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Abstract. P systems is a new model of computation, inspired by natural
processes, that has a distributive nature. By exploring this distributive
nature of P systems, we have built a purely distributive simulation of
P systems. The simulation, whose implementation is described here,
was programmed in the Java programming language and makes heavy
use of its Remote Method Invocation protocol. The class of P systems
that the simulator can accept is a subset of the NOP2(coo, tar) family
of systems, which have the computational power of Turing machines.
The paper concludes with some remarks concerning the usefulness of
the simulation. In addition, there is a brief discussion of some ideas that
can be used in the formulation of a foundation of distributive computing.
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1 Introduction

Nature is a constant source of inspiration for artists and scientists. Computer
scientists are no exception as they have devised new computational paradigms
that imitate natural processes. Such new computational paradigms include DNA
computing [8], evolution computing [6], and membrane computing [7]. Nowadays,
computational paradigms inspired by natural phenomena and/or processes are
collectively known as natural computation.

Membrane computing, in particular, was inspired by the way cells live and
function. Roughly speaking, a cell consists of a membrane that separates the
cell from its environment. In addition, this membrane consists of compartments
surrounded by membranes, which, in turn, may contain other compartments,
and so on. At any moment, matter flows from one compartment to any neigh-
boring one. Obviously, at any moment a number of processes occur in parallel
(e.g., matter moves into a compartment, while energy is consumed in another
compartment, etc.).
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A P system is a computational device which is an abstract representation of a
particular membrane structure. Each compartment is populated by a multiset1 of
symbols. These multisets are materialized as strings of symbols. In addition, each
compartment is associated with a set of rewriting rules. These rules are applied
to the multisets (strings of symbols) of certain compartments and, consequently,
change the system’s configuration. The rules are applied simultaneously by ob-
serving the so-called maximal parallelism principle, that is the rules are selected
in such a way that only “optimal” output is yielded. When it is not possible
to apply any rule, the P system halts. A designated compartment, called the
output compartment, contains the output of the computation, which is equal to
the cardinality of the multiset contained in it.

P systems have the computational power of Turing machines. In particular,
it has been proven that very simple systems with only one compartment have the
computational power of a Turing machine. It is also a fact that in every P system
the activity of each compartment is independent from the activity at any other
compartment. Although this is not relevant for the rest of our discussion, we
should note that compartments do not share data—they just exchange data.

A distributed computer system is a computer system in which several inter-
connected computers share the computing tasks assigned to the system. How-
ever, each computer has a designated rôle in the overall computational task.
This rough description is reminiscent of P systems and their functionality. In-
deed, P systems can be viewed as an abstract model of distributed computing.
Naturally, there are many aspects of distributed computing that cannot be de-
scribed with simple P systems (e.g., secure transmission of data). However, such
details are not really important for the formulation of a foundation of distributed
computing. Also, it is quite encouraging that other researchers share our view
(e.g., see [3]). Here we demonstrate the value of this thesis by describing a dis-
tributed simulation of a particular class of P systems. Although the P system
bibliography contains many reports on simulations of P systems (for example,
see [1,2,4,5]), none of them was implemented as a distributed application. Prac-
tically, this means that there is still room for improvements and a number of
applications no one has thought before.

Structure of the paper. We start with a semi-formal introduction to the under-
lying theory of rewriting P systems. Then, we describe tools that can be used to
implement distributive algorithms, in general. Next we give a thorough descrip-
tion of our simulation and we conclude with a number of remarks concerning
our work and future research directions.

2 Introduction to Theory of P Systems

We start by giving an informal definition of what a transition P system is.

1 For a thorough description of multisets and their underlying theory see [9].
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Definition 1. A P system is a tuple

Π = (O, µ, w1, . . . , wn, R1, . . . , Rm, i0),

where:

(i) O is an alphabet (i.e., a set of distinct entities) whose elements are called
objects.

(ii) µ is the membrane structure of the particular P system; membranes are
injectivelly labeled with succeeding natural numbers starting with one.

(iii) wi, 1 ≤ i ≤ m, are strings that represent multisets over O associated with
each region i.

(iv) Ri, 1 ≤ i ≤ m, are finite sets of rewriting rules (called evolution rules) over
O. An evolution rule is of the form u → v, u ∈ O+ and v ∈ O+

tar, where
Otar = O × TAR, TAR = {here, out} ∪ {inj |1 ≤ j ≤ m}.

(v) i0 ∈ {1, 2, . . . , m} is the label of an elementary membrane (i.e., a membrane
that does not contain any other membrane), called the output membrane.

Note that the keywords “here,” “out,” and “inj” are called target commands.
Given a rule u → v, the length of u (denoted |u|) is called the radius of the
rule. A P system that contains rules of radius greater than one is a system with
cooperation.

The rules that belong to some Ri are applied to the objects of the compart-
ment i synchronously, in a non-deterministic maximally parallel way. Given a
rule u → v, the effect of applying this rule to a compartment i is to remove re-
move the multiset of objects specified by u and to insert the objects specified by
v in the regions designated by the target commands associated with the objects
from v. In particular,

(i) if (a,here) ∈ v, the object a will be placed in compartment i (i.e., the
compartment where the action takes place)

(ii) if (a, out) ∈ v, the object a will be placed in the compartment that surrounds
i

(iii) if (a, inj) ∈ v, the object a will be placed in compartment j, provided that
j is immediately inside i, or else the rule is not applicable

The m-tuple of multisets of objects present at any moment in the m compart-
ments of a P system constitute a configuration of the system at that moment.
The m-tuple (w1, . . . , wm) is the initial configuration. Given two subsequent
configurations C1 and C2, we write C1 =⇒ C2 to denote a transition from C1 to
C2. A sequence of transitions of a P system Π is called a computation with re-
spect to Π. A successful computation is one that halts. The result of a successful
computation is the number of objects found in the output membrane after the
termination of the computation. The set of numbers computed by a system Π
is denoted by N(Π).

In general, NOPm(a, tar) denotes the family of sets of natural numbers of
the form N(Π), generated by symbol-object P systems of degree at most m ≥ 1,
using rules of type a. Here we use the same notation for the class of P systems
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of degree at most m ≥ 1, using rules of type a. In particular, if a = coo, then
we have systems with cooperation. Other possible values are “ncoo” (for non-
cooperative), “cat” (for catalytic), etc. Although the systems NOPm(coo, tar)
are simple enough, they are very powerful. In fact, they can compute anything a
Turing machine can. Since systems NOP1(coo, tar) are far too simple, we opted
to provide a simulation for a subset of NOP2(coo, tar) systems (see Table 1 on
page 363).

3 Tools for Distributed Programming

There are two basic ways to implement a distributed algorithm: (a) on a purely
distributed platform or (b) using some network protocol to connect a number of
computers that interchange data. Currently, distributed operating systems are
not widely available, in general. In addition, those that are widely available, like
Plan 9 from Bell Labs (see http://www.cs.bell-labs.com/plan9dist/), have
a quite limited hardware compatibility list, thus making essentially impracti-
cal the development of distributed applications on such systems. Fortunately,
all modern general purpose operating systems provide the necessary network
capabilities that can be utilized to create distributed applications.

When implementing a distributed algorithm using the second approach de-
scribed above, one can either follow the peer-to-peer or the client-server archi-
tecture. In a client-server architecture clients interact with a server, while there
is no direct interaction between clients. On the other hand, in the peer-to-peer
architecture all parts can act as either servers or clients, thus permitting the
direct interaction between all participating computers. It is quite pedagogical to
think how typical peer-to-peer file-sharing applications (e.g., GoZilla, WinMX,
Kazaa, etc.) operate—each computer can connect to any other computer in or-
der to download files, while all other computers are permitted to download files
from it.

Sockets are the fundamental tool for the implementation of TCP/IP net-
working applications. However, when building a system upon the peer-to-peer
architecture, it is absolutely necessary to have a (new?) network protocol, which
will be used for the exchange of data. Unfortunately, socket programming is
error prone, while the design and implementation of a new network protocol
is not the easiest thing in the world. This means, that one has to resort to
existing well-thought solutions. Implementing a peer-to-peer application using
Java’s Remote Method Invocation (or RMI for short) is an excellent choice. The
RMI protocol enables an object running on one Java Virtual Machine (JVM) to
invoke methods on an object that is running on another JVM. When such an
object is invoked, its arguments are “marshalled”2 and are sent from the local
JVM to the remote one, where the arguments are “unmarshalled.” When the
method terminates, the results are marshalled from the remote machine and are
2 The terms marshalled and marshalled are Sun Microsystems, Inc., lingo and refer to

the packing and unpacking of data so they can be safely transported from one JVM
to another JVM.

http://www.cs.bell-labs.com/plan9dist/
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sent back to the caller’s JVM. If for some reasons an exception is raised, the
exception is indicated to the caller.

We have put under serious consideration all the facts above and so we have
opted to implement our simulation using Java’s RMI, mainly due to its simplicity
and power. Naturally, there are other ways to implement such a system. For ex-
ample, one can use Java’s API for XML-Based RPC (JAX-RPC). In this model,
remote procedure calls are represented using an XML based protocol. Such a
protocol is the Simple Object Access Protocol, or SOAP for short. SOAP is a
lightweight protocol for exchange of structured and typed information between
peers in a decentralized, distributed environment. One direct benefit of this ap-
proach is that the peers that participate in the simulation can be programmed
in any language that supports the protocol and not just Java.

4 The Simulation in Detail

As we have already explained, our simulation has been implemented in the Java
programming language. In addition, we would like to stress that we opted to use
this language for its extremely rich Application Programming Interface (API)
and its object orientation.

Initially, we install a copy of our simulator on a number of (different) com-
puters. Randomly, we choose a computer and assign to it the rôle of the external
compartment, while the others play the rôle of the internal compartments. Upon
start-up, on each computer a Membrane object (see Figure 3 on page 364) is ready
to participate to the network. When the systems kicks off, the object that has the
rôle of the external compartment, reads the specification of a P system from an
external text file and stores the data in a Data object (see Figure 2 on page 363).
The specification should be written in a notation whose grammar (in Wirth’s
EBNF) is shown in Table 1. The class Parser reads and analyzes the input file
and stores the input data (see Figure 1 on page 362).

Note that the number that accompanies the keyword maximum denotes the
maximum number of cycles the system may go. This artificial parameter was
introduced in order to prevent a system from going into an infinite loop. Thus,
one should be careful when setting this parameter as it may alter the outcome
of the computation (e.g., by forcing a premature termination).

As is evident, one can specify any number of compartments in a P system
specification. But this does not necessarily mean that the available resources
are enough for the simulation. Thus, when the simulator has successfully parsed
the P system’s specification, the main object decides whether there are enough
resources or not. If the available resources match the requirements set by the
description of the P system, the simulator starts the computation. Otherwise,
it aborts execution. In order to be able to make this decision, the simulator has
been designed in such a way that all objects-compartments send multicast UDP
packets to a well-known multicast address. Each packet contains the IP address
of each sender. Multicast packets are received by every object participating in the
“network.” Thus, each computer knows which computers are “alive” at any time.
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Fig. 1. UML class diagram of the Parser class of the simulator.
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Table 1. The concrete syntax employed to specify P systems.

system = “system” “is”
alphabet “and”
structure “and”
rules “and”
data “and”
output “and”
maximum “and”
“end”

alphabet = “[” letter { “,” letter } “]”
structure = “[” { “[” “]” } “]”
rules = “{” setOfRules { “,” setOfRules } “}”
setOfRules = “[” singleRule { “,” singleRule } “]”
singleRule = left “->” right
left = letter { letter }
right = replacement { replacement }
replacement = “(” letter [ “,” destination ] “)”
destination = “here” | “out” | in
in = “in” positive-integer
data = “{” Mset { “,” Mset } “}”
Mset = “(” { occurrence } “)”
occurrence = “[” letter “,” positive-integer “]”
output = “output” positive-integer
maximum = “maximum” positive-integer

Fig. 2. UML class diagram of the Data class that is used to store the (initial) data of
a Membrane object.

This way the main object has all the necessary information to decide whether
there are sufficient resources to start the computation. A universal clock is owned
by the object that has the rôle of the external compartment. This object signals
each clock tick by the time the previous macrostep is completed (i.e., when, for
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Fig. 3. UML class diagram of the Membrane class.
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a given macrostep, all remote objects have finished their computation). While
the computation proceeds, if there is a communication breakdown with any
computer participating in the network, there is a fault tolerance mechanism that
takes care of this problem. The action that may be taken varies according to the
given situation. For example, if the “missing” compartment does not affect the
global computation, then the system proceeds without any problem. The system
halts once there are no more applicable rules or the maximum number of cycles
has been reached. The following set of rules are applied at each macrostep to
gain maximal parallelism.

(i) Initially, the simulator checks which rules are applicable and selects them.
(ii) If there are applicable rules with common elements on their left-hand side,

we compute their “weights” as follows:
(a) We mark the common elements on both sides of each rule
(b) We remove these common elements from both sides of each rule
(c) The “weight” of each side of a rule is equal to the number of elements.

In case there are no elements left, the weight is equal to one.
(d) The total “weight” of a rule is equal to the product of the two “weights”

for each rule.
Finally, we select only the rule that has the highest “weight.”

(iii) The rules that remain after this selection procedure, are used in the actual
computation.

We should note that a rule is applicable if its left-hand side contains elements that
are inside the compartment the rule is supposed to be applied. In Figure 4 the
reader may inspect the UML class diagram of the Rule class, which implements
the functionality just described.

Let us now describe in detail what is going on in each macro step:

(i) The object that has the rôle of the outer membrane sends a message to
all other objects. This message indicates to them that they have to start
the execution of their microstep computation. While the main object starts
its own computation, it waits each object to send a message indicating the
termination of its micro-step computation.

(ii) The microstep computation involves the application of the rules associated
with each object (compartment). In case, some rule demands the transfer
of data to some other (remote) object, these data are not send immediately.
Instead, they are kept in some buffer that is part of the objects data area.

(iii) When all objects have finished, the main object sends a request to all partici-
pating objects to send the data the have accumulated in their corresponding
buffers.

(iv) Once all information have reached each corresponding recipient, the system
is ready to repeat this cycle and go on to next macrostep.

Threads, that is parts of a program that can execute independently of other parts
of the program, are an essential aspect of our implementation. In particular, each
membrane class runs in its own thread, which, in turn, operates on a different
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Fig. 4. UML class diagram of the Rule class that is used to process the rules.

machine. A fortunate consequence of this implementation is that the system
follows very closely the theoretical model of P systems.

The source code of the system, a jar file, which can be used to immedi-
ately install the simulator, as well as the documentation of the simulator can be
downloaded from our Web site at http://research.araneous.com.

5 Conclusions and Future Research

We have presented a purely distributed simulation of a class of rewriting P sys-
tems. The simulator was implemented in the Java programming language and
was build upon the Remote Method Invocation protocol. Currently, the simula-
tor can be used as an instructive tool that shows all the activity that takes place
in a typical P system. In addition, it can be used to study very simple organisms,
which can be simulated by P systems that are models of such organisms.

Naturally, our simulator is far from being complete. It is obvious that there
is plenty of room for improvements and extensions. For example, it would be
of great interest to extend the simulator so it can handle P systems with a
larger number of membranes, which may not necessarily use rewriting-like rules
to process multisets. Such an extension would appeal biologists, in particular,

http://research.araneous.com
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and people working on mathematical models of living beings, in general. Thus,
researchers would have at their disposal a test bed for the evaluation of mathe-
matical models of living organisms.

In spite of these great potentials, we do not consider this aspect of our work
as its main outcome. Our simulator has shown to us in a very clear way that
P systems are distributive in nature and, thus, they can be used in the formu-
lation of a foundation of distributive computing. Certainly, one may object to
this idea by remarking that P systems cannot capture all aspects of distributive
computing. However, we believe that this is not a serious drawback, as, for ex-
ample, Turing machines, which are an abstract model of sequential computing,
lack a number of features that are present in all modern computers. In order to
test the suitability of P systems as a foundation of distributive systems, one has
to study the degree to which P systems can describe the functionality of a dis-
tributive architecture. A particularly interesting computer architecture that can
be used for this purpose is the Distributed Instruction Set Computer (DISC) ar-
chitecture [10]. The authors of this paper had some preliminary discussions with
the designers of the DISC architecture about these ideas. It is quite encouraging
to report that there is a consensus among the two teams that this is indeed a
promising research direction. An unexpected outcome of such an endeavor would
be the fact that one would possibly design a basic distributive instruction set
computer similar to the Random Access Machines of classical computing. Ob-
viously, such a development would pave the road for the design of compilers
that would be able to compile programs written in some “ordinary” program-
ming language directly to a distributive architecture. This way, one would be
able to create applications for distributive architectures without any need to get
trained in distributive computing. Note that this is not a novel idea in the field
of programming language implementation. For example, the implicit parallelism
inherent in functional programs has driven many researchers to implement func-
tional programming languages on parallel architectures [11]. Thus, functional
programmers can create programs that are executed on parallel architectures as
if they had a parallel design. This means that programmers create “parallel”
programs without any need to actually do any parallel programming.

We believe that the theory of P systems is mature enough and that there
is no need for any further generalizations. Instead, we need to focus on “real
world” application of the theory. We hope that our work and our ideas is a step
towards this direction.
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8. Gh. Păun, G. Rozenberg, A. Salomaa, DNA Computing. New Computing

Paradigms, Springer-Verlag, Berlin, 1998.
9. A. Syropoulos, Mathematics of Multisets, Multiset Processing (C.S. Calude, Gh.
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