
Shaping TCP Traffic in Heterogeneous
Networks

I. Psarras, L. Mamatas and V.Tsaoussidis
Dept. of Electrical and Computer Engineering

Demokritos University of Thrace, Greece
{ipsaras, emamatas, vtsaousi}@ee.duth.gr

Abstract — In this paper, we depart from TCP-Probing [13, 14] and propose an experimental
transport protocol that has energy and throughput performance gains in both wired and wireless
environments. Our approach decouples error recovery from contention estimation and focuses on how
these two mechanisms can (i) feed the decision process and (ii) implement the protocol strategy by
shaping traffic, accordingly. We use a validation mechanism, which possibly uncovers previous wrong
estimations. Our analysis matches well our simulation results, which are very promising.

Keywords — TCP, Probing, Energy, Wireless

I. INTRODUCTION
CP is the most widely used protocol for reliable data transmission over the Internet. The Transmission
Control Protocol was designed in days when the existing network infrastructure was based solely on

wired components. Under these circumstances, TCP [1] was required to deal with problems such as fairness
in bandwidth consumption of the competing flows and congestion control. However, the Internet started
growing in size and, in addition, much of its infrastructure became wireless. Today, the Internet can be
described as a fully heterogeneous internetwork.

T

Heterogeneity spans across a variety of components: from the network’s type (wireless, satellite etc), and
network’s speed (i.e. high-speed) to the ‘end-users’ battery lifetime of mobile devices (i.e. in case of ad-hoc
networks). Although a backbone can be also wireless or satellite, our present work focuses on wired
backbone with wireless receiving-ends. Further experimentation can easily be used for other types of
backbone.

As a result of this heterogeneity, TCP is facing serious performance problems, concerning the fact that it is
not able to handle, for example, a wireless network's unique characteristics. In a wired network, a packet
drop is mainly due to congestion (i.e. buffer overflow), and this is where TCP's congestion control
algorithms are focusing on, while packet losses over wireless links are primarily due to fading channels, or
handoffs. In this second situation TCP wrongly continues to behave under the rules of congestion [15].

In this paper, we are trying to demonstrate the behavior of an ideal protocol, in response to the different
situations, which discretely describe a network state.

We are interested in end-to-end solutions, which do not require any modification to the network's
infrastructure. We propose an improvement to the core mechanism of the experimental protocol TCP-
Probing [13, 14] and we present some results showing the potential of our work. We also use two new
metrics introduced in [10], in order to capture the protocol's behavior in terms of energy expenditure and
discovery of unexploited available bandwidth.
In our perspective, TCP is trying to achieve three basic goals:

- Fairness. Every flow should be fair to all the others in order to share the same channel.
- Performance. Good performance is closely related to continuous discovery of available bandwidth.
- Congestion Avoidance. Overflowing the network and hence loss of data segments due to congestion, is

a situation that should be avoided.
Reliable protocols use error control mechanisms, in order to achieve these goals. These mechanisms can

be divided into error detection, and error recovery mechanisms. In the widely deployed TCP versions (TCP-
Tahoe [12], TCP-Reno [1], TCP-NewReno [8], TCP-SACK [11]) timeouts and duplicate acknowledgments
are interpreted as packet losses from the error detection mechanisms. Upon a packet loss, TCP adjusts
downwards the sender's window size, and extends the timeout period. In this way, it does not seem to
differentiate the congestion window from the timeout period, an action that would be useful in many cases,

P32/1

especially in heterogeneous environments.
We will make use of four different, but very realistic scenarios, to show that an adaptive recovery strategy

would approach better the aforementioned goal.

A. Congestion
The most common scenario in a packet network is that of the congested channel. As noted before, in this

situation and after a packet is lost, TCP reduces the sender's congestion window and extends the timeout
period. This situation appears mostly in wired networks, where standard TCP has a fairly good behavior.
However, even in a wireless network, in case of high-level of contention, this might be the appropriate
action.

B. Contention Decrease
As already noted, in order to achieve good performance, a protocol should dynamically discover and

immediately exploit the available bandwidth. Although congestion decrease is common in heterogeneous
networks, where bandwidth becomes available rapidly, in this scenario we study the protocol’s performance,
over a wired topology. In such a situation and after a packet loss, the appropriate behavior of a protocol is to
inspect the network’s condition and become aware of the available bandwidth. Backing off under these
circumstances (as standard TCP would) might not be the right action.

C. Handoffs
Another situation that appears quite often in wireless/mobile environments is the handoff event. During a

handoff, no data can be transmitted through the link, and hence the appropriate action would be to suspend
data transmission for the duration of the handoff. Furthermore, the timeout period has no reason to be
extended, since there is no data exchange between the sender and the receiver, which means that there is no
buffering, and as a result there is no queuing delay. Finally, the sender's congestion window adjustment
depends largely on the level of contention after the handoff period. If no contention is indicated, there is no
reason to shrink the window. Otherwise, a more conservative strategy is appropriate. The absence of such an
adaptive mechanism in TCP's error recovery costs in performance. For example, during a handoff period that
lasts 5 RTTs, TCP would try to transmit 1KB of data for every RTT, which means that a sum of 5 KB would
be lost. In addition to the overhead (retransmitted packets, plus TCP header bytes), extra energy consumption
calls for more adaptive recovery strategies.

D. Fading Channels
Random transient errors due to fading channels declare another situation that should be taken into

consideration in a protocol's behavior. Similarly to the handoff event, in the presence of errors, there is no
need to extend the timeout period. Random transient errors do not affect the router’s buffering, leaving it at
the same state prior to the error. The adjustment of the sender's window is a matter of strategy, since the rate
of the errors varies. In high error rates, the shrinkage of the window seems to be the appropriate action, in
order not to crash with a large congestion window, which means that a heavy payload will need to be
retransmitted. However, in a situation of low error rate, where random transient errors do not occur very
often, it seems that there is no need to back-off and reduce the window, since the probability of losing the
next data segment is rather low.

Departing from the above four scenarios, we propose that TCP traffic should be shaped differently, in

order for the transport protocol to achieve performance gains in heterogeneous networks.
Generally, we observe that in heterogeneous networks:
- Timeout should be growing, only in association with contention.
- An “early” attempt to estimate contention (before the 3-DACKS or elapsed timeout) can lead to a

more effective error classification strategy. When a packet is lost in a low contention-environment,
then a wireless error is clearly indicated.

- A false “early” contention estimation can be filtered by a second-level contention estimation
mechanism, which is deployed between packet-drop detection (3-DACKS or elapsed timeout) and
error-recovery.

- A transient error does not call for either timeout or congestion window adjustment.
- During a dense error or a handoff, a probing mechanism can reduce unnecessary overhead.

P32/2

II. DECOUPLING ERROR RECOVERY FROM ESTIMATION
All of the existing widely deployed TCP versions are basically trying to avoid, detect and recover from

congestion. The congestion-control algorithm, used in TCP-Tahoe [12] includes Slow-Start, Congestion
Avoidance, and Fast Retransmit. TCP-Reno [1] introduces Fast Recovery in conjunction with Fast
Retransmit. TCP-NewReno [8] addresses the problem of multiple segment drops within a single window of
data. In effect, it can avoid many of the retransmit timeouts of Reno. The TCP-SACK [11] modification
introduces a selective acknowledgment strategy.

Standard TCP is not able to distinguish between errors due to congestion and wireless errors. It assumes
that every time a packet loss occurs, it is always because of congestion [13].

By adding a probing mechanism onto standard TCP we can achieve two more goals. Firstly, a probing
mechanism is trying to inspect the network load whenever an error is detected and in this way it enables error
classification (i.e. due to congestion or to wireless error). Furthermore, it can monitor the network, in order
to measure the level of contention. Secondly it suspends data transmission for as long as the error persists
implementing in that way an energy-efficient mechanism.

The general idea of the probing mechanism is as follows. Whenever a packet is lost, TCP-Probing [13, 14]
instead of retransmitting the whole data segment, as would standard TCP, it suspends data transmission and
enters a probe cycle. Probe segments carry no payload. They consist of only segment headers, being in that
way energy-efficient even if the error is persistent and the probing segment is lost. For example, in the event
of a burst error or a handoff, little will be added to the overall overhead by losing the probe segment, than by
losing the full data segment, as would standard TCP.

Our approach decouples error-recovery from contention estimation, in a way that estimates contention
level before the packet-drop. This “early” congestion detection has the following three goals: (i) to avoid a
wrong aggressive error recovery which leads to unnecessary overhead (ii) to avoid a false freezing of the
timeout (iii) to skip needless probing cycles.

We use, additionally, the contention estimation mechanism, which is bounded in TCP-Probing as a
validator to our previous estimation. A conservative error recovery strategy is followed when either of the
two contention-level estimation mechanisms show high contention.

A. Error-Recovery Mechanism
The probe cycle will not terminate until the network conditions are such that the sender can make two

successive round-trip-time (RTT) measurements from the network. These measurements are helpful
information that will be taken into account by the recovery strategy. If these measurements show that there is
high level of contention, the recovery strategy will back-off, as in Reno. Otherwise, if the measurements
show that there is available bandwidth (either due to transient random error or after a handoff), the recovery
strategy will immediately try to exploit it.

The sender enters a probe cycle when either of two situations apply: a timeout event occurs or three dacks
are received. When the probe cycle completes, we gather some information about the network conditions
from the measured probe RTTs (this scheme is explained in detail later), and if there is available throughput
capacity, TCP-Probing assumes that there is no need to adjust downwards neither the congestion window,
nor the Slow-Start threshold. So it picks up from the point where it was before the occurred event (timeout or
3 dacks). This is called “Immediate Recovery”. Otherwise, the protocol enters the Slow-Start phase.

B. Contention Estimation
In a packet-switched network, a situation where no congestion is indicated is rather non-realistic. On the

contrary, especially in a wired scenario, the primary problem is the high level of contention, which finally
leads to congestion. Under those circumstances, since TCP-Probing is an experimental protocol that focuses
on heterogeneous wired-wireless networks, we added one additional feature. On every single RTT, TCP-
Probing calculates a “congestion predictor”, along the lines of TCP-Vegas algorithm [4, 5]. We call this
vegas_predictor. If this predictor is higher than an adjustable threshold, then TCP-Probing does not enter a
probe cycle in the event of 3 dacks, even when the packet is finally lost. Instead, it enters Slow-Start as in
Reno.

Many proposals tried to classify the losses through different estimation techniques. Barman and Matta [2],
proposed an improvement on TCP New Reno, New Reno-FF, a technique that is based on average and
variance of the round trip time using a filter called Flip-Flop, a filter which is augmented with history
information. Another classification technique proposed by Liu, Matta and Crovella [9] is based on the loss

P32/3

pairs measurement technique and Hidden Markov Models (HMMs). This technique is based on the fact that
the delay distribution around wireless losses is different from the one around congestion losses. Another
Enhancement to TCP is introduced by Chandra, Harris and Shenoy [6] and is referred to as E-TCP. E-TCP
uses a new acknowledgement packet format and an agent to assist E-TCP in implementation and in this way
makes TCP aware of the existence of wireless losses. Many researchers are working on reliable congestion
predictors, in order to avoid packet losses due to congestion. Biaz and Vaidya [3] implemented a receiver-
oriented technique to distinguish congestion losses from corruption losses.

III. IMPLEMENTATION

A. The Core Probing Mechanism
A probe cycle uses two probing segments (PROBE1, PROBE2) and their corresponding acknowledgments

(PR1_ACK and PR2_ACK), implemented as option extensions to the TCP header. As noted before the
segments carry no payload.

The sender initiates a probe cycle by transmitting a PROBE1 segment to which the receiver immediately
responds with a PR1_ACK, upon receipt of which the sender transmits a PROBE2. The receiver
acknowledges this second probing with a PR2_ACK and returns to the ESTAB state. The sender makes an
RTT measurement based on the time delay between sending the PROBE1 and receiving the PR1_ACK, and
another based on the exchange of PROBE2 and PR2_ACK.

The sender makes use of two timers during the probing cycle. The first is a probe timer, used to determine
if a PROBE1 or its corresponding PR1_ACK segment are missing, and the same again for the
PROBE2/PR2_ACK segments. The second is measurement timer, used to measure each of the two RTTs
from the probe cycle, in turn. The probe timer is set to the estimated RTT value current at the time the probe
cycle is triggered. For a full analysis of the probe mechanism along with a state diagram, see [13, 14].

B. Freezing Through Probing
A primary part of the probing mechanism, which directly impacts the protocol’s performance, is the part

that is responsible for the recovery strategy. The recovery strategy will be followed after the end of the probe
cycle. In case of a packet loss due to congestion, the protocol backs off as in Tahoe or in Reno depending on
the level of contention (the higher the level of contention, the more conservative it will recover). If the loss
was caused by a random transient error, the available bandwidth of the channel will, normally, no longer be
affected. In such a situation there is no need to back off and Immediate Recovery is applied. A handoff will
cause the loss of the probe segments, and hence the probe cycle will not terminate until the communication
channel is “up” again. The fact that only probe segments (40 Bytes) are lost during the handoff, makes the
protocol energy efficient compared to Reno and New Reno. Depending on the measurements of the probe
cycles the appropriate recovery will be applied.

TCP-Probing exploits due to Immediate Recovery the available bandwidth of a wireless channel more
effectively than TCP-Reno / TCP-NewReno would. TCP-Reno / TCP-NewReno would back-off, considering
that congestion is indicated. This means that both the congestion window and the Slow-Start threshold are
adjusted downwards. In this way many RTTs are needed in order to reach the previous full window size.

It is possible to experience a random drop during a phase of moderated congestion. TCP-Probing takes
advantage of the recent measurements gathered by the probe cycle and acts like TCP-Reno or TCP-Tahoe
(the decision between TCP-Reno and TCP-Tahoe is explained later). As noted before, a new feature is added
to TCP-Probing, the vegas_predictor. The calculation of this predictor takes place on every RTT. If this
predictor shows high contention, none of the above happens. The probe cycle is skipped and TCP-Probing
acts like TCP-Reno. In such case, the protocol's performance equals TCP-Reno’s in a wired network.

We implement the above plan as follows. Firstly, the vegas_predictor is calculated:
vegas_expected_throughput = cwnd_ / best_rtt_
vegas_actual_throughput = cwnd_ / last_rtt_
vegas_difference=vegas_expected_throughput - vegas_actual_throughput

If vegas_difference is greater than 4, then the probe cycles are skipped. Otherwise, if a packet goes lost,

the probing mechanism is triggered. Upon exiting the probe cycle, we calculate a threshold that identifies the
Current Probe RTT (cp_rtt). The threshold used here is built dynamically and relies on the recent probe RTT

P32/4

sample. We compare the cp_rtt with the best and worst measurement of probe RTT (best_probe_rtt_,
worst_probe_rtt_ - that is, the smallest and largest probe RTT during the communication, respectively). The
more the distance from the best_probe_rtt grows the more conservatively we will recover.

average_probe_rtt= (best_probe_rtt_+worst_probe_rtt_) / 2

Comparing those two values, we know if the cp_rtt is above or below the average_probe_rtt. In each of the

two cases (above or below), we compare the probe RTTs with the smallest (best) RTT during the
communication. After these two comparisons we have a good estimation of the network’s state, in order to
recover in the appropriate way.

 cp_rtt_ = ALFA*sample_probe_rtt

if (cp_rtt_ < average_probe_rtt)

/*we are below the average: more aggressive behavior is needed*/
 if (both_sample_probe_rtts < best_RTT)
 FULL_IR
 else

 3/4_IR (ssthresh=3/4*ssthresh & cwnd=1)
 end if

 end if

 if (cp_rtt_ > average_probe_rtt)
 /*we are above the average: more conservative behavior is needed*/
 if (both_sample_probe_rtts < best_RTT)
 RENO_RECOVERY
 else
 SLOW_ START_RECOVERY
 end if

end if

Other issues need to be considered for the implementation of the probing mechanism. First of all, and

although it seems to work well, the congestion predictor that indicates the skipping of the probe cycles
(vegas_predictor), might need to be replaced by a more sophisticated mechanism that makes a better
estimation of network conditions. Another issue that calls for further investigation is the number of the probe
segments that are sent. It may be better for the probing mechanism to monitor the network by one probe
measurement only, avoiding the loss of a second RTT. Such a change will also affect the probing decision,
since there will be no sample_probe_rtt, but only “one_probe_rtt”. Finally the version of Immediate
Recovery that reduces the Slow-Start threshold to ¾ of its previous value may need to become more
adjustable, in order to exploit the available bandwidth in a more sophisticated way.

IV. EXPERIMENTAL METHODOLOGY

A. Testing Plan
We have implemented our testing plan on the ns-2 network simulator. The network topology used as a

test-bed is the typical single-bottleneck dumbbell, as shown in Figure 1. The link's capacity (bw_bottleneck)
is 100Mbps. The bw_src is 10Mbps, and the bw_dst either 1Mbs or 10Mbps. We used equal number of
source and sink nodes. We simulated an heterogeneous (wired and wireless) network with ns-2 error models
which were inserted into the access links at the sink nodes. The Bernoulli model was used to simulate link-
level errors with configurable packet error rate (PER). The number of flows occasionally changes for the
different scenarios. The simulation time was fixed at 60 seconds, a time-period seemed appropriate to allow
all protocols to demonstrate their potential.

P32/5

bw_bottleneck

10ms

10ms
bw_dst

10ms
bw_src

Sink N
Source N

Sink 1 Source 1

Figure 1. Network topology

In the first scenarios, ftp flows are entering the system within the first seconds. All flows are fixed, during

the rest 58 seconds. In order to evaluate how efficiently and fairly the protocols can exploit available
bandwidth, we used, additionally, scenarios with graduated contention decrease.

B. Performance Metrics
Our evaluation plan calls for common, as well as non-traditional metrics. We used traditional metrics for

protocol efficiency, and fairness.
The system goodput is used to measure the overall system efficiency in bandwidth utilization. The system

Goodput is defined as:

Goodput= Original_Data / Connection_time

where Original_Data is the number of bytes delivered to the high-level protocol at the receiver (i.e.
excluding retransmitted packets and overhead) and Connection_time is the amount of time required for the
data delivery.

Fairness is measured by the Fairness Index, derived from the formula given in [7] and defined as:
2

0

2

0

()

()

n

i
i

n

i
i

Throughput
Fairness

n Throughput

=

=

=
∑

∑

where Throughputi is the Throughput of the ith flow and n the flow number.
In order to capture the amount of extra energy expended, we introduce a new metric. Extra Energy

Expenditure (3E) takes into account the difference of achieved Throughput from maximum Throughput
(Throughputmax) for the given channel conditions, the difference of Goodput from Throughput, attempting to
locate the Goodput as a point within a line that starts from 0 and ends at Throughputmax. The metric 3E takes
values from 0 to 1, attempting to capture both distances.

max

max max

Throughput ThroughputThroughput GoodputEEE a b
Throughput Throughput

−−
= +

where a=1 and b=0.3
When Goodput approaches Throughput which approaches 0, the extra expenditure is only due to time

waiting (probably in an idle state). We assume that the extra expenditure at this stage is 0.3 (the first term is
0). Instead, when Goodput=Throughput=Throughputmax the extra expenditure is 0, since all the expended
energy has been invested into efficient transmissions. Also, when Throughputmax= 100, Throughput=99,
Goodput=1, the extra expenditure due to unsuccessful retransmission grows to an almost maximum value
(0.993)

We need to introduce another metric as well, in order for us to capture the level of Unexploited Available
Resources (UAR). That is, how well did we exploit the windows of opportunities for successful
transmissions. Reasonably, the case of Goodput=Throughput=0 should not give us at this point a minor (as
with the 3E metric) but a major penalty.

max

1 []Throughput GoodputUAR a b
Throughput Throughput

= − +

where a=0.5 and b=0.5. The UAR index ranges also from 0 to 1, expressing also a negative performance
aspect.

P32/6

V. RESULTS AND DISCUSSION
Two versions of TCP took place in the simulations. The TCP-NewReno and TCP-Probing [13, 14]. Many

measurements with different characteristics have been carried out, in order to understand each protocol’s
behavior. Here we will present 4 simple scenarios with characteristics that can show the efficiency of our
adaptive recovery strategy. Each version of the protocol was tested by itself, separately from the others. So,
the error control mechanism can demonstrate its capability, without being influenced by the presence of
other type of flows in each channel.

A. A Full Wired Scenario
In this first scenario, the bw_dst is 10Mbps, in order for the flows to have enough fair-share to expand their

windows. Our purpose here is to demonstrate that this version of TCP-Probing performs good enough in a
wired environment too, compared to the traditional TCP-Probing (without the use of the vegas_predictor). In
fact, in some cases TCP-Probing slightly outperforms New Reno. This is mostly happening because, after a
packet is lost because of buffer overflow, and should vegas_predictor indicate no congestion (since there is
enough throughput capacity), TCP-Probing immediately gets aware of this capacity and recovers with
Immediate Recovery. The above can be understood from the Goodput and UAR Charts below. In this
scenario there is no difference in the energy expenditure of the two protocols. The Fairness Index of the two
protocols is very close to 1.

 Figure 2. Goodput on Wired Figure 3. UAR on Wired

1 2 3 4 5 6 7 8 9 10

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

11000000

12000000

New Reno
TCP-Probing

Number of flows

G
oo

dp
ut

1 2 3 4 5 6 7 8 9 10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

New Reno
TCP-Probing

Number of flows

U
AR

B. A Wired Scenario with Contention Decrease
In this scenario, we present a simple wired environment in order to understand the basic behavior of the

protocols in conjunction with contention decrease. We measure Unexploited Available Resources Index
(UAR) and Goodput for a range of flows from 10 to 100. All flows enter the system within the first two
seconds. For the rest 58 seconds we have a graduated decrease, starting from 10 flows and repeating the
experiment for 20, 30 up to 100 flows. At each stage we reduce the number of flows to half every
Decrease_Step seconds, where Decrease_Step, is the step needed, in order for the last flow to exit at the 60th
second. Here the bw_dst is 1Mbps and hence there is a high level of contention. We used a large number of
flows, in order for the flows to “step out” in groups, and as a result every Decrease_Step a large amount of
the bottleneck's throughput capacity is freed up.

As can be seen from Figures 4 and 5, the adaptive recovery strategy of TCP-Probing, which inspects the
network conditions (by the probe cycles), is able to detect the available bandwidth and immediately exploit
it. On the contrary, TCP-NewReno reduces its window on every packet loss, and thus not only is it unable to
exploit the extra available bandwidth but also leaves some of the existing bandwidth unexploited.

P32/7

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

New Reno
TCP-Probing

Number of flows

U
AR

10 20 30 40 50 60 70 80 90 100
0

250000

500000

750000

1000000

1250000

1500000
1750000

2000000

2250000

2500000

2750000

3000000

New Reno
TCP-Probing

Number of flows

G
oo

dp
ut

 Figure 4. Goodput on Wired/Congestion Decrease Figure 5. UAR on Wired/Congestion Decrease

C. Wireless Scenario with Handoffs
Handoffs are very common events in wireless networks. This scenario intent to present some results that

monitor the behavior of the protocols in a situation of frequent handoffs. The bw_dst is set at 10Mbps and
the protocols experience a situation where a handoff event occurs every 5 seconds and lasts for 0.5 seconds.

Our purpose here is to show the inefficient recovery strategy of standard TCP. This inefficiency causes
TCP not only to perform poorly in such an environment, but also to consume a lot of energy. This makes it
inappropriate for battery-powered devices. In Figures 6, 7 and 8 TCP-Probing clearly outperforms TCP-
NewReno in matters of Goodput, Unexploited Available Bandwidth and Extra Energy Expenditure. This is
easily explained, if we take into consideration that every time a handoff event occurs, and hence data is lost,
TCP-NewReno considers this as an indication of congestion. As a result it backs off, by reducing its window
and extending its timeout period, but still continues to send data segments. These segments are dropped, until
the end of the “blackout”. After the end of it, although a lot of bandwidth is available, TCP-NewReno
transmits only 1KB and enters Slow-Start phase. On the contrary, TCP-Probing suspends data transmission
for as long as the handoff is present (in fact it loses the probe segments which are 40 Bytes each). After the
end of the handoff period TCP-Probing monitors the conditions of the network (by the successful probe
cycles) and gets immediately aware of the available bandwidth, which immediately exploits. Hence, it acts
with respect to energy consumption, while it is aggressive only when the network conditions allow it.

 Figure 6. Goodput on Wireless/Handoffs Figure 7. UAR on Wireless/Handoffs

1 2 3 4 5 6 7 8 9 10

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000
4500000
5000000
5500000
6000000
6500000
7000000
7500000

New Reno
TCP-Probing

Number of flows

G
oo

dp
ut

1 2 3 4 5 6 7 8 9 10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

New Reno
TCP-Probing

Number of flows

U
A

R

D. A Wireless Scenario with Errors
In the last scenario, we simulated 60 flows, with a variable error-rate from 0.01 to 0.6 PER and bw_dst set

at 1Mbps, which means that congestion is often indicated. As noted before in the presence of random
transient errors, there is no reason to extend the timeout period, while the sender's window might have to be
reduced, especially in high error rate.

P32/8

As it can be seen from Figures 9, 10 and 11, the adaptive recovery strategy of TCP-Probing, where there is
no timeout extension in the Immediate Recovery, performs better that TCP-NewReno. The impact on energy
expenditure is also clear. In this scenario, TCP-Probing recovers with Immediate Recovery after a packet
loss, which means that there is a small shrinkage of the window. From Figure 9, we can see that, in low error
rate, the performance of TCP-NewReno is degraded, while in high error rate the performance increases very
much. This might be an indication, as stated in [10] too, that in an environment with high error rate the
appropriate action is to be more conservative. The last can be seen from Figures 10 and 11 where TCP-
Probing, a more aggressive protocol, does not consume less energy, nor does it exploit more bandwidth than
TCP-NewReno.

 Figure 8. EEE on Wireless/Handoffs Figure 9. Goodput on Wireless/Errors

1 2 3 4 5 6 7 8 9 10

0

0.03

0.05

0.08

0.1

0.13

0.15

0.18

0.2

0.23

0.25

0.28

0.3
New Reno
TCP-Probing

Number of flows

EE
E

0.01 0.03 0.05 0.07 0.1 0.2 0.3 0.4 0.6

0

250000

500000

750000

1000000

1250000

1500000

1750000

2000000

2250000

New Reno
TCP-Probing

PER

G
oo

dp
ut

In a wireless network, often all of the above (high level of contention, contention decrease, handoffs, and
random transient errors) happen altogether. Our purpose here was to start from the beginning and monitor the
unique characteristics of each network condition in order to find a recovery strategy that tackles all of them
and suites best to heterogeneous networks. Finally, we present the Goodput performance of the two protocols
(Figures 12, 13) in a more realistic scenario than the above, where the bw_dst is 1Mbps, 5 handoffs occur
during the communication with 1-second duration each, and there is a low error rate of 0.01 PER.

 Figure 11. UAR on Wireless/Errors

VI. CONCLUSION
Although, we studied primary the way th rk together (without focusing in either the

co

0.01 0.03 0.05 0.07 0.1 0.2 0.3 0.4 0.6
0

0.03

0.05

0.08

0.1

0.13

0.15

0.18

0.2

0.23

0.25

0.28

New Reno
TCP-Probing

PER

EE
E

0.01 0.03 0.05 0.07 0.1 0.2 0.3 0.4 0.6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

New Reno
TCP-Probing

PER

U
AR

 Figure 10. EEE on Wireless/Errors

ose decoupled parts wo
ntention estimation or error recovery mechanism), our results are very promising. In a future work, we

plan to optimize those two parts, in order to achieve better performance, even in some situations (i.e. Figures
12, 13) where TCP-Probing is outperformed by standard TCP.

P32/9

10 20 30 40 50 60 70 80 90 100

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

11000000

12000000

New Reno
TCP-Probing

Number of flows

G
oo

dp
ut

Figure 12. Goodput on Wireless Figure 13. Goodput on Wireless

3 4 5 6 7 8 9 10 20 30

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

New Reno
TCP-Probing

Number of flows

G
oo

dp
ut

REFERENCES

[1] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control”, RFC2581, April 1999.
[2] Dhiman Barman and Ibrahim Matta. “Effectiveness of Loss Labeling in Improving TCP Performance in

Wired/Wireless Networks”, Proceedings of the 10th IEEE International Conference on Network Protocols.
[3] Saad Biaz and Nitin Vaidya. “Discriminating Congestion Losses from Wireless Losses using Inter-Arrival Times at

the Receiver”, Proceedings of the 1999 IEEE Symposium on Application - Specific Systems and Software
Engineering and Technology.

[4] Lawrence S. Brakmo, Sean W. O'Malley, Larry L. Peterson: TCP Vegas: New Techniques for Congestion
Detection and Avoidance. SIGCOMM 1994: 24-35

[5] Lawrence S. Brakmo, Larry L. Peterson: TCP Vegas: End to End Congestion Avoidance on a Global Internet.
IEEE Journal on Selected Areas in Communications 13(8): 1465-1480 (1995)

[6] Deddy Chandra, Richard Harris and Nirmala Shenoy. “Congestion and Corruption Loss Detection with Enhanced-
TCP”, ATNAC 2003.

[7] D.-M. Chiu and R. Jain, “Analysis of the Increase and Decrease Algorithms for Congestion Avoidance in
Computer Networks”, Computer Networks and ISDN Systems, 17(1):1-14, 1989.

[8] S. Floyd and T. Henderson, "The New-Reno Modification to TCP's Fast Recovery Algorithm", RFC 2582, April
1999.

[9] Jun Liu, Ibrahim Matta and Mark Crovella. “End-to-End Inference of Loss Nature in a Hybrid Wired/Wireless
Environment”, In Proceedings of WiOpt'03: Modeling and Optimization in Mobile, Ad Hoc and Wireless
Networks, 2003.

[10] L. Mamatas, V.Tsaoussidis: Protocol Behavior: More Effort, More Gains? The 15th IEEE International
Symposium on personal, indoor and mobile radio communications, Barcelona, Spain.

[11] M. Mathis and J. Mahdavi and S. Floyd and A. Romanow, TCP Selective Acknowledgement Options, RFC 2018,
April 1996.

[12] W. Stevens, "TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery Algorithms", RFC 2001,
January 1997

[13] V. Tsaoussidis, H. Badr, "TCP-Probing: Towards an Error Control Schema with Energy and Throughput
Performance Gains" The 8th IEEE Conference on Network Protocols, ICNP 2000, Osaka, Japan, November 2000.

[14] V. Tsaoussidis and A. Lahanas, Exploiting the Adaptive Properties of a Probing Device for TCP in Heterogeneous
Networks" The Journal of Computer Communications COMCOM, Elsevier Science, pp 177-192, Volume 26, Issue
2, February 2003

[15] V. Tsaoussidis and I. Matta, “Open issues on TCP for Mobile Computing”, Journal of Wireless Communications
and Mobile Computing, Wiley Academic Publishers, Issue 2, Vol. 2, February 2002.

P32/10

	INTRODUCTION
	Congestion
	Contention Decrease
	Handoffs
	Fading Channels

	DECOUPLING ERROR RECOVERY FROM ESTIMATION
	Error-Recovery Mechanism
	Contention Estimation

	IMPLEMENTATION
	The Core Probing Mechanism
	Freezing Through Probing

	EXPERIMENTAL METHODOLOGY
	Testing Plan
	Performance Metrics

	RESULTS AND DISCUSSION
	A Full Wired Scenario
	A Wired Scenario with Contention Decrease
	Wireless Scenario with Handoffs
	A Wireless Scenario with Errors

	CONCLUSION

