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Abstract 

 
We investigate the behavior of TCP(α,β) protocols in 

the presence of wireless networks. We seek an answer to 
strategic issues of maximizing energy and bandwidth 
exploitation, without damaging the dynamics of multiple-
flow equilibrium. Our perspective is novel indeed: What is 
the return of the effort that a protocol expends? Can we 
achieve more gains with less effort? We study first the 
design assumptions of TCP(α,β) protocols and discuss the 
impact of equation-based modulation of α and β on 
protocol efficiency. We introduce two new metrics to 
capture protocol behavior: The “Extra Energy 
Expenditure” and the “Unexploited Available Resource 
Index”. We confirm experimentally that, in general, 
smoothness and responsiveness constitute a tradeoff; 
however, we show that this tradeoff does not graft its 
dynamics into a conservative/aggressive behavior, as it is 
traditionally believed. We uncover patterns of unjustified 
tactics; our results suggest that an adaptive congestion 
control algorithm is needed to integrate the dynamics of 
heterogeneous networks into protocol behavior.  
 
 
1. Introduction  

 
Transmission control of reliable protocols, as 

exemplified by TCP [1], is based on somewhat “blind” 
increase/decrease window mechanism that exploits the 
bandwidth availability dynamically and, meanwhile, 
avoids persistent congestion. The adjustments are modeled 
on the Additive Increase/Multiplicative Decrease algorithm 
from the perspective of fair resource allocation and 
efficient resource utilization [2]. AIMD is the core 
algorithm of standard TCP and is becoming the core 
algorithm of all transport protocols that support congestion 
control functions [3].  

The problems of standard TCP have been mainly 
investigated from two different perspectives, namely the 
application requirements and the characteristics of the 
underlying networks. The former expounds the impact of 
the transmission gaps caused by halving the transmission 
rate during congestion on the quality of delay-sensitive 

applications. Authors in [4, 5, 10, 11] propose TCP-
friendly protocols that satisfy two fundamental goals: (i) 
To achieve smooth window adjustments. This is done by 
reducing the window decrease ratio during congestion. (ii) 
To compete fairly with TCP flows. This is approached by 
reducing the window increase factor according to a steady-
state TCP throughput equation. It has been effectively 
established that TCP can achieve application-oriented 
improvements by favoring smoothness using a gentle 
backward adjustment upon congestion, at the cost of lesser 
responsiveness (i.e., speed to approach an equilibrium) - 
through moderated upward adjustments. The latter 
perspective unfolds the need for error detection and 
classification that would permit a responsive strategy, 
oriented by the nature of the error detected (congestion in 
wired networks versus transient random errors in wireless 
networks) [8]. As we show, implementation of such 
strategy requires ocassionally a more responsive TCP. Our 
approach, however, is dominated by the distinctive 
characteristics and requirements of wireless networks: we 
address issues of energy and wireless error recovery, 
through a parallel study of a smooth/responsive protocol 
design and an aggressive/conservative outcome. Note that 
the conservative-through-to-aggressive behavioral 
spectrum reflects the effort a protocol expends. The real 
issue, therefore, is how much this effort is invested into 
efficient transmission. 

TCP(α,β) protocols parameterize the congestion 
window increase value α  and decrease ratioβ , where the 

sender’s window size is increased by α  if there is no 
packet loss in a round-trip time, and the window is 
decreased to β  times the current value if there is a loss 

indication. We discuss the impact of the 
smoothness/responsiveness tradeoff on protocol 
performance, assuming that it follows strictly the 
friendliness-oriented α/β tradeoff. A natural question is 
therefore “under what network conditions can we achieve 
efficiency; and how do we define efficiency”. Having 
shown in previous work [7] that a protocol for wireless 
networks may need to be occasionally more conservative 
and occasionally more aggressive, we attempt to explore 
how this tradeoff is shaped by the responsive or smooth 
protocol strategy. In our discussion below, we refer to 



three classes of TCP(α , β ) protocols: (i) Standard New 

Reno TCP(1, ½); (ii) Responsive TCP(α , β ), with 

relatively low β  value and high α  value; and (iii) Smooth 

TCP(α , β ), with relatively high β value and low α  

value. 
We compare the performance of our TCP(α,β) 

versions in heterogeneous (wired and wireless) networks 
and in static and dynamic1 environments. Based on the 
assumptions of equation-based congestion control and on 
experimental data, we arrive at the conclusion that 
protocols, which are based entirely on the α/β tradeoff may 
be adequate for specific applications, networks and 
scenarios; however, they are inappropriate for several other 
occasions. 

We organized the paper as follows: we give an 
overview of TCP(α,β) protocols in section 2 and we 
discuss their inherent assumptions. In section 3 we present 
our testing methodology and we define new performance 
metrics. In section 4 we analyze the results of our 
experiments and in section 5 we highlight our conclusions. 
 

2. Trading αααα For ββββ 
 

A throughput equation for standard TCP is first 
introduced in [6]. GAIMD [10] extends the equation to 
include parameters α and β: 
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where p is the loss rate; T0 is the retransmission timeout 
value; b is the  number of packets acknowledged by each 
ACK. The overall throughput of TCP-Friendly ( )βα ,  

protocols is bounded by the average throughput of standard 
TCP( )5.0,1 == βα , which means that equation (2), which 

is derived from (1) (see [10]) could provide a rough guide 
to achieve friendliness. 
                 ),,,(),,,( 05.0,10, bTRTTpTbTRTTpT =βα          (2) 

Authors of [10] derive from (1) and (2) a simple 
relationship for α  and β :  

                                   3/)1(4 2βα −=                             (3)  

Based on experiments, they propose a 8/7=β  as the 

appropriate value for the reduced the window (i.e. less 
rapidly than TCP does). For 8/7=β , (3) gives an 

increase value 31.0=α . 
The observations of the window dynamics and event 

losses are frequently assumed within a time period of a 
congestion epoch [4], which reflects the uninterrupted 

                                                           
1 From the perspective of the participating flows with criterion whether 
their number is fixed or not. 

growing lifetime of congestion window. More precisely, a 
congestion epoch begins with βW packets, increased by α 
packets per RTT and reaching a congestion window of W 
packets, when a packet is dropped. The congestion window 
is then decreased to βW. Hence, a congestion epoch 
involves 
                   n = (1-β) * W / α + 1 RTTs        (4) 
Assuming that the capacity of the bottleneck link is B 
packets per second and the number of active flows going 
through the bottleneck router is N, and assuming a control 
system as in [2], we further calculate that: 
             W = B * RTT / N                 (5) 
 
We can easily observe that it takes several RTTs for a 
smallα to pay back the bandwidth credit of a high β. 
 

Equation (1) is modeled by calculating the average 
throughput over a congestion epoch, which is associated 
with several RTTs. Since equation (1) gives the steady 
state TCP throughput, in a dynamic network where 
conditions changing rapidly, friendliness might not be 
attained. More precisely, based on (4) we conclude that (1) 
and (2) can be achieved at a time n RTTs or later since 
multiple drops will extend further the time of convergence. 
Based on (4) and (5) we further conclude that the time 
period required for (1) and (2) to hold is in reverse 
proportion to contention within a fixed bandwidth channel; 
the smaller the number of flows, the larger the window and 
therefore the longer the convergence time. By the same 
token, the fact that a responsive protocol can exploit 
bandwidth better suggests that lower contention is a 
favorable case for such protocols.  

This analysis implies that, smooth protocols may be 
more aggressive (since they consume temporarily more 
bandwidth) in the presence of transient errors, while they 
may behave more conservatively, due to their low 
increasing rate, when multiple drops force the 
multiplicative decrease factor to adjust the congestion 
window back to its initial value. This can be justified by a 
hidden assumption behind (3): when packet drops occur at 
the end of the congestion epoch, the window decreasing by 
a factor of (1-β) is applied only once. However, multiple 
packet drops could cause the window size to be decreased 
multiple times, or they could also cause the retransmission 
timer to expire. At the end, it is possible that the window 
size and the ssthresh could be decreased down to 2 
segments, even with smooth backward adjustments. Under 
such scenarios, the performance of applications (including 
real-time applications) is not affected by how slowly the 
sender reduces its sending rate, but rather by how fast it 
can recover from the error and restore its sending rate.  
Note that our scenario is not unrealistic. For example, in 
mobile networks, burst correlated errors and handoffs 
generate this kind of error pattern. The aggressiveness of 



responsive TCP may be a desirable behavior. We confirm 
our statements experimentally in section 4. 

 
3. Experimental Methodology 
3.1 Testing Plan 
 

We have implemented our testing plan on the ns-2 
network simulator. The network topology used as a test-
bed is the typical single-bottleneck dumbbell, as shown in 
Figure. 1. The link's capacity (bw_bottleneck) is 10Mbps, 
unless it is explicitly stated otherwise. We used equal 
number of source and sink nodes. We simulated a 
heterogeneous (wired and wireless) network with ns-2 
error models which were inserted into the access links at 
the sink nodes. The Bernoulli model was used to simulate 
link-level errors with configurable packet error rate (PER). 
The number of flows occasionally changes for the different 
scenarios. The simulation time was fixed at 120 seconds, a 
time-period deemed appropriate to allow all protocols to 
demonstrate their potential. 
 
 

bw_bottleneck 
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Sink N 
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Figure 1. Network topology 
  

 
 Due to the deterministic nature of the experiments, 
statistical validity is not an issue. In order to validate our 
statements, we selected and evaluated three protocols that 
satisfy the TCP-friendly equation [10]. We used standard 
New-Reno TCP (1, 0.5), a responsive New-Reno TCP 
(1.25, 0.25) and a smooth New-Reno TCP (0.31, 0.875).  

In the first scenarios, ftp flows are entering the system 
within the first seconds. All flows are fixed, during the rest 
118 seconds. In order to evaluate how efficiently and fairly 
the protocols can exploit available bandwidth, we used, 
additionaly, scenarios with graduated contention decrease. 
 
3.2 Performance Metrics 
 

Our evaluation plan calls for common, as well as non-
traditional metrics. We used traditional metrics for protocol 
efficiency, and fairness. 

The system goodput is used to measure the overall 
system efficiency in bandwidth utilization. The system 
Goodput is defined as : 

 
Goodput= Original_Data / Connection_time 

where Original_Data is the number of bytes delivered 
to the high-level protocol at the receiver (i.e. excluding 
retransmitted packets and overhead) and Connection_time 
is the amount of time required for the data delivery.   

Fairness is measured by the Fairness Index, derived 
from the formula given in [2] and defined as : 
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where Throughputi is the Throughput of the i th flow and n 
the flow number. 

In order to capture the amount of extra energy 
expended, we introduce a new metric. Extra Energy 
Expenditure (3E) takes into account the difference of 
achieved Throughput from maximum Throughput 
(Throughputmax) for the given channel conditions, the 
difference of Goodput from Throughput, attempting to 
locate the Goodput as a point within a line that starts from 
0 and ends at Throughputmax. The metric 3E takes values 
from 0 to 1, attempting to capture both distances. 
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where a=1 and b=0.3 
 

When Goodput approaches Throughput which 
approaches 0, the extra expenditure is only due to time 
waiting (probably in an idle state). We assume that the 
extra expenditure at this stage is 0.3 (the first term is 0). 
Instead, when Goodput=Throughput=Throughputmax the 
extra expenditure is 0, since all the expended energy has 
been invested into efficient transmissions. Also, when 
Throughputmax= 100, Throughput=99, Goodput=1, the 
extra expenditure due to unsuccessful retransmission grows 
to an almost maximum value (0.993) 

We need to introduce another metric as well, in order 
for us to capture the level of Unexploited Available 
Resources (UAR). That is, how well did we exploit the 
windows of opportunities for successful transmissions. 
Reasonably, the case of Goodput=Throughput=0 should 
not give us at this point a minor (as with the  3E metric) 
but a major penalty.  
 

max

1 [ ]
Throughput Goodput

UAR a b
Throughput Throughput

= − +  

 
where a=0.5 and b=0.5. The UAR index ranges also from 0 
to 1, expressing also a negative performance aspect. 
 
 
 
 



4. Results and Discussion 
4.1 Low error rate favors responsive protocols 
 

The first scenario simulates a heterogeneous 
environment with random transient errors increasing from 
0.01 to 0.1 PER. We used 30 flows and a 10Mbps 
bottleneck, a relatively low-contention environment. The 
following results show that the responsive protocol 
outperforms the smooth one. Also, its aggressive behavior 
favors both Extra Energy Expenditure (3E) and 
Unexploited Available Resources Index (UAR) : 
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Figure 2. EEE & Low Error-Rate 
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Figure 3. UAR & Low Error Rate 
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Figure 4. Goodput & Low Error Rate 

 

4.2 A macroscopic view of the Effort/Gain 
dynamics  

 
In the last scenario we used handoffs with duration 0.2 

seconds in a 10Mbps bottleneck. We measured 
performance, ranging the number of flows from 10 to 100. 

We can observe that, better resource and energy 
exploitation may have a positive impact on protocol 
goodput, although the reverse is also possible. See, for 
example the contrasting outcome with less and more effort, 
in figures 5,6,7 and 2,3,4, respectively.  
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Figure 5. EEE & Effort/Gain dynamics 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

10 20 30 40 50 60 70 80 90 100

Flows

U
A

R

TCP (1,0.5)

TCP (0.31,0.875)

TCP (1.25,0.25)

 
Figure 6. UAR & Effort/Gain dynamics 
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Figure 7. Goodput & Effort/Gain dynamics 

 
 



4.3 Observations with contention decrease 
 
The next scenario presented here intends to provide a 

framework for characterizing protocol behavior when 
bandwidth becomes available rapidly in heterogeneous 
networks. We measure Extra Energy Expenditure (3E), 
Unexploited Available Resources Index (UAR) and 
Goodput for a range of flows from 10 to 20. We used a 0.2 
PER. All flows are entered in the system within the first 
two seconds. For the rest 112 seconds we have a graduated 
contention decrease, starting from 10 flows and repeating 
the experiment for 11, 12 upto 20 flows. At each stage we 
reduce the number of flows to half every Decrease_Step 
seconds, where Decrease_Step, is the step needed, in order 
for the last flow to exit at the 120th second. 
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Figure 8. EEE & Contention Decrease 

 
Although, according to the 3E metric, protocol 

behavior appears stable, the UAR index indicates that 
available resources are not exploited very well by the 
smooth protocol. 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

10 11 12 13 14 15 16 17 18 19 20

Flows

U
A

R

TCP (1,0.5)

TCP (0.31,0.875)

TCP (1.25,0.25)

 
Figure 9. UAR & Contention Decrease 

 
4.4 Error rate increase cancels responsive TCP’s 
advantages 

 
In the following scenario, we used 30 flows, a 10Mbps 

bottleneck and a variable error-rate from 0.01 to 0.4 PER. 

During low error rate the responsive protocol has better 
return for its effort, however, when error-rate exceeds 0.1, 
these advantages are canceled (see figures 10, 11, 12). 

We summarize below the difference in Fairness, Extra 
Energy Expenditure, Unexploited Available Resources 
Index and Goodput.  
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Figure 10. Fairness & Error-Rate 
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Figure 11.  EEE & Error-Rate 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,01 0,02 0,05 0,1 0,2 0,3 0,4

Error Rate

U
A

R

TCP (1,0.5)

TCP (0.31,0.875)

TCP (1.25,0.25)

 
Figure 12. UAR & Error-Rate 
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Figure 13. Goodput & Error-Rate 

 
We can see that the responsive protocol is favored, 

initially. After a certain point, which is relevant to the 
specifics of the experiment (which in our case is 0.1), the 
smooth protocol may even become more efficient (in 
goodput) and fair, while it expends less extra energy. 
When the fair-share grows, due to higher bandwidth 
(100Mbps), the previous behavior is indicated more clearly 
(see figures 14, 15).  
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Figure 14. EEE & Error-Rate 
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Figure 15. Goodput & Error-Rate 

 
5. Conclusions and future work 

 

We have shown that smooth/responsive protocols do 
not always have a conservative/aggressive behavior 
respectively, as it is was traditionally believed. We have 
predicted through a basic analysis and confirmed 
experimentally a better behavior of conservative protocols 
in a high error-rate environment, in contrast to the 
aggressive ones. In case of low error-rates and sufficient 
availability of bandwidth, the situation is reversed. 

If TCP’s traffic could be shaped to conform to 
detected network characteristics, system peformance 
metrics such as goodput, fairness, energy expenditure and 
resource utilization would be handled better.  

Initially, we plan to work towards a measurement 
based detection of network characteristics, such as the one 
presented in [9]. Departing from there, we plan to apply 
error recovery tactics which integrate the adaptive strategy, 
in accordance with the results shown here.  
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