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Abstract — In this paper, we depart from TCP-Probing [13, 14] and propose an experimental 
transport protocol that has energy and throughput performance gains in both wired and wireless 
environments. Our approach decouples error recovery from contention estimation and focuses on how 
these two mechanisms can (i) feed the decision process and (ii) implement the protocol strategy by 
shaping traffic, accordingly. We use a validation mechanism, which possibly uncovers previous wrong 
estimations. Our analysis matches well our simulation results, which are very promising. 
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I. INTRODUCTION 
CP is the most widely used protocol for reliable data transmission over the Internet. The Transmission 
Control Protocol was designed in days when the existing network infrastructure was based solely on 

wired components. Under these circumstances, TCP [1] was required to deal with problems such as fairness 
in bandwidth consumption of the competing flows and congestion control. However, the Internet started 
growing in size and, in addition, much of its infrastructure became wireless. Today, the Internet can be 
described as a fully heterogeneous internetwork. 

T 

Heterogeneity spans across a variety of components: from the network’s type (wireless, satellite etc), and 
network’s speed (i.e. high-speed) to the ‘end-users’ battery lifetime of mobile devices (i.e. in case of ad-hoc 
networks). Although a backbone can be also wireless or satellite, our present work focuses on wired 
backbone with wireless receiving-ends. Further experimentation can easily be used for other types of 
backbone.  

As a result of this heterogeneity, TCP is facing serious performance problems, concerning the fact that it is 
not able to handle, for example, a wireless network's unique characteristics. In a wired network, a packet 
drop is mainly due to congestion (i.e. buffer overflow), and this is where TCP's congestion control 
algorithms are focusing on, while packet losses over wireless links are primarily due to fading channels, or 
handoffs. In this second situation TCP wrongly continues to behave under the rules of congestion [15]. 

In this paper, we are trying to demonstrate the behavior of an ideal protocol, in response to the different 
situations, which discretely describe a network state.  

We are interested in end-to-end solutions, which do not require any modification to the network's 
infrastructure. We propose an improvement to the core mechanism of the experimental protocol TCP-
Probing [13, 14] and we present some results showing the potential of our work. We also use two new 
metrics introduced in [10], in order to capture the protocol's behavior in terms of energy expenditure and 
discovery of unexploited available bandwidth. 
In our perspective, TCP is trying to achieve three basic goals: 

- Fairness. Every flow should be fair to all the others in order to share the same channel. 
- Performance. Good performance is closely related to continuous discovery of available bandwidth. 
- Congestion Avoidance. Overflowing the network and hence loss of data segments due to congestion, is 

a situation that should be avoided. 
Reliable protocols use error control mechanisms, in order to achieve these goals. These mechanisms can 

be divided into error detection, and error recovery mechanisms. In the widely deployed TCP versions (TCP-
Tahoe [12], TCP-Reno [1], TCP-NewReno [8], TCP-SACK [11]) timeouts and duplicate acknowledgments 
are interpreted as packet losses from the error detection mechanisms. Upon a packet loss, TCP adjusts 
downwards the sender's window size, and extends the timeout period. In this way, it does not seem to 
differentiate the congestion window from the timeout period, an action that would be useful in many cases, 
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especially in heterogeneous environments.  
We will make use of four different, but very realistic scenarios, to show that an adaptive recovery strategy 

would approach better the aforementioned goal. 

A. Congestion 
The most common scenario in a packet network is that of the congested channel. As noted before, in this 

situation and after a packet is lost, TCP reduces the sender's congestion window and extends the timeout 
period. This situation appears mostly in wired networks, where standard TCP has a fairly good behavior. 
However, even in a wireless network, in case of high-level of contention, this might be the appropriate 
action. 

B. Contention Decrease 
As already noted, in order to achieve good performance, a protocol should dynamically discover and 

immediately exploit the available bandwidth. Although congestion decrease is common in heterogeneous 
networks, where bandwidth becomes available rapidly, in this scenario we study the protocol’s performance, 
over a wired topology. In such a situation and after a packet loss, the appropriate behavior of a protocol is to 
inspect the network’s condition and become aware of the available bandwidth. Backing off under these 
circumstances (as standard TCP would) might not be the right action.  

C. Handoffs 
Another situation that appears quite often in wireless/mobile environments is the handoff event. During a 

handoff, no data can be transmitted through the link, and hence the appropriate action would be to suspend 
data transmission for the duration of the handoff. Furthermore, the timeout period has no reason to be 
extended, since there is no data exchange between the sender and the receiver, which means that there is no 
buffering, and as a result there is no queuing delay. Finally, the sender's congestion window adjustment 
depends largely on the level of contention after the handoff period. If no contention is indicated, there is no 
reason to shrink the window. Otherwise, a more conservative strategy is appropriate. The absence of such an 
adaptive mechanism in TCP's error recovery costs in performance. For example, during a handoff period that 
lasts 5 RTTs, TCP would try to transmit 1KB of data for every RTT, which means that a sum of 5 KB would 
be lost. In addition to the overhead (retransmitted packets, plus TCP header bytes), extra energy consumption 
calls for more adaptive recovery strategies. 

D. Fading Channels 
Random transient errors due to fading channels declare another situation that should be taken into 

consideration in a protocol's behavior. Similarly to the handoff event, in the presence of errors, there is no 
need to extend the timeout period. Random transient errors do not affect the router’s buffering, leaving it at 
the same state prior to the error. The adjustment of the sender's window is a matter of strategy, since the rate 
of the errors varies. In high error rates, the shrinkage of the window seems to be the appropriate action, in 
order not to crash with a large congestion window, which means that a heavy payload will need to be 
retransmitted. However, in a situation of low error rate, where random transient errors do not occur very 
often, it seems that there is no need to back-off and reduce the window, since the probability of losing the 
next data segment is rather low.  

 
Departing from the above four scenarios, we propose that TCP traffic should be shaped differently, in 

order for the transport protocol to achieve performance gains in heterogeneous networks. 
Generally, we observe that in heterogeneous networks: 
- Timeout should be growing, only in association with contention. 
- An “early” attempt to estimate contention (before the 3-DACKS or elapsed timeout) can lead to a 

more effective error classification strategy. When a packet is lost in a low contention-environment, 
then a wireless error is clearly indicated. 

- A false “early” contention estimation can be filtered by a second-level contention estimation 
mechanism, which is deployed between packet-drop detection (3-DACKS or elapsed timeout) and 
error-recovery. 

- A transient error does not call for either timeout or congestion window adjustment. 
- During a dense error or a handoff, a probing mechanism can reduce unnecessary overhead. 
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II. DECOUPLING ERROR RECOVERY FROM ESTIMATION 
All of the existing widely deployed TCP versions are basically trying to avoid, detect and recover from 

congestion. The congestion-control algorithm, used in TCP-Tahoe [12] includes Slow-Start, Congestion 
Avoidance, and Fast Retransmit. TCP-Reno [1] introduces Fast Recovery in conjunction with Fast 
Retransmit. TCP-NewReno [8] addresses the problem of multiple segment drops within a single window of 
data. In effect, it can avoid many of the retransmit timeouts of Reno. The TCP-SACK [11] modification 
introduces a selective acknowledgment strategy. 

Standard TCP is not able to distinguish between errors due to congestion and wireless errors. It assumes 
that every time a packet loss occurs, it is always because of congestion [13]. 

By adding a probing mechanism onto standard TCP we can achieve two more goals. Firstly, a probing 
mechanism is trying to inspect the network load whenever an error is detected and in this way it enables error 
classification (i.e. due to congestion or to wireless error). Furthermore, it can monitor the network, in order 
to measure the level of contention. Secondly it suspends data transmission for as long as the error persists 
implementing in that way an energy-efficient mechanism.  

The general idea of the probing mechanism is as follows. Whenever a packet is lost, TCP-Probing [13, 14] 
instead of retransmitting the whole data segment, as would standard TCP, it suspends data transmission and 
enters a probe cycle. Probe segments carry no payload. They consist of only segment headers, being in that 
way energy-efficient even if the error is persistent and the probing segment is lost. For example, in the event 
of a burst error or a handoff, little will be added to the overall overhead by losing the probe segment, than by 
losing the full data segment, as would standard TCP.  

Our approach decouples error-recovery from contention estimation, in a way that estimates contention 
level before the packet-drop. This “early” congestion detection has the following three goals: (i) to avoid a 
wrong aggressive error recovery which leads to unnecessary overhead  (ii) to avoid a false freezing of the 
timeout (iii) to skip needless probing cycles. 

We use, additionally, the contention estimation mechanism, which is bounded in TCP-Probing as a 
validator to our previous estimation. A conservative error recovery strategy is followed when either of the 
two contention-level estimation mechanisms show high contention.  

A. Error-Recovery Mechanism 
The probe cycle will not terminate until the network conditions are such that the sender can make two 

successive round-trip-time (RTT) measurements from the network. These measurements are helpful 
information that will be taken into account by the recovery strategy. If these measurements show that there is 
high level of contention, the recovery strategy will back-off, as in Reno. Otherwise, if the measurements 
show that there is available bandwidth (either due to transient random error or after a handoff), the recovery 
strategy will immediately try to exploit it.     

The sender enters a probe cycle when either of two situations apply: a timeout event occurs or three dacks 
are received. When the probe cycle completes, we gather some information about the network conditions 
from the measured probe RTTs (this scheme is explained in detail later), and if there is available throughput 
capacity, TCP-Probing assumes that there is no need to adjust downwards neither the congestion window, 
nor the Slow-Start threshold. So it picks up from the point where it was before the occurred event (timeout or 
3 dacks). This is called “Immediate Recovery”. Otherwise, the protocol enters the Slow-Start phase. 

B. Contention Estimation 
In a packet-switched network, a situation where no congestion is indicated is rather non-realistic. On the 

contrary, especially in a wired scenario, the primary problem is the high level of contention, which finally 
leads to congestion. Under those circumstances, since TCP-Probing is an experimental protocol that focuses 
on heterogeneous wired-wireless networks, we added one additional feature. On every single RTT, TCP-
Probing calculates a “congestion predictor”, along the lines of TCP-Vegas algorithm [4, 5]. We call this 
vegas_predictor. If this predictor is higher than an adjustable threshold, then TCP-Probing does not enter a 
probe cycle in the event of 3 dacks, even when the packet is finally lost. Instead, it enters Slow-Start as in 
Reno. 

Many proposals tried to classify the losses through different estimation techniques. Barman and Matta [2], 
proposed an improvement on TCP New Reno, New Reno-FF, a technique that is based on average and 
variance of the round trip time using a filter called Flip-Flop, a filter which is augmented with history 
information. Another classification technique proposed by Liu, Matta and Crovella [9] is based on the loss 
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pairs measurement technique and Hidden Markov Models (HMMs). This technique is based on the fact that 
the delay distribution around wireless losses is different from the one around congestion losses. Another 
Enhancement to TCP is introduced by Chandra, Harris and Shenoy [6] and is referred to as E-TCP. E-TCP 
uses a new acknowledgement packet format and an agent to assist E-TCP in implementation and in this way 
makes TCP aware of the existence of wireless losses. Many researchers are working on reliable congestion 
predictors, in order to avoid packet losses due to congestion. Biaz and Vaidya [3] implemented a receiver-
oriented technique to distinguish congestion losses from corruption losses. 

 

III. IMPLEMENTATION 

A. The Core Probing Mechanism 
A probe cycle uses two probing segments (PROBE1, PROBE2) and their corresponding acknowledgments 

(PR1_ACK and PR2_ACK), implemented as option extensions to the TCP header. As noted before the 
segments carry no payload.  

The sender initiates a probe cycle by transmitting a PROBE1 segment to which the receiver immediately 
responds with a PR1_ACK, upon receipt of which the sender transmits a PROBE2. The receiver 
acknowledges this second probing with a PR2_ACK and returns to the ESTAB state. The sender makes an 
RTT measurement based on the time delay between sending the PROBE1 and receiving the PR1_ACK, and 
another based on the exchange of PROBE2 and PR2_ACK. 

The sender makes use of two timers during the probing cycle. The first is a probe timer, used to determine 
if a PROBE1 or its corresponding PR1_ACK segment are missing, and the same again for the 
PROBE2/PR2_ACK segments. The second is measurement timer, used to measure each of the two RTTs 
from the probe cycle, in turn. The probe timer is set to the estimated RTT value current at the time the probe 
cycle is triggered. For a full analysis of the probe mechanism along with a state diagram, see [13, 14]. 

B. Freezing Through Probing 
A primary part of the probing mechanism, which directly impacts the protocol’s performance, is the part 

that is responsible for the recovery strategy. The recovery strategy will be followed after the end of the probe 
cycle. In case of a packet loss due to congestion, the protocol backs off as in Tahoe or in Reno depending on 
the level of contention (the higher the level of contention, the more conservative it will recover). If the loss 
was caused by a random transient error, the available bandwidth of the channel will, normally, no longer be 
affected. In such a situation there is no need to back off and Immediate Recovery is applied. A handoff will 
cause the loss of the probe segments, and hence the probe cycle will not terminate until the communication 
channel is “up” again. The fact that only probe segments (40 Bytes) are lost during the handoff, makes the 
protocol energy efficient compared to Reno and New Reno. Depending on the measurements of the probe 
cycles the appropriate recovery will be applied. 

TCP-Probing exploits due to Immediate Recovery the available bandwidth of a wireless channel more 
effectively than TCP-Reno / TCP-NewReno would. TCP-Reno / TCP-NewReno would back-off, considering 
that congestion is indicated. This means that both the congestion window and the Slow-Start threshold are 
adjusted downwards. In this way many RTTs are needed in order to reach the previous full window size.  

It is possible to experience a random drop during a phase of moderated congestion. TCP-Probing takes 
advantage of the recent measurements gathered by the probe cycle and acts like TCP-Reno or TCP-Tahoe 
(the decision between TCP-Reno and TCP-Tahoe is explained later). As noted before, a new feature is added 
to TCP-Probing, the vegas_predictor. The calculation of this predictor takes place on every RTT. If this 
predictor shows high contention, none of the above happens. The probe cycle is skipped and TCP-Probing 
acts like TCP-Reno. In such case, the protocol's performance equals TCP-Reno’s in a wired network.   

We implement the above plan as follows. Firstly, the vegas_predictor is calculated:                                                        
vegas_expected_throughput = cwnd_ / best_rtt_ 
vegas_actual_throughput = cwnd_ / last_rtt_                                                                             
vegas_difference=vegas_expected_throughput -  vegas_actual_throughput 
 
If vegas_difference is greater than 4, then the probe cycles are skipped. Otherwise, if a packet goes lost, 

the probing mechanism is triggered. Upon exiting the probe cycle, we calculate a threshold that identifies the 
Current Probe RTT (cp_rtt). The threshold used here is built dynamically and relies on the recent probe RTT 
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sample. We compare the cp_rtt with the best and worst measurement of probe RTT (best_probe_rtt_, 
worst_probe_rtt_ - that is, the smallest and largest probe RTT during the communication, respectively). The 
more the distance from the best_probe_rtt grows the more conservatively we will recover. 
 
average_probe_rtt= (best_probe_rtt_+worst_probe_rtt_) / 2 

 
Comparing those two values, we know if the cp_rtt is above or below the average_probe_rtt. In each of the 

two cases (above or below), we compare the probe RTTs with the smallest (best) RTT during the 
communication. After these two comparisons we have a good estimation of the network’s state, in order to 
recover in the appropriate way. 
 
 cp_rtt_ = ALFA*sample_probe_rtt 

 
if (cp_rtt_ < average_probe_rtt) 

/*we are below the average: more aggressive behavior is needed*/      
  if (both_sample_probe_rtts < best_RTT) 
       FULL_IR 
  else 

   3/4_IR  (ssthresh=3/4*ssthresh & cwnd=1) 
  end if  

 end if 
 

 if (cp_rtt_ > average_probe_rtt)   
 /*we are above the average: more conservative behavior is needed*/      
  if (both_sample_probe_rtts < best_RTT) 
        RENO_RECOVERY 
  else 
        SLOW_ START_RECOVERY 
 end if 

end if 
 
Other issues need to be considered for the implementation of the probing mechanism. First of all, and 

although it seems to work well, the congestion predictor that indicates the skipping of the probe cycles 
(vegas_predictor), might need to be replaced by a more sophisticated mechanism that makes a better 
estimation of network conditions. Another issue that calls for further investigation is the number of the probe 
segments that are sent. It may be better for the probing mechanism to monitor the network by one probe 
measurement only, avoiding the loss of a second RTT. Such a change will also affect the probing decision, 
since there will be no sample_probe_rtt, but only “one_probe_rtt”. Finally the version of Immediate 
Recovery that reduces the Slow-Start threshold to ¾ of its previous value may need to become more 
adjustable, in order to exploit the available bandwidth in a more sophisticated way. 

IV. EXPERIMENTAL METHODOLOGY 

A. Testing Plan 
We have implemented our testing plan on the ns-2 network simulator. The network topology used as a 

test-bed is the typical single-bottleneck dumbbell, as shown in Figure 1. The link's capacity (bw_bottleneck) 
is 100Mbps. The bw_src is 10Mbps, and the bw_dst either 1Mbs or 10Mbps. We used equal number of 
source and sink nodes. We simulated an heterogeneous (wired and wireless) network with ns-2 error models 
which were inserted into the access links at the sink nodes. The Bernoulli model was used to simulate link-
level errors with configurable packet error rate (PER). The number of flows occasionally changes for the 
different scenarios. The simulation time was fixed at 60 seconds, a time-period seemed appropriate to allow 
all protocols to demonstrate their potential. 
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Figure 1. Network topology  

 

  
In the first scenarios, ftp flows are entering the system within the first seconds. All flows are fixed, during 

the rest 58 seconds. In order to evaluate how efficiently and fairly the protocols can exploit available 
bandwidth, we used, additionally, scenarios with graduated contention decrease. 

B. Performance Metrics 
Our evaluation plan calls for common, as well as non-traditional metrics. We used traditional metrics for 

protocol efficiency, and fairness. 
The system goodput is used to measure the overall system efficiency in bandwidth utilization. The system 

Goodput is defined as: 
 
Goodput= Original_Data / Connection_time 
 

where Original_Data is the number of bytes delivered to the high-level protocol at the receiver (i.e. 
excluding retransmitted packets and overhead) and Connection_time is the amount of time required for the 
data delivery.   

Fairness is measured by the Fairness Index, derived from the formula given in [7] and defined as: 
2
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where Throughputi is the Throughput of the ith flow and n the flow number. 
In order to capture the amount of extra energy expended, we introduce a new metric. Extra Energy 

Expenditure (3E) takes into account the difference of achieved Throughput from maximum Throughput 
(Throughputmax) for the given channel conditions, the difference of Goodput from Throughput, attempting to 
locate the Goodput as a point within a line that starts from 0 and ends at Throughputmax. The metric 3E takes 
values from 0 to 1, attempting to capture both distances. 

 
max

max max

Throughput ThroughputThroughput GoodputEEE a b
Throughput Throughput

−−
= +  

where a=1 and b=0.3 
When Goodput approaches Throughput which approaches 0, the extra expenditure is only due to time 

waiting (probably in an idle state). We assume that the extra expenditure at this stage is 0.3 (the first term is 
0). Instead, when Goodput=Throughput=Throughputmax the extra expenditure is 0, since all the expended 
energy has been invested into efficient transmissions. Also, when Throughputmax= 100, Throughput=99, 
Goodput=1, the extra expenditure due to unsuccessful retransmission grows to an almost maximum value 
(0.993) 

We need to introduce another metric as well, in order for us to capture the level of Unexploited Available 
Resources (UAR). That is, how well did we exploit the windows of opportunities for successful 
transmissions. Reasonably, the case of Goodput=Throughput=0 should not give us at this point a minor (as 
with the  3E metric) but a major penalty.  

 

max

1 [ ]Throughput GoodputUAR a b
Throughput Throughput

= − +  

 
where a=0.5 and b=0.5. The UAR index ranges also from 0 to 1, expressing also a negative performance 
aspect. 

P32/6 



 

V. RESULTS AND DISCUSSION 
Two versions of TCP took place in the simulations. The TCP-NewReno and TCP-Probing [13, 14]. Many 

measurements with different characteristics have been carried out, in order to understand each protocol’s 
behavior. Here we will present 4 simple scenarios with characteristics that can show the efficiency of our 
adaptive recovery strategy. Each version of the protocol was tested by itself, separately from the others. So, 
the error control mechanism can demonstrate its capability, without being influenced by the presence of 
other type of flows in each channel. 

A. A Full Wired Scenario 
In this first scenario, the bw_dst is 10Mbps, in order for the flows to have enough fair-share to expand their 

windows. Our purpose here is to demonstrate that this version of TCP-Probing performs good enough in a 
wired environment too, compared to the traditional TCP-Probing (without the use of the vegas_predictor). In 
fact, in some cases TCP-Probing slightly outperforms New Reno. This is mostly happening because, after a 
packet is lost because of buffer overflow, and should vegas_predictor indicate no congestion (since there is 
enough throughput capacity), TCP-Probing immediately gets aware of this capacity and recovers with 
Immediate Recovery. The above can be understood from the Goodput and UAR Charts below. In this 
scenario there is no difference in the energy expenditure of the two protocols. The Fairness Index of the two 
protocols is very close to 1. 

 

 
 Figure 2. Goodput on Wired          Figure 3. UAR on Wired 
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B. A Wired Scenario with Contention Decrease 
In this scenario, we present a simple wired environment in order to understand the basic behavior of the 

protocols in conjunction with contention decrease. We measure Unexploited Available Resources Index 
(UAR) and Goodput for a range of flows from 10 to 100. All flows enter the system within the first two 
seconds. For the rest 58 seconds we have a graduated decrease, starting from 10 flows and repeating the 
experiment for 20, 30 up to 100 flows. At each stage we reduce the number of flows to half every 
Decrease_Step seconds, where Decrease_Step, is the step needed, in order for the last flow to exit at the 60th 
second. Here the bw_dst is 1Mbps and hence there is a high level of contention. We used a large number of 
flows, in order for the flows to “step out” in groups, and as a result every Decrease_Step a large amount of 
the bottleneck's throughput capacity is freed up.  

As can be seen from Figures 4 and 5, the adaptive recovery strategy of TCP-Probing, which inspects the 
network conditions (by the probe cycles), is able to detect the available bandwidth and immediately exploit 
it. On the contrary, TCP-NewReno reduces its window on every packet loss, and thus not only is it unable to 
exploit the extra available bandwidth but also leaves some of the existing bandwidth unexploited. 
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          Figure 4. Goodput on Wired/Congestion Decrease    Figure 5. UAR on Wired/Congestion Decrease 
 

C.  Wireless Scenario with Handoffs 
Handoffs are very common events in wireless networks. This scenario intent to present some results that 

monitor the behavior of the protocols in a situation of frequent handoffs. The bw_dst  is set at 10Mbps and 
the protocols experience a situation where a handoff event occurs every 5 seconds and lasts for 0.5 seconds. 

Our purpose here is to show the inefficient recovery strategy of standard TCP. This inefficiency causes 
TCP not only to perform poorly in such an environment, but also to consume a lot of energy. This makes it 
inappropriate for battery-powered devices. In Figures 6, 7 and 8 TCP-Probing clearly outperforms TCP-
NewReno in matters of Goodput, Unexploited Available Bandwidth and Extra Energy Expenditure. This is 
easily explained, if we take into consideration that every time a handoff event occurs, and hence data is lost, 
TCP-NewReno considers this as an indication of congestion. As a result it backs off, by reducing its window 
and extending its timeout period, but still continues to send data segments. These segments are dropped, until 
the end of the “blackout”. After the end of it, although a lot of bandwidth is available, TCP-NewReno 
transmits only 1KB and enters Slow-Start phase. On the contrary, TCP-Probing suspends data transmission 
for as long as the handoff is present (in fact it loses the probe segments which are 40 Bytes each). After the 
end of the handoff period TCP-Probing monitors the conditions of the network (by the successful probe 
cycles) and gets immediately aware of the available bandwidth, which immediately exploits. Hence, it acts 
with respect to energy consumption, while it is aggressive only when the network conditions allow it. 

 

               Figure 6. Goodput on Wireless/Handoffs   Figure 7. UAR on Wireless/Handoffs 
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D. A Wireless Scenario with Errors 
In the last scenario, we simulated 60 flows, with a variable error-rate from 0.01 to 0.6 PER and bw_dst set 

at 1Mbps, which means that congestion is often indicated. As noted before in the presence of random 
transient errors, there is no reason to extend the timeout period, while the sender's window might have to be 
reduced, especially in high error rate. 
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As it can be seen from Figures 9, 10 and 11, the adaptive recovery strategy of TCP-Probing, where there is 
no timeout extension in the Immediate Recovery, performs better that TCP-NewReno. The impact on energy 
expenditure is also clear. In this scenario, TCP-Probing recovers with Immediate Recovery after a packet 
loss, which means that there is a small shrinkage of the window. From Figure 9, we can see that, in low error 
rate, the performance of TCP-NewReno is degraded, while in high error rate the performance increases very 
much. This might be an indication, as stated in [10] too, that in an environment with high error rate the 
appropriate action is to be more conservative. The last can be seen from Figures 10 and 11 where TCP-
Probing, a more aggressive protocol, does not consume less energy, nor does it exploit more bandwidth than 
TCP-NewReno. 

      Figure 8. EEE on Wireless/Handoffs                      Figure 9. Goodput on Wireless/Errors 
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In a wireless network, often all of the above (high level of contention, contention decrease, handoffs, and 
random transient errors) happen altogether. Our purpose here was to start from the beginning and monitor the 
unique characteristics of each network condition in order to find a recovery strategy that tackles all of them 
and suites best to heterogeneous networks. Finally, we present the Goodput performance of the two protocols 
(Figures 12, 13) in a more realistic scenario than the above, where the bw_dst is 1Mbps, 5 handoffs occur 
during the communication with 1-second duration each, and there is a low error rate of 0.01 PER.  

 
 

           
                  Figure 11. UAR on Wireless/Errors 

VI. CONCLUSION 
Although, we studied primary the way th rk together (without focusing in either the 
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             Figure 10. EEE on Wireless/Errors  
 

ose decoupled parts wo
ntention estimation or error recovery mechanism), our results are very promising. In a future work, we 

plan to optimize those two parts, in order to achieve better performance, even in some situations (i.e. Figures 
12, 13) where TCP-Probing is outperformed by standard TCP. 
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