Wave & Wait Protocol (WWP):
High Throughput & Low Energy for Mobile IP-Devices.

V. Tsaoussidis, A. Llahanas
College of Computer Science
Northeastern University, Boston, MA 02115

Abstract

The work we present here reports on the further
development and testing of an experimental transport-
level protocol. The protocol runs on top of IP, and is
intended for mobile, wireless devices. Its central concern
is to conserve battery-powered energy used for
transmission while maintaining high levels of data
throughput. It can be adjusted to achieve higher
throughput at the expense of lesser energy-saving in
accordance with the application’s needs. It conserves
transmission effort, adjusting data transmission below
perceived network congestion level, and thereby
minimizes the need for duplicate data retransmission due
to congested routers losing packets, and so on. It
achieves high throughput by implementing a network
probing mechanism that enables it to investigate
instances in which prevailing throughput conditions
appear to be deteriorating, before committing to further
data transmission. The probing mechanism also permits
it to continuously monitor the network during high
congestion periods in order to locate windows of
sufficiently low congestion opportunity to exploit for
transmission.

1. Introduction

Mobile communication devices are increasingly
dominating today's market. Many applications are being
developed for mobile stations, which require very
specific protocol support depending on the
characteristics of both application (e.g., e-mail, web,
multimedia) and mobile station (e.g., laptop, phone,
handheld etc.). For the environments in which such
stations operate, throughput is not the sole dominant
performance criterion. Energy-saving becomes a crucial
factor as well.

Most recent studies ignore the energy/throughput
tradeoff at the transport layer, although it is becoming a
key performance issue. The only published studies of
TCP energy consumption are presented in [4, 6]. The
authors in [6] present results, based on a stochastic
model of TCP behavior. While the model makes some
assumptions in order to maintain analytic tractability, it
remains unclear how these assumptions might invalidate
the results. The authors’ conclusions are based on the
additional energy expenditure caused by channel

0-7695-0777-8/00 $10.00 © 2000 IEEE

469

H. Badr
Dept. of Computer Science
SUNY at Stony Brook, NY 11794

impairments only in the context of retransmitted data;
experimental results based on the combination of time
and overhead are presented in [6]

The protocol presented here runs on top of IP, and is
intended for mobile, wireless devices. Its central concern
is to conserve battery-powered energy used for
transmission while maintaining high levels of data
throughput. It can be adjusted to achieve higher
throughput at the expense of lesser energy-saving in
accordance with the application's needs. It conserves
transmission effort, adjusting data transmission below
perceived network congestion level, and thereby
minimizes the need for duplicate data retransmission due
to congested routers losing packets, and so on. It
achieves high throughput by implementing a network
probing mechanism that enables it to investigate
instances in which prevailing throughput conditions
appear to be deteriorating, before committing to further
data transmission. The probing mechanism also permits
it to continuously monitor the network during high
congestion periods in order to detect and exploit
windows of opportunity of improved conditions during
which aggressive transmission of data can be
successfully undertaken as conditions alter. A way to
save energy is to avoid retransmissions, unnecessary
headers, and redundant data. The less time expended on
transmissions, the better the energy saving. For example,
transmission of packets over a congested network will
cause packets to be dropped and, consequently, a reliable
protocol will initiate a retransmission mechanism.
Instead, our protocol first "probes" the network to
estimate prevailing levels of congestion risk and adjusts
its transmission accordingly. It transmits aggressively
when existing conditions appear to be favorable, and
backs off as congestion is detected, thereby attempting to
take maximum advantage of favorable conditions
without wasting energy on transmissions that are
unlikely to be successful as conditions deteriorate.

At the core of the protocol's throughput and
energy-saving performance is its ability to monitor
network conditions and rapidly adjust its transmission
strategy as these conditions continuously change for the
better or worse. Two mechanisms are central to
providing the protocol with this capability. The
transmission of a wave is used to monitor current
network performance, and the next wave level is set in
conformity with what is thereby detected about

prevailing conditions. Secondly, probe cycles constitute
an "energy-conserving" mechanism for investigating
instances in which good prevailing conditions appear to
be deteriorating, before committing to further data
transmission, and to continuously monitor the network
during high congestion periods in order to detect and
exploit windows of opportunity of improved conditions
during which aggressive transmission of data can be
successfully undertaken as conditions alter. Probe cycles
are "energy conserving” in contrast to the energy that
would otherwise be expended on the transmission of data
segments that do not have a good chance of getting
through during high congestion periods. Because of the
centrality of waves and probing to the protocol's
innovative approach, we proceed to present each of these
in turn in some detail. Details on other aspects of the
protocol (e.g., connection establishment, segment
formats and types, etc.), can be found in [3].

2.2 Wave Mechanism

The protocol first groups data segments into
waves on the sending side and then transmits the
segments of a wave one after the other, rather than
simply sending separate segments individually when it
can. The reason is that, in order for the receiver to
effectively estimate network congestion based on the
successive segments reaching it, it needs some
knowledge about the sender's pattern of transmission of
these segments. This knowledge is (implicitly) provided
by the fact that waves at a given level are made up of a
predetermined, fixed number of data segments of fixed
size, and the sender transmits the segments of the wave
one after the other with no pause between one segment
and the next.

While data segments are of fixed size, in any
given implementation of the protocol the segment size
can be set 50 as to optimize the average number of bytes
that need retransmission, in line with the network's
overall characteristics of burst errors, and so on.
Similarly, the number of wave levels, and the fixed
number of segments comprising each wave level, can
also be set with an eye to the application's message sizes,
as well as the protocol's own internal need for wave
"granularity” matching the network's range of congestion
behavior (i.e. small waves containing few segments for
transmission under significant congestion, through to
large waves containing many segments in order to
exploit opportunities when congestion is low).

The receiver attempts to estimate prevailing
congestion conditions by monitoring the throughput of
the current wave and setting the level of the next wave
accordingly. A wave at level i (7>=0) is composed of a
fixed number W{(i) of data segments. For =0, W(0) is
defined to be 0.

A data segment is composed of a 6-byte header
and a fixed-sized data payload [3]. Once the first
segment to reach the receiver from a new wave arrives, it

470

is easy for the receiver, given the current wave level i
(which is carried in the segment header), to calculate
how long it would take the rest of the wave to reach it if
the network were relatively uncongested, using a
"baseline" throughput of BT KBytes per second for the
uncongested network. The time thus calculated is the
"baseline time". The receiver measures how long it
actually takes for the remaining segments in the wave to
arrive. It then uses the baseline and measured times for
the wave to set the level of the next wave.

Our design currently calls for four wave levels,
i=0, 1, 2, 3. The number of segments in a wave

W(i) =(12 x i) fori=0, 1,2, 3;

of fixed-sized segment payload was set to IKByte. The
following simple algorithm was used by the receiver to
set the next wave level:
Suppose the current wave is at level i, i = 1, 2, 3.

Let T(i) be the measured time for a level
i wave.

Let B(i) be the baseline time for a level
i wave.

For j =1, 2, 3:

if T(i) is in the range (j-1 , 3l X B(i),
then

next wave level is set to (4-3);

else

set wave-level to 0.

The algorithm above essentially implies that the when
the receiver sets the new wave level tok, k=1, 2, 3, itis
estimating the current network throughput to be no worse
than approximately a fraction 1/4-k) of the baseline
throughput value of BT KBytes per second (and no
better than approximately a fraction 1/4-k), for k = I or
2). The number of segments in the new wave is then
adjusted proportionately. If the throughput appears to be
less than 1/3 of the baseline throughput, we go to level 0,
deeming it better to pause for a while than risk
expending energy transmitting even a small wave that
might not have a sufficiently good chance of getting
through undamaged. In the event the receiver sets the
next wave level at 0, the sender will immediately probe
the receiver. The receiver uses the RTTs (Round Trip
Times) measured during the probe cycle to set the new
wave level in the N-S_ACK segment (Negative Selective
Acknowledgment) it sends to the sender at the end of the
cycle (see Subsection 2.3 below). The sender does not
start transmitting segments until it has a sufficient
number to make up a complete wave. When it receives a
N-S_ACK setting the wave level, and if it does not have
sufficient old (needing retransmission) and new data up
to the specified number of segments in the wave, it will
transmit the segments it has at the highest wave level for
which it has enough segments.
2.3 Probing Mechanism

The wave mechanism described above enables
the receiver to estimate the current level of congestion
and the associated delay for data segment delivery. This

information is implicitly and indirectly summarized in
the level selected for the next wave. However, an error
that causes data segments from a wave to be lost might
be an indication of either a purely transitory problem on
the transmission line (such as a burst error, for example),
or of deteriorating congestion conditions which are likely
to be of longer duration. It should be noted before
proceeding further that the probing mechanism described
here is significantly different from that reported on in
31

A probe cycle enables the receiver to measure
two successive RTTs from the network, thereby
providing it with sufficient information to determine
whether the error was purely transitory or an indication
of longer-lasting congestion build up. Operating at even
high wave levels, and pausing to check with probes in
the event of unduly delayed, and possibly lost, data
segments, the receiver can decide whether to have data
transmissions continue at an appropriately high wave
level, adjust the wave level downwards, or even
temporarily stop data transmission altogether. The
approach takes full advantage of the fact that almost-
current congestion conditions have already been
estimated by the receiver, and are summarized by the
current wave level. The receiver uses the absolute values
of the two RTTs measured from the probe cycle, as well
as the difference between these two RTTs, to set the next
wave level in terms of an incremental change from the
current level. The new wave level is signaled to the
sender by means of a N-S_ACK segment that terminates
the probe cycle.

A probe cycle starts when the N-S_ACK
segment for a data wave just transmitted goes absent (see
figure 1). This could indicate incomplete delivery of (or
undue delay of some segments from) the wave, or the
delay/loss of the wave's corresponding N-S_ACK. The
SEND_T timer at the sender side expires and a PROBE1
segment is transmitted. The receiver responds with a
PRI_ACK, upon receipt of which the sender transmits a
PROBE2. The receiver acknowledges this second probe
with a PR2_ACK and enters a state where it waits for a
PROBES3. It makes an RTT measurement based on the
time delay between sending the PR1_ACK and receiving
the PROBE2. Upon receipt of PROBE3 it makes the
second RTT measurement based on the time delay
between the PR2_ACK and the PROBE3. The receiver
then determines the level for the next wave and informs
the sender by means of a N-S_ACK. In setting the next
wave level, the receiver takes into account the network
conditions that had been detected at the time the current
wave level was determined, as well as the values of the
two RTT measurements and the delay variation (jitter)
between them. Other applications with bursty flows that
are currently sharing the same links in the network that
our application is being routed along will induce
measurable jitter between the two RTTs. Contrariwise,
an error free environment, or links that are being shared

471

with normalized/smoothed-out data flows, will induce no
jitter. The receiver can take all this into consideration in
setting the level for the next wave. The full set of
decision-making rules has not yet been completely
standardized, but a set of rules has been developed,
implemented, calibrated and used for our testing
environment.

Although probing is a fairly complicated
mechanism and adds additional RTTs to the protocol’s
progress, it proves to be a more useful device than would
be sending data that is likely to be dropped, on the one
hand; or reducing the window size (i.e., reducing the
wave level) and degrading the connection throughput,
possibly for no good reason, on the other. The first
option would negatively impact energy expenditure. The
second would needlessly degrade the effective
throughput and also, by unnecessarily prolonging the
connection time, also impact energy consumption.

3. Implementation & Testing

The protocol was implemented using the x-
kernel protocol framework [S]. The high-level test
protocol sends messages of 1024 bytes to the underlying
WWP layer. These are then buffered until there are
enough segments to form a wave at the level needed.
Congestion was simulated by dropping and delaying
segments using modified x-kernel protocols. Our
modified x-kernel protocol, which we call VDELDROP,
drops segments at a constant rate specified for the
duration of a test, and causes different delays for each
segment. VDELDROP also has the capability of
alternating On/Off phases during which its actions are in
effect and are suspended, respectively. Thus, during a
connection period, WWP would experience phases that
are error free and others with simulated congestion error
effects. This modification enabled us to test WWP's
behavior in response to sudden changes in the simulated
environment, and its ability to rapidly re-adapt to varying
congestion conditions. Such conditions are typical of
mobile networks where the user is "on the move":
communication with the access points will have variable
characteristics during the connection time. VDELDROP
was configured above IP, with WWP contfigured on top
of it, and our high-level testing ("application") protocol
configured above WWP. We also ran TCP [2] under a
similar configuration.

We compare our protocol with TCP Reno since
TCP is a reliable protocol with end-to-end service similar
to WWP. It is also a topic of current research interest
with respect to its behavior in wireless environments.
However, TCP does not distinguish well between
congestion [l1], on the one hand, and transient
transmission burst errors, on the other, although each
requires distinct actions in response to its occurrence
(e.g., slow down, and continue feeding the network,
respectively).

The data segment payload was 1KByte; W(i) =
12 X i, i = 0,123 ; All this probably causes WWP to

understate its potential somewhat, though some effort
was put into calibrating the sender timeout values
SEND_T and PROBE_T, and the decision-making
process by which the next wave level was determined at
the end of a probe cycle, in order to enhance
performance. The protocol clearly achieves higher
throughput and conserves more energy than TCP.
Furthermore, while both protocols' throughputs and
energy-expenditures degrade as increasingly problematic
network conditions are simulated, WWP's performance
relative to TCP's improves, using their performance
under error-free conditions as a reference point. This
demonstrates the effectiveness of the protocol,
irrespective of implementation or testing environment
limitations that might not have been taken into account,
and which could be constraining either protocol's
absolute performance.

All tests are undertaken using 5-MByte (5,242,880 bytes)
data sets for transmission. The purpose of the tests was to
evaluate the behavior of the two protocols in response to
changes in the simulated network environment, such as
congestion and transmission errors at different rates and
for different duration. We took measurements of the total
connection time and of the total number of bytes
transmitted (i.e., including protocol control overhead
transmissions, data segment retransmissions, efc.). Both
factors significantly affect energy expenditure as well as
throughput. Error conditions have two distinct
characteristics — transmission errors, as opposed to
excessive congestion - but one and the same result:
segments are lost. Segments may or may not be delayed
during the On phases of VDELDROP (the delay effect of
VDELDROP is random). A challenge for both protocols
- also tested for - was whether, in the presence of errors,
the response would be to reduce the window size (i.e.,
reduce the wave level in the case of WWP), or proceed
aggressively with data transmission instead. Note that
when burst errors, which by their nature are transient,
occur and the sender reduces its window size in
response, the achieved throughput will be below the
maximum attainable under these conditions.

In Table 1 (appendix) we present results for the
5-MByte data messages and VDELDROP On/Off phase
duration of 10 seconds. In order to represent the energy
expenditure overhead required to complete reliable
transmission under different conditions, we use the
Byte Overhead as a metric. This is the total extra
number of bytes the protocol transmits, over and above
the 5 MBytes delivered to the application at the receiver,
from connection initiation through to connection
termination. The Byte Overhead is thus given by the
formula:

Byte Overhead = Total - Base, where,
Base is the number of bytes delivered to the high-level
protocol at the receiver. It is a fixed 5 MBytes for all
tests.

472

Total is the total of all bytes transmitted by the
transport layers , and is given in the column Total
Bytes. This includes protocol control overhead, data
segment retransmission, as well as the delivered data.

The time overhead required to complete reliable
transmission under different conditions is given in
column Time overhead using the formula: Time
Overhead = Connection Time - Base,
where,

Base is the number of seconds required to deliver the 5
MBytes to the high level protocol at the receiver under
error-free conditions, from connection initiation through
to connection termination (column Time Ran for the test
set 1 in the table).

Connection Time is the corresponding amount of
time required for completion of data delivery under
error-prone conditions, and is given in column Time
Ran.

The net performance of the protocols is given in
column Goodput using the formula: Goodput =
Original Data / Connection Time, where,
Original Data is the 5-MBytes data set.

The Drop Rate reported is the dropping rate for
segments during the On phases, not the averaged overall
drop rate across On/Off phases.

As demonstrated by the results for test sets 2, 3,
4,5, and 6, the behavior of WWP is very constant with
respect to time (and hence throughput) and energy
expenditure. The throughput achieved is far better than
TCP's and the energy expenditure is far less. WWP
adapts quickly to error phases. It does not automatically
decrease its sender window size in response to a drop as
does TCP. Instead, immediately upon experiencing a
drop, it pauses in its data transmission and probes. It then
checks the measured RTTs from the probe cycle to
assess whether conditions allow continued transmission
and, if so, at what level. It can adjust back immediately
to a high wave level where appropriate, unlike TCP
which applies graduated multiplicative/additive increases
to its window size. This mechanism of WWP’s has two
significant results: (i) data transmission 1s not wasted
during sustained periods of degraded network capacity,
and thus retransmissions are reduced to a minimum; and
(ii) throughput is maximized since we can adjust to high
wave levels immediately under appropriate conditions,
thereby not wasting opportunities for successful data
transmission by attempting less than the network would

easily be able to accommodate. This is clearly
demonstrated by the results for test sets 5 and 6.
There, TCP reduces its window size

significantly since the error rate is high. It then takes
considerable amounts of time to readjust the size back up
to an appropriate level, thereby "missing” the "good"
phase. This results in trading off prolongation of the
connection time in order to avoid retransmissions. The
protocol is clearly inefficient under such conditions.

Table 2 (appendix) outlines the effectiveness of

the protocols with respect to energy savings and
throughput, as well as their relative behavior under
varying conditions. Column Overhead Ratio is a
measure of the relative transmission overhead of the two
protocols, and is calculated as TCP (Total Bytes
Transmitted - 5 MBytes) / WWP (Total Bytes
Transmitted - 5 MBytes).
Goodput Ratio gives the relative throughput rates: TCP
Goodput / WWP Goodput. Finally, Time Ratio
shows the relative connection times for the two protocols
(TCP/WWP).

When error rates are low, TCP behaves well and
its major weakness - inability to adequately readjust to
rapidly changing conditions — does not catastrophically
degrade its performance. WWP displays consistently
good behavior, even when variability in the error
environment is quite dramatic. Under such conditions of
high variability, TCP wastes enormous amounts of
energy and unexploited throughput capacity, and does
not achieve good performance. Its throughput in all
error-prone cases is well below what it is capable of
achieving under error-free conditions, let alone the
higher throughput displayed by WWP. As demonstrated
by test sets 3 and 4, it is unable to take advantage of
network conditions, expending up to fourfold more time
than WWP. It is interesting to note (see test set 3) that
TCP transmits up to 158 KBytes more than does WWP
under the same conditions, in order to deliver its 5
MByte data set. So it is not even trading off lesser
transmission effort at the expense of longer connection
times in an effective manner. Indeed, it is the longer
connection times of TCP that seriously aggravate the
energy consumption characteristics of the protocol,
rather than wasted transmission effort as such.
Throughput can reach as low as only 23% of that
achieved by WWP, although under error-free conditions

T# ‘A “Total Time Byte Goodput
Bytes Overh Q| Overh.

Drop

: -'5% -117‘ -5395782 - 152902
B |
2w

167942
7667

=]

P f
TN T SIS [N

258 149802
85.9 31721
TCP. 25 1903) 145468
M so N 867 W 462 J 32414 [[60471
Table 1: 10sec On/Off Drop phase, SMB data transmission

5392682 J[1898

5388348 1 19

it can achieve up to 58.6% of WWP's corresponding

goodput. Similarly, under error-free conditions, their

relative time ratio was 1.7/1; this ultimately grows to
about 4/1 as error conditions deteriorate.

Results presented in the table for the relative
data overhead deteriorate to a value of 4.48/1, which
portends that energy expenditure should reach even
worse values were the total connection times to be taken
fully into account.

4. Conclusion

We have presented a reliable transport protocol
that achieves high throughput and considerable energy-
saving in network environments with significantly
variable error characteristics. Our results clearly
demonstrate that retransmissions and duplications can be
avoided if we transmit data when network conditions
allow it. Comparison results at different congestion
levels demonstrate suitable behavior by the protocol. In
contrast to TCP, totals for overall bytes transmitted as
well as communication time are significantly less, so
energy saving is proportionally higher.

5. References

1. M. Allman, V. Paxson, W. Stevens, "TCP Congestion
Control", RFC 2581, April 1999

2. J. Postel, Transmission Control Protocol,
September 1981.

3. V. Tsaoussidis, H. Badr, R. Verma, "Wave and Wait
Protocol: An energy saving transport protocol for mobile
IP-Devices", IEEE ICNP ‘99, Toronto, Canada, October
1999.

4. V. Tsaoussidis, H. Badr, “Energy / Throughput Tradeoffs
of TCP Error Contro} Strategy”, IEEE Symposium on
Computers and Communications, IEEE ISCC 2000,
France, 2000.

5. The X-kernel: www.cs.arizona.edu/xkernel

6. M. Zorz, R. Rao, “Energy Efficiency of TCP”, MoMUC
99, San Diego, California, 1999

RFC 793,

Prtcl Drop Time Overhead §| Goodput Time
81 -Rate Ran (sec) Ratio Ratio Ratio

=
5

e e e e I
59-60%
’ 1.64/1
1.83-

: 813:81.9
23-32% J| 3.04.2/1
2.56/1
1Y Tcp 259-385

CP 258368
3. 859-87.6

| 2.0-4.48/1 24-33% 2.98-
Table 2: Summary of results with Drop Phase 4-10 sec

E

wif vk
PN | BEST | N

e

3

~

473

