
Protocol Behavior: More Effort, More Gains?

L. Mamatas and V. Tsaoussidis
Dept. Of Electrical and Computer Engineering

Demokritos University of Thrace, Greece
Email: emamatas@ee.duth.gr, vtsaousi@ee.duth.gr

Abstract

We investigate the behavior of TCP(α,β) protocols in

the presence of wireless networks. We seek an answer to
strategic issues of maximizing energy and bandwidth
exploitation, without damaging the dynamics of multiple-
flow equilibrium. Our perspective is novel indeed: What is
the return of the effort that a protocol expends? Can we
achieve more gains with less effort? We study first the
design assumptions of TCP(α,β) protocols and discuss the
impact of equation-based modulation of α and β on
protocol efficiency. We introduce two new metrics to
capture protocol behavior: The “Extra Energy
Expenditure” and the “Unexploited Available Resource
Index”. We confirm experimentally that, in general,
smoothness and responsiveness constitute a tradeoff;
however, we show that this tradeoff does not graft its
dynamics into a conservative/aggressive behavior, as it is
traditionally believed. We uncover patterns of unjustified
tactics; our results suggest that an adaptive congestion
control algorithm is needed to integrate the dynamics of
heterogeneous networks into protocol behavior.

1. Introduction

Transmission control of reliable protocols, as

exemplified by TCP [1], is based on somewhat “blind”
increase/decrease window mechanism that exploits the
bandwidth availability dynamically and, meanwhile,
avoids persistent congestion. The adjustments are modeled
on the Additive Increase/Multiplicative Decrease algorithm
from the perspective of fair resource allocation and
efficient resource utilization [2]. AIMD is the core
algorithm of standard TCP and is becoming the core
algorithm of all transport protocols that support congestion
control functions [3].

The problems of standard TCP have been mainly
investigated from two different perspectives, namely the
application requirements and the characteristics of the
underlying networks. The former expounds the impact of
the transmission gaps caused by halving the transmission
rate during congestion on the quality of delay-sensitive

applications. Authors in [4, 5, 10, 11] propose TCP-
friendly protocols that satisfy two fundamental goals: (i)
To achieve smooth window adjustments. This is done by
reducing the window decrease ratio during congestion. (ii)
To compete fairly with TCP flows. This is approached by
reducing the window increase factor according to a steady-
state TCP throughput equation. It has been effectively
established that TCP can achieve application-oriented
improvements by favoring smoothness using a gentle
backward adjustment upon congestion, at the cost of lesser
responsiveness (i.e., speed to approach an equilibrium) -
through moderated upward adjustments. The latter
perspective unfolds the need for error detection and
classification that would permit a responsive strategy,
oriented by the nature of the error detected (congestion in
wired networks versus transient random errors in wireless
networks) [8]. As we show, implementation of such
strategy requires ocassionally a more responsive TCP. Our
approach, however, is dominated by the distinctive
characteristics and requirements of wireless networks: we
address issues of energy and wireless error recovery,
through a parallel study of a smooth/responsive protocol
design and an aggressive/conservative outcome. Note that
the conservative-through-to-aggressive behavioral
spectrum reflects the effort a protocol expends. The real
issue, therefore, is how much this effort is invested into
efficient transmission.

TCP(α,β) protocols parameterize the congestion
window increase value α and decrease ratioβ , where the

sender’s window size is increased by α if there is no
packet loss in a round-trip time, and the window is
decreased to β times the current value if there is a loss

indication. We discuss the impact of the
smoothness/responsiveness tradeoff on protocol
performance, assuming that it follows strictly the
friendliness-oriented α/β tradeoff. A natural question is
therefore “under what network conditions can we achieve
efficiency; and how do we define efficiency”. Having
shown in previous work [7] that a protocol for wireless
networks may need to be occasionally more conservative
and occasionally more aggressive, we attempt to explore
how this tradeoff is shaped by the responsive or smooth
protocol strategy. In our discussion below, we refer to

three classes of TCP(α , β) protocols: (i) Standard New

Reno TCP(1, ½); (ii) Responsive TCP(α , β), with

relatively low β value and high α value; and (iii) Smooth

TCP(α , β), with relatively high β value and low α

value.
We compare the performance of our TCP(α,β)

versions in heterogeneous (wired and wireless) networks
and in static and dynamic1 environments. Based on the
assumptions of equation-based congestion control and on
experimental data, we arrive at the conclusion that
protocols, which are based entirely on the α/β tradeoff may
be adequate for specific applications, networks and
scenarios; however, they are inappropriate for several other
occasions.

We organized the paper as follows: we give an
overview of TCP(α,β) protocols in section 2 and we
discuss their inherent assumptions. In section 3 we present
our testing methodology and we define new performance
metrics. In section 4 we analyze the results of our
experiments and in section 5 we highlight our conclusions.

2. Trading αααα For ββββ

A throughput equation for standard TCP is first
introduced in [6]. GAIMD [10] extends the equation to
include parameters α and β:

)321(
2

)1(
3,1min

)1(

)1(2

1
),,,(

2
2

0

0,

ppp
b

Tp
b

RTT

bTRTTpT

+

 −
+

+
−

=

α
β

βα
β

βα

(1)
where p is the loss rate; T0 is the retransmission timeout
value; b is the number of packets acknowledged by each
ACK. The overall throughput of TCP-Friendly ()βα ,

protocols is bounded by the average throughput of standard
TCP()5.0,1 == βα , which means that equation (2), which

is derived from (1) (see [10]) could provide a rough guide
to achieve friendliness.
),,,(),,,(05.0,10, bTRTTpTbTRTTpT =βα (2)

Authors of [10] derive from (1) and (2) a simple
relationship for α and β :

 3/)1(4 2βα −= (3)

Based on experiments, they propose a 8/7=β as the

appropriate value for the reduced the window (i.e. less
rapidly than TCP does). For 8/7=β , (3) gives an

increase value 31.0=α .
The observations of the window dynamics and event

losses are frequently assumed within a time period of a
congestion epoch [4], which reflects the uninterrupted

1 From the perspective of the participating flows with criterion whether
their number is fixed or not.

growing lifetime of congestion window. More precisely, a
congestion epoch begins with βW packets, increased by α
packets per RTT and reaching a congestion window of W
packets, when a packet is dropped. The congestion window
is then decreased to βW. Hence, a congestion epoch
involves
 n = (1-β) * W / α + 1 RTTs (4)
Assuming that the capacity of the bottleneck link is B
packets per second and the number of active flows going
through the bottleneck router is N, and assuming a control
system as in [2], we further calculate that:
 W = B * RTT / N (5)

We can easily observe that it takes several RTTs for a
smallα to pay back the bandwidth credit of a high β.

Equation (1) is modeled by calculating the average
throughput over a congestion epoch, which is associated
with several RTTs. Since equation (1) gives the steady
state TCP throughput, in a dynamic network where
conditions changing rapidly, friendliness might not be
attained. More precisely, based on (4) we conclude that (1)
and (2) can be achieved at a time n RTTs or later since
multiple drops will extend further the time of convergence.
Based on (4) and (5) we further conclude that the time
period required for (1) and (2) to hold is in reverse
proportion to contention within a fixed bandwidth channel;
the smaller the number of flows, the larger the window and
therefore the longer the convergence time. By the same
token, the fact that a responsive protocol can exploit
bandwidth better suggests that lower contention is a
favorable case for such protocols.

This analysis implies that, smooth protocols may be
more aggressive (since they consume temporarily more
bandwidth) in the presence of transient errors, while they
may behave more conservatively, due to their low
increasing rate, when multiple drops force the
multiplicative decrease factor to adjust the congestion
window back to its initial value. This can be justified by a
hidden assumption behind (3): when packet drops occur at
the end of the congestion epoch, the window decreasing by
a factor of (1-β) is applied only once. However, multiple
packet drops could cause the window size to be decreased
multiple times, or they could also cause the retransmission
timer to expire. At the end, it is possible that the window
size and the ssthresh could be decreased down to 2
segments, even with smooth backward adjustments. Under
such scenarios, the performance of applications (including
real-time applications) is not affected by how slowly the
sender reduces its sending rate, but rather by how fast it
can recover from the error and restore its sending rate.
Note that our scenario is not unrealistic. For example, in
mobile networks, burst correlated errors and handoffs
generate this kind of error pattern. The aggressiveness of

responsive TCP may be a desirable behavior. We confirm
our statements experimentally in section 4.

3. Experimental Methodology
3.1 Testing Plan

We have implemented our testing plan on the ns-2
network simulator. The network topology used as a test-
bed is the typical single-bottleneck dumbbell, as shown in
Figure. 1. The link's capacity (bw_bottleneck) is 10Mbps,
unless it is explicitly stated otherwise. We used equal
number of source and sink nodes. We simulated a
heterogeneous (wired and wireless) network with ns-2
error models which were inserted into the access links at
the sink nodes. The Bernoulli model was used to simulate
link-level errors with configurable packet error rate (PER).
The number of flows occasionally changes for the different
scenarios. The simulation time was fixed at 120 seconds, a
time-period deemed appropriate to allow all protocols to
demonstrate their potential.

bw_bottleneck

10ms

10ms
bw_dst

10ms
bw_src

Sink N
Source N

Sink 1 Source 1

Figure 1. Network topology

 Due to the deterministic nature of the experiments,
statistical validity is not an issue. In order to validate our
statements, we selected and evaluated three protocols that
satisfy the TCP-friendly equation [10]. We used standard
New-Reno TCP (1, 0.5), a responsive New-Reno TCP
(1.25, 0.25) and a smooth New-Reno TCP (0.31, 0.875).

In the first scenarios, ftp flows are entering the system
within the first seconds. All flows are fixed, during the rest
118 seconds. In order to evaluate how efficiently and fairly
the protocols can exploit available bandwidth, we used,
additionaly, scenarios with graduated contention decrease.

3.2 Performance Metrics

Our evaluation plan calls for common, as well as non-
traditional metrics. We used traditional metrics for protocol
efficiency, and fairness.

The system goodput is used to measure the overall
system efficiency in bandwidth utilization. The system
Goodput is defined as :

Goodput= Original_Data / Connection_time

where Original_Data is the number of bytes delivered
to the high-level protocol at the receiver (i.e. excluding
retransmitted packets and overhead) and Connection_time
is the amount of time required for the data delivery.

Fairness is measured by the Fairness Index, derived
from the formula given in [2] and defined as :

2

0

2

0

()

()

n

i
i

n

i
i

Throughput
Fairness

n Throughput

=

=

=
∑

∑

where Throughputi is the Throughput of the i th flow and n
the flow number.

In order to capture the amount of extra energy
expended, we introduce a new metric. Extra Energy
Expenditure (3E) takes into account the difference of
achieved Throughput from maximum Throughput
(Throughputmax) for the given channel conditions, the
difference of Goodput from Throughput, attempting to
locate the Goodput as a point within a line that starts from
0 and ends at Throughputmax. The metric 3E takes values
from 0 to 1, attempting to capture both distances.

max

max max

Throughput ThroughputThroughput Goodput
EEE a b

Throughput Throughput

−−
= +

where a=1 and b=0.3

When Goodput approaches Throughput which
approaches 0, the extra expenditure is only due to time
waiting (probably in an idle state). We assume that the
extra expenditure at this stage is 0.3 (the first term is 0).
Instead, when Goodput=Throughput=Throughputmax the
extra expenditure is 0, since all the expended energy has
been invested into efficient transmissions. Also, when
Throughputmax= 100, Throughput=99, Goodput=1, the
extra expenditure due to unsuccessful retransmission grows
to an almost maximum value (0.993)

We need to introduce another metric as well, in order
for us to capture the level of Unexploited Available
Resources (UAR). That is, how well did we exploit the
windows of opportunities for successful transmissions.
Reasonably, the case of Goodput=Throughput=0 should
not give us at this point a minor (as with the 3E metric)
but a major penalty.

max

1 []
Throughput Goodput

UAR a b
Throughput Throughput

= − +

where a=0.5 and b=0.5. The UAR index ranges also from 0
to 1, expressing also a negative performance aspect.

4. Results and Discussion
4.1 Low error rate favors responsive protocols

The first scenario simulates a heterogeneous
environment with random transient errors increasing from
0.01 to 0.1 PER. We used 30 flows and a 10Mbps
bottleneck, a relatively low-contention environment. The
following results show that the responsive protocol
outperforms the smooth one. Also, its aggressive behavior
favors both Extra Energy Expenditure (3E) and
Unexploited Available Resources Index (UAR) :

0

0,05

0,1

0,15

0,2

0,25

0,3

0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,1

Error Rate

E
E

E

TCP (1,0.5)

TCP (0.31,0.875)

TCP (1.25,0.25)

Figure 2. EEE & Low Error-Rate

0

0,1

0,2

0,3

0,4

0,5

0,6

0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,1

Error Rate

U
A

R

TCP (1,0.5)

TCP (0.31,0.875)

TCP (1.25,0.25)

Figure 3. UAR & Low Error Rate

0

10

20

30

40

50

60

70

80

90

0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,1

Error Rate

G
o

o
dp

ut
 (K

B
ps

)

TCP (1,0.5)

TCP (0.31,0.875)

TCP (1.25,0.25)

Figure 4. Goodput & Low Error Rate

4.2 A macroscopic view of the Effort/Gain
dynamics

In the last scenario we used handoffs with duration 0.2

seconds in a 10Mbps bottleneck. We measured
performance, ranging the number of flows from 10 to 100.

We can observe that, better resource and energy
exploitation may have a positive impact on protocol
goodput, although the reverse is also possible. See, for
example the contrasting outcome with less and more effort,
in figures 5,6,7 and 2,3,4, respectively.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

10 20 30 40 50 60 70 80 90 100

Flows

E
E

E

TCP (1,0.5)

TCP (0.31,0.875)

TCP (1.25,0.25)

Figure 5. EEE & Effort/Gain dynamics

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

10 20 30 40 50 60 70 80 90 100

Flows

U
A

R

TCP (1,0.5)

TCP (0.31,0.875)

TCP (1.25,0.25)

Figure 6. UAR & Effort/Gain dynamics

0

50

100

150

200

250

300

350

400

450

10 20 30 40 50 60 70 80 90 100

Flows

G
o

o
d

p
u

t
(K

B
p

s)

TCP (1,0.5)

TCP (0.31,0.875)

TCP (1.25,0.25)

Figure 7. Goodput & Effort/Gain dynamics

4.3 Observations with contention decrease

The next scenario presented here intends to provide a

framework for characterizing protocol behavior when
bandwidth becomes available rapidly in heterogeneous
networks. We measure Extra Energy Expenditure (3E),
Unexploited Available Resources Index (UAR) and
Goodput for a range of flows from 10 to 20. We used a 0.2
PER. All flows are entered in the system within the first
two seconds. For the rest 112 seconds we have a graduated
contention decrease, starting from 10 flows and repeating
the experiment for 11, 12 upto 20 flows. At each stage we
reduce the number of flows to half every Decrease_Step
seconds, where Decrease_Step, is the step needed, in order
for the last flow to exit at the 120th second.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

10 11 12 13 14 15 16 17 18 19 20

Flows

E
E

E

TCP (1,0.5)

TCP (0.31,0.875)

TCP (1.25,0.25)

Figure 8. EEE & Contention Decrease

Although, according to the 3E metric, protocol

behavior appears stable, the UAR index indicates that
available resources are not exploited very well by the
smooth protocol.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

10 11 12 13 14 15 16 17 18 19 20

Flows

U
A

R

TCP (1,0.5)

TCP (0.31,0.875)

TCP (1.25,0.25)

Figure 9. UAR & Contention Decrease

4.4 Error rate increase cancels responsive TCP’s
advantages

In the following scenario, we used 30 flows, a 10Mbps

bottleneck and a variable error-rate from 0.01 to 0.4 PER.

During low error rate the responsive protocol has better
return for its effort, however, when error-rate exceeds 0.1,
these advantages are canceled (see figures 10, 11, 12).

We summarize below the difference in Fairness, Extra
Energy Expenditure, Unexploited Available Resources
Index and Goodput.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,01 0,02 0,05 0,1 0,2 0,3 0,4

Error Rate

F
ai

rn
es

s TCP (1,0.5)

TCP (0.31,0.875)

TCP (1.25,0.25)

Figure 10. Fairness & Error-Rate

0

0,05

0,1

0,15

0,2

0,25

0,3

0,01 0,02 0,05 0,1 0,2 0,3 0,4

Error Rate

E
E

E

TCP (1,0.5)

TCP (0.31,0.875)

TCP (1.25,0.25)

Figure 11. EEE & Error-Rate

0

0,1

0,2

0,3

0,4

0,5

0,6

0,01 0,02 0,05 0,1 0,2 0,3 0,4

Error Rate

U
A

R

TCP (1,0.5)

TCP (0.31,0.875)

TCP (1.25,0.25)

Figure 12. UAR & Error-Rate

0

10

20

30

40

50

60

70

80

90

0,01 0,02 0,05 0,1 0,2 0,3 0,4

Error Rate

G
o

o
d

p
u

t
(K

B
p

s)

TCP (1,0.5)

TCP (0.31,0.875)

TCP (1.25,0.25)

Figure 13. Goodput & Error-Rate

We can see that the responsive protocol is favored,

initially. After a certain point, which is relevant to the
specifics of the experiment (which in our case is 0.1), the
smooth protocol may even become more efficient (in
goodput) and fair, while it expends less extra energy.
When the fair-share grows, due to higher bandwidth
(100Mbps), the previous behavior is indicated more clearly
(see figures 14, 15).

0

0,05

0,1

0,15

0,2

0,25

0,3

0,01 0,02 0,05 0,1 0,2 0,3 0,4

Error Rate

E
E

E

TCP (1,0.5)

TCP (0.31,0.875)

TCP (1.25,0.25)

Figure 14. EEE & Error-Rate

0

20

40

60

80

100

120

0,01 0,02 0,05 0,1 0,2 0,3 0,4

Error Rate

G
o

o
d

p
u

t
(K

B
p

s)

TCP (1,0.5)

TCP (0.31,0.875)

TCP (1.25,0.25)

Figure 15. Goodput & Error-Rate

5. Conclusions and future work

We have shown that smooth/responsive protocols do
not always have a conservative/aggressive behavior
respectively, as it is was traditionally believed. We have
predicted through a basic analysis and confirmed
experimentally a better behavior of conservative protocols
in a high error-rate environment, in contrast to the
aggressive ones. In case of low error-rates and sufficient
availability of bandwidth, the situation is reversed.

If TCP’s traffic could be shaped to conform to
detected network characteristics, system peformance
metrics such as goodput, fairness, energy expenditure and
resource utilization would be handled better.

Initially, we plan to work towards a measurement
based detection of network characteristics, such as the one
presented in [9]. Departing from there, we plan to apply
error recovery tactics which integrate the adaptive strategy,
in accordance with the results shown here.

6. References

[1] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion

Control”, RFC2581, April 1999.

[2] D.-M. Chiu and R. Jain, “Analysis of the Increase and

Decrease Algorithms for Congestion Avoidance in
Computer Networks”, Computer Networks and ISDN
Systems, 17(1):1-14, 1989.

[3] S. Floyd, “Congestion Control Principles”, RFC 2914,

September 2000.

[4] S. Floyd, M. Handley and J. Padhye, “A Comparison of

Equation-based and AIMD Congestion Control”, May 2000.
URL: http://www.aciri.org/tfrc/.

[5] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-

Based Congestion Control for Unicast Applications”,
Proceedings of ACM SIGCOMM 2000, August 2000.

[6] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, "Modeling

TCP Throughput: A Simple Model and its Empirical
Validation", ACM SIGCOMM 1998, August 1998.

[7] V. Tsaoussidis, H. Badr, X. Ge, K. Pentikousis,

“Energy/Throughput Tradeoffs of TCP Error Control
Strategies”, 5th IEEE Symposium on Computers and
Communications IEEE ISCC 2000, July 2000.

[8] V. Tsaoussidis and I. Matta, “Open issues on TCP for

Mobile Computing”, Journal of Wireless Communications
and Mobile Computing, Wiley Academic Publishers, Issue
2, Vol. 2, February 2002.

[9] V. Tsaoussidis and C. Zhang “TCP-Real: Receiver-oriented

Congestion Control”, The Journal of Computer Networks
COMNET, Elsevier Science pp 477-497, Volume 40, Issue
4, November 2002.

[10] Y.R. Yang and S.S. Lam, “General AIMD Congestion
Control”, Proceedings of the 8th International Conference on
Network Protocols”, Osaka, Japan, November 2000.

[11] Y.R. Yang, M.S. Kim and S.S. Lam, “Transient Behaviors

of TCP-friendly Congestion Control Protocols”, Proceedings
of IEEE INFOCOM 2001, April 2001.

