Beyond AIMD: Explicit Fair-share Calculation

Paul C. Attie, Adrian Lahanas, Vassilis Tsaoussidis
College of Computer Science, Northeastern University

Abstract

We introduce an alternative approach to congestion
avoidance and control, which has the potential to increase
efficiency and fairness in multiplexed channels. Our ap-
proach, Bimodal Congestion Avoidance and Control, is
based on the principles of TCP’s Additive Increase Multi-
plicative Decrease. It is designed to better exploit the sys-
tem properties during equilibrium, without trading off re-
sponsiveness for smoothness. In addition, it is capable of
achieving convergence to fairness in only two congestion
cycles. As a result, both efficiency and fairness are im-
proved, responsiveness is not degraded, and smoothness is
significantly improved when the system is in equilibrium.
We provide a theoretical analysis and we discuss the poten-
tial of our approach for packet networks. Our experiments
confirm that Bimodal Congestion Avoidance and Control as
a component of the Transmission Control Protocol outper-
forms the traditional scheme.

1 Introduction

linternet congestion avoidance and control is currently
governed by the rules of Additive Increase Multiplicative
Decrease (AIMD) [4]. Jacobson [8] exploited experimen-
tally AIMD’s potential in TCP [15], integrating AIMD with
transmission tactics suitable for congestion avoidance and
control. Since then, AIMD has become the major com-
ponent of TCP’s congestion avoidance and control mech-
anism [8]. In AIMD, congestion triggers a drastic re-
sponse from the senders (multiplicative decrease) to avoid
a congestive collapse, a major concern in packet networks.
AIMD is also designed to be responsive to fluctuations of
bandwidth availability due to varying contention; this is
managed by a continuous probing mechanism through ad-
ditive increase of resource consumption. Chiu and Jain [4]
show that AIMD guarantees convergence to fairness: all
flows eventually converge to a fair-share, i.e., an equal allo-
cation of resources. Convergence to fairness is faster when
the multiplicative decrease is larger, but then, bandwidth
is further underutilized, and applications experience severe

transmission gaps. Hence, although smoothness is desir-
able, it works against fairness: the smoother the adjustment,
the longer convergence to fairness takes.

Key information for the sources to determine action is
whether congestion is due to increasing contention (i.e.,
new flows joining), or due to increasing bandwidth con-
sumption of the existing flows (additive increase). The for-
mer calls for rapid downward adjustments, to allow space
for the new flows attempting to utilize the system’s band-
width. The latter calls for a moderate response, since the
system limitations relevant to the number of participating
flows have already been discovered. Thus, a relatively small
decrease in bandwidth consumption followed by more ad-
ditive probing is sufficient. Our algorithm is the first which
makes this distinction between increasing contention and
increasing bandwidth consumption. A piece of information
which enables efficient congestion avoidance is the “fair-
share” of the total bandwidth that each flow should be allo-
cated, at any point during the system’s execution. If the fair-
share were discovered, then the sources could avoid con-
gestion by adjusting immediately to a new state where the
bandwidth allocation of each flow is exactly its fair-share.
A system that can discover the fair-share at every point in
its execution could utilize bandwidth fully and fairly. How-
ever, the fair-share is not only a matter of channel capac-
ity but is also dependent upon the number of participating
flows, and the transmitting behavior of the sources. Since
applications may finish their tasks, or new flows may en-
ter the system, bandwidth availability needs to be persis-
tently detected at every step of operation; for example, once
the fair-share is discovered, flows cannot simply adjust to
that value and remain there for their lifetime, since, in that
case, bandwidth that eventually becomes available when
some flows leave the system remains unexploited, i.e., the
increase in the fair-share of each flow remains undetected.

Current systems do not distinguish between conges-
tion due to increasing contention or due to increasing re-
source consumption, and thus lack a key component of
the decision-making process. We present a simple method
which enables this distinction; our algorithm explicitly cal-
culates the fair-share and continuously monitors its dy-
namics. We also go beyond algorithmic improvements by

proposing a congestion control scheme suitable for packet
networks. Our scheme exploits the observation that a sys-
tem in equilibrium (no flows joining or leaving) need not ad-
just rapidly backwards during congestion, since the cause of
congestion in equilibrium is not increasing contention, but
rather increasing (but fair) resource consumption. Hence,
the same small decrease in the bandwidth allocation of each
flow maintains fairness and avoids congestion. When not
in equilibrium (i.e., during convergence) the sources indeed
adjust with rapid decrease. Since the fair-share can be cal-
culated, the adjustment need not be graduated but can be im-
mediate. The combined tactics, during equilibrium and dur-
ing convergence, lead to improved smoothness and faster
convergence to fairness. Practically, since additive increase
is a key bandwidth-detecting mechanism, flows need to ad-
just slightly below the level of the detected fair-share to al-
low for continuous bandwidth probing. Hence, from our
perspective, upwards and downwards adjustments need to
operate in association with the system state, i.e., determine
action based on whether the system is in equilibrium (fair-
share is known) or not (fair-share is unknown). Due to this
property, we call our scheme Bimodal Congestion Avoid-
ance and Control. Our scheme does not favor efficiency
at the cost of fairness; nor smoothness at the cost of re-
sponsiveness, or vice versa. Therefore, we do not attempt
to optimize the tradeoff of the additive increase parameter
« and the multiplicative decrease parameter S within the
framework of TCP limitations (i.e., efficiency) and applica-
tion requirements (i.e., smoothness) but instead we improve
efficiency and fairness of TCP without degrading its poten-
tial for congestion avoidance. A protocol can exploit band-
width well and avoid congestion only if it is responsive.
In this context, the goal of the present work is in marked
distinction with the TCP-Friendly protocols which take a
useful but somewhat confined perspective, since they favor
smoothness at the expense of responsiveness [14].

Our paper has two contributions. First, the concept of
explicit fair-share calculation as a novel conceptual frame-
work for thinking about, designing, and analyzing con-
gestion control algorithms. Second, our specific conges-
tion control algorithm (Bimodal Congestion Avoidance and
Control) based on explicit fair-share calculation, which out-
performs traditional AIMD.

Related work. The impact of AIMD has been recently
discussed from two perspectives. First, the perspective of
improvements to original AIMD. Yang and Lam [16] dis-
cuss a control system which extends the system of Chiu &
Jain towards asynchronous feedback. Lahanas and Tsaous-
sidis [11] propose AIMD-FC, a modification which in-
creases both fairness and efficiency, prove properties of the
modified algorithm algebraically, and show experimentally
significant improvements over TCP. Second, the perspective

of parameterization of a general algorithm which exploits
the tradeoffs of smoothness and responsiveness but does
not disturb the performance of the traditional TCP scheme.
Such modifications attempt to achieve similar efficiency to
TCP, trading responsiveness for smoothness. The efficiency
is associated with the utilized bandwidth; at first, the sys-
tem dynamics suggest that the higher the oscillation the less
the efficiency. It also appears? that the higher the oscilla-
tion, the faster we approach fairness. Recent versions of
AIMD-based algorithms that take advantage of this prop-
erty are [16, 6, 3, 10]. It has been observed that stream-
ing applications can benefit from modest oscillations since
these reflect the smoothness of adjusting the transmission
rate backwards. Such protocols are called TCP-friendly be-
cause they consume the same bandwidth as TCP(1,1) [14].

2 TheAlgorithm

We assume the AIMD model of Chiu and Jain [4]: con-
gestion is indicated by feedback from the network to the
users (flows) in the form of a congestion bit: if the bit is set,
this indicates congestion, and each flow then decreases its
usage multiplicatively, while if the bit is not set, then each
flow increases its usage additively. We assume the control
system model (with synchronous feedback) of [4], where
time is divided into small intervals (steps), and each flow
sets its load at the beginning of each interval based on the
congestion bit fed back to it during the previous interval.
Although the AIMD model is simple, it captures two im-
portant design assumptions: simple binary feedback, and
decentralized control [4].

In the context of our system behavior we define the fol-
lowing measurement units. A cycle is the phase starting im-
mediately after a system congestion feedback of 1 (indicat-
ing congestion) and ending at the next event of congestion
when the system congestion bit fed back is again 1. Hence,
a cycle consists of one multiplicative decrease step followed
by a number of additive increase steps. A step reflects each
window adjustment towards convergence in response to the
congestion bit fed back by the system (0 or 1). Hence, a
step during additive increase involves an increment of one
(o = 1) resource unit per flow, and each increase step in-
volves n packets more than the previous step, n being the
number of flows. Since a step involves a round trip, the
time taken for a step is exactly the RTT. Hence, any number
of steps induces that same number of RTT’s. We set five
distinct goals:

1. To achieve high bandwidth utilization.
2. To converge to fairness faster.
3. To minimize the length of oscillations.

4. To maintain high responsiveness.
1Both statements were made initialy in [4].

5. To coexist fairly with the traditional AIMD-based pro-

tocols.

Although the sources discover their fair-share early on, the

dynamics of real systems in practice prohibit a straightfor-

ward adjustment, but instead, call for continuous oscilla-

tions as a means of discovering the available bandwidth, and

the varying fair-share. Our metrics for system performance

are:

Efficiency: the average fraction of total bandwidth utilized
by the flows when the system is in equilibrium.

Responsiveness: measured by the number of steps needed
to close the gap between two (or more) flows.

Smoothness: reflected by the length of the oscillations dur-
ing multiplicative decrease.

2.1 Overview of the algorithm

Our key idea is a fast method for calculating the fair-
share of each flow, which can be implemented by each
flow autonomously. Consider an “equilibrium” situation in
which there are n (> 1) flows present and no flows join or
leave. Further suppose (for the time being) that the flows
allocate bandwidth according to AIMD with additive in-
crease parameter o (new bandwidth = old bandwidth + «)
and multiplicative decrease parameter 3 (new bandwidth =
old bandwidth * (1 — 3)). Suppose the network reaches
congestion at some point, due to additive increase. Now,
all flows will decrease their bandwidth multiplicatively, and
then resume additive increase until the network congests
again. Assume that all flows increase their bandwidth at
the same rate. Then, from one congestion point to the next,
all flows increase their bandwidth by the same amount d.
d therefore becomes common knowledge [7] amongst all
flows, and can be used by each flow to calculate its fair-
share of the bandwidth. Thus, within at most two conges-
tion cycles, provided no flows join or leave, every flow can
calculate its fair-share and set its allocation directly to the
fair-share, i.e., abandon the usual AIMD protocol. Thus, we
converge to efficient and fair operation in two cycles.

The algorithm for flow f is given in Figure 1 as an ac-
tion step which gives the execution of the algorithm dur-
ing a single step. The algorithm operates in two modes:
a mode where the fair-share has been calculated (using d),
and is therefore known, and a mode where the fair-share
is unknown (e.g., due to new flows joining or leaving, the
previously calculated value of the fair-share is how obso-
lete). The algorithm for flow f uses the variables given in
Table 1. congestion() is a system call that returns the cur-
rent congestion bit. In the fair_share_unknown mode, the
algorithm behaves like AIMD, until two congestion cycles
have passed, which is sufficient to recalculate the fair-share.
The algorithm then sets the bandwidth allocation for flow
f to (1 — €) times the calculated fair-share, and shifts to

the fair_share_known mode; € is a small, tunable parame-
ter. In the fair_share_known mode, the algorithm continues
to use additive increase and multiplicative decrease, but the
multiplicative decrease factor is e instead of 5. Since € is
significantly smaller than 3, smoothness is improved. The
algorithm also monitors the point at which congestion oc-
curs. If this point is too early, i.e., smaller than (1 —€) *
calculated-fair-share, then that indicates that the actual fair-
share decreased, due to some new flow(s) joining. Since
the new flows are not in a fair state (i.e., have equal alloca-
tions), the fair-share must be recalculated, and so the algo-
rithm changes mode to fair_share.unknown. If this point
is too late, i.e., larger than (1 — €) * calculated-fair-share,
then that indicates that the actual fair-share increased due to
some flow(s) leaving. In this case, the remaining flows are
still in a fair state (have equal allocations), and so all that is
needed is to set the calculated fair-share to be the allocation
of each flow at congestion, and then do a multiplicative de-
crease by e. The algorithm remains in the fair_share_known
mode.

2.2 Theoretical basis of the algorithm

We now provide the theoretical basis for our method of
calculating the fair-share. The fair-share calculation is al-
ways performed in the fair_share_unknown mode, where
the algorithm behaves like classical AIMD, with additive
increase a and multiplicative decrease 5. We consider the
calculation of the fair-share in the case where each flow re-
ceives the same share of the bandwidth, and also in the case
of proportional fairness, in which each flow is allocated a
share of the bandwidth according to a fixed “weight” as-
sociated with it. Table 2 gives some notation. We define
Alt) = Xjera af(t), ie., A(t) is t_he total allqcation of
the current flows at time ¢. For technical convenience, we
number the congestion cycles that occur during system ex-
ecution as cycle 1, cycle 2, etc.

Let ¢ > 1 be an arbitrary cycle such that the congestion
point at the end of cycle ¢ — 1 resulted in a multiplicative
decrease by factor 8. Equations 1 and 2 hold because the
sum of the flow allocations at a congestion point is equal to
the total available bandwidth B, by definition. Note that we
do not assume that B is known to the flows.

A(ecfl) = B (1)
A(ec) =B (2)

Equation 3 holds by definition of multiplicative decrease.
A(be) = (1—-B)A(e.) =(1-B)B 3)

The above equations apply to the cases of both fairness and
proportional fairness.

cony the congestion bit sent back to flow f

mode; | the current mode of flow f

af the current bandwidth allocation (or window size) of flow f

fair ¢ the calculated fair-share for flow f

cey a count of the number of cycles passed since a mode change for flow f
bey the bandwidth allocation for flow f at the beginning of the latest cycle

Table 1. The variables used in the algorithm.

Initially: modey = fair_share_unknown A cony = false A ccy = false.

step(f, modey, cony, ccy, bey, fair ;)
if modey = fair_share_unknown then
if —cony then
af < af+a
else {cons}
if ccy then
fair; + (af — bey)/B
ay < fair; x (1 —¢)
bCf <~ ay
modey < fair_share_known
else
ar +ay*x(1-7)
bCf —ay
ccy < true
endif;
cony < false
endif
else {modey = fair_share.known}
if —cony then
af < af+a
else {conys}
if ay < fair; then
af < ayx(1—[)
ccy < false
modey < fair_share.unknown
elseif ay > fair; then
fairy < ay
ag < ay*(1—¢€)
else {a; = fair;}
as < fair; x (1 —¢)
endif;
cony < false
endif
endif;
cony < congestion()

> additive increase

> congested

> > 2 cycles since modechange
> calculate fair-share

> record allocation at beginning of new cycle

> multiplicative decrease by 3
> record allocation at beginning of new cycle

> reset congestion bit

> additive increase

> congested

> congested too early: fair-share decreased
> multiplicative decrease by 3

> reset ccy

> new flows are not in fair state

> congested too late: fair-share increased
> flows are in fair state

> multiplicative decrease by e

D> congestion due to additive increase

> adjust based on fair-share

> reset congestion bit

> get congestion bit feedback for current interval

Figure 1. The algorithm.

notation | meaning

B the fixed total amount of bandwidth available
F(t) set of current flows at time ¢

f>9,... | flow identifiers

F,@G,... | setsof flow identifiers

ay (1) the bandwidth allocation of flow f at time ¢
c congestion cycle number

be begin time of cycle ¢

€ec end time of cycle ¢

Table 2. Notation.

Calculation of the fair-share Consider an arbitrary sys-
tem state. There is a fixed set F' of current flows, and each
has some bandwidth allocation. Each flow additively in-
creases its allocation by the same « at each step until con-
gestion occurs. Letn = |F|, i.e., the size of F'. We define
the actual fair-share to be B/n, i.e., the available bandwidth
divided by the number of current flows. We now show how
the fair-share can be calculated by each flow independently.

Equation 4 holds by our assumption that all flows in-
crease their bandwidth allocation at the same rate (additive
increase by « at each step).

/\ ag(ec) —ays(be) = ag(ec) — ag(be) 4)

f.9€F

Let g be an arbitrary flow id in F'. Thus,

n(ag(ec) —ag(be)) = Z(af(%) —ag(be))

feFr

From (2) and (3), we have A(e.) — A(b.) = BB. Now
Alee) = Ysepas(ec), Albe) = 3 s ag(be). Hence

Z(af(eC) —agf(b)) = BB.

fer

From the above two displayed equations, we obtain 3B =
n(ag(ec) — ag(bc)). And so

(ag(ec) —ag(be))/B = B/n.

We show below that our algorithm calculates (a4 (e.) —
aq(bc))/ B as the fair-share. Thus, the calculated fair-share
is equal to the actual fair-share. Thus, flow g can calculate
the fair-share by simply recording its beginning and ending
allocations on the second cycle after initialization, or after
a mode change. The first cycle is needed to generate the
multiplicative decrease by .

Calculation of the proportional fair-share The situation
is the same as described above, except that each flow f has

its own weight a¢, and increases its allocation by oy at each
step. Thus, the additive increase parameter is different for
each flow, in general, but the multiplicative decrease pa-
rameters (3, €) are the same for all flows. We define the
actual proportional-fair-share to be the allocation of avail-
able bandwidth to each flow f in proportion to ap. Let
pf = ay/ > ,cp @ Then, the actual proportional fair-
share of flow f is pyB. We show, in the technical report
[2], that

(ag(ec) - ag(bc))/ﬁ = pyB.

Thus, the calculated fair-share (a4 (e.) —aq(bc))/ S is equal
to the actual proportional fair-share. Note that if the weights
ay are all equal, then p, = 1/n and this agrees with the
result of Section 2.2 for fairness.

The technical report version of this paper [2] gives for-
mal proofs that our algorithm computes the fair-share cor-
rectly for all the above scenarios, i.e., the computed fair-
share in execution corresponds to the theoretical expres-
sions for fair-share given above, in all the scenarios.

Efficiency of Bimodal Congestion Avoidance and Con-
trol In equilibrium, our algorithm uses e for the mul-
tiplicative decrease factor. Thus, in equilibrium, the ef-
ficiency is 1 — (¢/2). Since € is much smaller than S,
this compares favorably with the equilibrium efficiency of
1 — (B/2) for traditional AIMD.

3 Experimental Results

We incorporated our algorithm into TCP [15] and vali-
dated its performance on NS-2 [1]. TCP controls the send-
ing rate with the congestion window [8] parameter. When
resources are available TCP increases the congestion win-
dow by one Maximum Segment Size (MSS); upon conges-
tion and after three duplicate acknowledgments, TCP mul-
tiplies the congestion window by a factor of 1/2 (this is
TCP(1,1)). In the absence of errors the average long term
efficiency of the AIMD mechanism of TCP is 75% [13, 5].

We used TCP-SACK [12] in our experiments. Due to
its fast recovery and its capability for multiple retransmis-
sions within one RTT, this version matches better our the-
oretical assumptions. In our experiments, multiple flows
share a high-bandwidth bottleneck link (see Figure 2); the
fair-share (the DelayxBandwidth share per flow) was set
relatively high to provide an environment which adequately
tests the potential of the algorithms. For example, AIMD is
not activated when the fair-share is only one packet, or oth-
erwise when contention is too high and bandwidth is lim-
ited, efficiency is not really an issue.

FTP Receivers

FTP Senders

RED RED

Queue Size = (Delay x Bandwidth)
TCP Buffer size = 10000 pkts

Figure 2. Multiple flows experimental set-up
for AIMD evaluation.

We evaluate three scenarios: Our first scenario has a
fixed number of participating flows. We study compara-
tively the behavior of the algorithms and we present exper-
iments with both default and RED gateways. Our second
scenario involves progressive contention due to periodic in-
crease of the number of flows. The subject matter we inves-
tigate with this experiment is the mechanism’s potential for
efficient congestion avoidance and control, i.e., not only its
convergence behavior. In our third experiment we evaluate
the system’s responsiveness: bandwidth becomes available
and protocols should demonstrate the capability to consume
the available resources quickly. Both our second and third
experiments aim at alleviating concerns regarding the al-
gorithm’s behavior in dynamic (and hence more realistic)
environments.

A TCP flow runs at each end node and an FTP applica-
tion generates traffic for each source. The application sends
data for 60 seconds. The RED queue buffers were set equal
to the Delay x Bandwidth product. We measured the number
of packets that arrive at the receivers; since the time of the
experiments is fixed we report this number as Goodput in
the figures (average of 30 experiments with minimal statis-
tical deviation). Goodput is a metric for system efficiency.
In line with our theoretical findings and in order to measure
the convergence behavior of the participating flows, we use
the Fairness Index used in [9]: F(z) = (3_ z:)?/n(3_ 22),
where z; is the goodput achieved by each flow.

Experimental Results for a Stationary Environment
We present results with e = 1/2 (Figures 3, 4), e = 1/3
(Figures 5, 6), and e = 1/8 (Figures 7, 8). For e = 1/2, effi-
ciency (in terms of bandwidth utilization) does not improve.
However, due to the algorithms ability to calculate the fair-
share, fairness is improved (see Figure 4). We demonstrate
notable improvement in efficiency when € is smaller. In Fig-
ure 5 where € is 1/3 goodput is increased up to 5% and in
Figure 7 where € is 1/8 goodput is improved up to 10%.
The corresponding improvements in fairness can be seen in
Figures 6 and 8 respectively.

70
= AIMD

4 = Bimodal
65 —

60

5 I I | |

50 I|I T T T T
2 a 8 16 32

Number of Flows.

Packet Received x 10000

T
64 128

Figure 3. Goodput Performance on a 100Mbps

link and a RED Gateway. € = 1, 8 = 1.

0.96 = AIMD
= Bimodal

0.94 —

0.92 4

0.90 - |

o.88 Ix ' e T T T T
2 a 8 16 32 64 128

Number of Flows.

Fairness|ndex

Figure 4. Fairness with the 100Mbps link and

a RED Gateway. ¢ = 1, 3 = 1.

Experimental Results for Graduated Contention In-
crease A reasonable question regarding the performance
of Bimodal Congestion Avoidance and Control arise when
contention increases unpredictably, and then adjusting to
a precalculated fair-state may be risky. However, when
contention increases (hence the actual fair-share decreases),
calculation of the fair-share is not based on historical data
but on the most recent evaluation of the number of steps,
and on the values of 3, . Hence, the capability of the algo-
rithm to perform efficient congestion avoidance when con-
tention increases is not compromised. Once the situation is

70 —H
= AIMD

i = Bimodal
65 —

60 —

§ I | | ‘

50 III T T T T
2 a 8 16 32

Number of Flows.

Packet Received x 10000

T
64 128

Figure 5. Goodput Performance on a 100Mbps

link and a RED Gateway. ¢ = %, § = 1.

0.96 — = AIMD
= Bimodal

0.94 —

0.92 —

0.90 — ‘

0.88 I = - A
8

Fairness Index

T T T T T
2 16 32 64 128
Number of Flows.

IS

Figure 6. Fairness with the 100Mbps link and

a RED Gateway. € = g, f = 3.

detected? multiplicative decrease is drastic, making space
for the new flows as in standard AIMD. Results of the ex-
periments are presented in Figures 9 and 10.

Experimental Results for Graduated Bandwidth In-
crease We consider a deterministic scenario where some
applications finish their tasks earlier than others i.e., not a
bandwidth provisioning scenario. We measure the capa-
bility of the algorithm to exploit available bandwidth effi-
ciently and fairly. With e equal to 3, a difference in good-
put is not really expected. Unlike goodput, fairness shows
an improvement. We present the results in Figures 11 and
12 respectively.

4 Discussion and Conclusions

We presented a congestion control algorithm that explic-
itly calculates the fair share and converges to it in two con-
gestion cycles. Our algorithm outperforms standard AIMD.
One issue is that the more the gain we have in goodput, by
using a smaller ¢, the less free space is left for incoming

2Note that contention increase cannot be detected by traditional AIMD.

70 4
= AIMD

] = Bimodal
65 —

60 —|

E | I ‘ |

50 II T T T T
2 a4 8 16

32

Packet Received x 10000

Number of Flows.

Figure 7. Goodput Performance on a 100Mbps

link and RED Gateway. ¢ = §, 8 = 1.
1 m AIMD
0.95 — = Bimodal
s]
| 4 H
— 0.90 H
i]
0.85] I I | .| |

4 8 16 32
Number of Flows.

Figure 8. Fairness with the 100Mbps link and

RED Gateway. € = £, 8 = 3.

18

= AIMD
= Bimodal
17

15 ‘ |
14 T T
30 60

Number of Flows.

Packet Received x 10,000
B
o

T T
90 120

Figure 9. Goodput Performance on a 100Mbps
link and a RED Gateway. The number of flows
is increased by 30 every 15 seconds. € = %

=1}

flows when contention increases. Although the system con-
verges in two cycles, leaving no free space in order to maxi-
mize bandwidth utilization will impact the packet overhead
due to retransmission. Investigating the optimal value of e
in conjunction with the dynamics of specific environments
is a subject of future work.

Our algorithm is executed only by the sender. The sender

0.94 — = AIMD
= Bimodal

0.92 —
0.90 —
0.88 —
0.86 —
R
30

Figure 10. Fairness with 100Mbps link and
a RED Gateway. The number of flows is in-
creased by 30 every 15 seconds.

Fairness|ndex (%)

T T T
60 920 120
Number of Flows.

= AIMD
= Bimodal
8 17
o
=
>
B
B 16
T
5]
o
ko
k=1
g 15
14 T T T T
120 90 60 30

Number of Flows.
Figure 11. Goodput Performance on a

100Mbps link and a RED Gateway. The num-
ber of flows is halved every 15 seconds.

1
)
. ||
16 8

—1 —1
e=358=73.
Number of Flows.

= AIMD
m Bimodal

0.92 -

FairnessIndex (%)

0.90 B

N —

Figure 12. Fairness with the 100Mbps link
and a RED Gateway. The number of flows
is halved every 15 seconds.

maintains the current flow state and mode, and the router
need not maintain any extra information. Thus, our algo-
rithm works with standard IP routers, since it only relies
on a 1 bit feedback in the form of congestion/no conges-
tion, which in practice is generated by a packet drop or ac-
knowledgment. Requiring the sender to maintain a small

amount of information (two window sizes and three bits)
per flow is not an impediment, in comparison to the amount
of data a typical sender transmits. Also, the per flow state
is maintained in a distributed fashion by the senders, and is
not concentrated at performance-critical routers, where the
aggregation of per-flow state for, e.g., thousands of flows,
would cause severe performance degradation.

We distinguish our algorithm from the TCP-friendly al-
gorithms, which favor smoothness at the cost of fairness.
Our algorithm calculates the fair share explicitly, and so
fairness is not compromised in our approach.

References

[1] The Network Simulator - NS-2. Technical report, Web Page:
http://www.isi.edu/nsnam/ns/.

[2] P. C. Attie, A. Lahanas, and V. Tsaoussidis. Bi-
modal congestion avoidance and control. Techni-
cal report, College of Computer Science, North-
eastern University, June 2002. Web Page:
http://www.ccs.neu.edu/home/attie/papers/bimodal.ps.

[3] D. Bansal and H. Balakrishnan. Binomial Congestion Con-
trol Algorithms. In Proc. IEEE INFOCOM, 2001.

[4] D. Chiu and R. Jain. Analysis of the Increase/Decrease Al-
gorithms for Congestion Avoidance in Computer Networks.
Journal of Computer Networks and ISDN, 17(1), June 1989.

[5] S.Floydand K. Fall. Promoting the Use of End-to-End Con-
gestion Control in the Internet. IEEE/ACM Transactions on
Networking, 7(4):458-472, August 1999.

[6] S.Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-
Based Congestion Control for Unicast Applications. In Pro-
ceedings of the ACM SSGCOMM 2000, May 2000.

[7] J.Y.Halpernand Y. Moses. Knowledge and common knowl-
edge in a distributed environment. J. ACM, 37(3), 1990.

[8] V. Jacobson. Congestion Avoidance and Control. In Proc.
ACM S GCOMM, August 1988.

[9] R. Jain, D. M. Chiu, and H. Hawe. A Quantitative Mea-
sure of Fairness and Discrimination for Resource Allocation
in Shared Systems. Technical Report DEC-TR-301, Digital
Equipment Corporation, 1984.

[10] S. Jin, L. Guo, I. Matta, and A. Bestavros. TCP-friendly
SIMD Congestion Control and Its Convergence Behavior.
In Proceedings of the ICNP’ 2001, November 2001.

[11] A. Lahanas and V. Tsaoussidis. Additive Increase Multi-
plicative Decrease - Fast Convergence (AIMD-FC). In Proc.
Networks 2002, Atlanta, Georgia.

[12] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP
Selective Acknowledgment Options. RFC 2018, April 1996.

[13] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The Macro-
scopic Behavior of the TCP Congestion Avoidance Algo-
rithm. ACM Computer Communication Review, 27:20-26,
July 1997.

[14] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling
TCP Throughput: A Simple Model and its Empirical Vali-
dation. In Proceedings of the ACM SGCOMM, 1998.

[15] J. Postel. Transmission Control Protocol. RFC 793, 1981.

[16] Y. Yangand S. Lam. General AIMD Congestion Control. In
IEEE International Conference on Network Protocols, 2000.

