000.

[58] Y. Yang and S. Lam. General AIMD Congestion Control. In Proceedings of the
IEEE International Conference on Network Protocols, November 2000.

[59] C. Zhang and V. Tsaoussidis. TCP-Real: Improving Real-time Capabilities of
TCP over Heterogeneous Networks. In Proceedings of the 11th IEEE/ACM
NOSSDAV, June 2001.

25



[60] C. Zhang and V. Tsaoussidis. The interrelation of TCP Responsiveness and
Smoothness. In In Proccedings of 7th IEEE ISCC, July 2002.

26


