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Abstract

Today's universal communications
increasingly involve mobile and battery-ponered
devices (e.g. handheld, laptop) over wired and
wireless networks. Energy efficiency, as well as
throughpit, are becoming service daracteristics of
dominant importance in communication protocols.
Although standard TCP versions lack the functionality
to efficiently adjust their error-control strategies to
distinct characterigtics of network environments and to
spedfic constraints of comrunicating devices, the wide
range of TCP-based applications have rendered TCP
the de facto standad for reliable end-to-end
comnunications. In this work we propase “ grafting”
two comporents of strategic significance onto standard
TCP: a Probing mechanism and an Immediate
Recovery dtrategy. Our results show that these
enhancements  yield higher throughpt while
maintaining lower levels of energy expenditure, and
thus have the potential of promoting TCP’s congestion
control to a universal error-control schema for
heterogeneous wired/wireless chamels. Furthermore,
the enharncements do not damage the end-to-end
characterigics of the TCP, nor dothey require changes
to its semantics: the mechanisms are implemented as
option extensions to the TCP header. We @mpare
“T CP-Probing” with Tahce, Reno, and New Reno, and
show that it can be a protocol of choice for
heterogeneous wired/wireless commnunications with
respect to energy and throughput performance.

1. Introduction

Computer Networking is rapidly evolving
towards a physically heterogeneous but functionaly
integrated environment consisting o both wired and
wireless components.  Traditionally, throughput
efficiency has been a central concen of reliable
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transport protocols. The increasing presence of battery-
powered devices in today’'s networking environment
makes energy efficiency an additional focus of
concern.

By and large, TCP [8] has evolved with a
focus on its throughput efficiency in more-or-less
“homogeneous’ environments (e.g. wired vs. wirelesg;
consequently, homogeneity was also refleded in the
nature of the erors that were mnsidered (eg.
congestion/transmisson erors VS.
random/burst/fading-channel errors). Jacobson [5] was
the firg to study the impact of retransmisson on
throughpu, based on experiments with congested
wired networks. More recantly, others have also been
devating attention to TCP throughpu and proposing
modifications in order to enhance its performance
Floyd & Henderson, for example, have shown that
TCP throughput in wired environments can be made to
improve using Partial Acknowledgments and Fast
Rewvery [4]. Other receit enhancements require
intervention at the router or base-station level, and, in
general, the splitting up of the end-to-end characteristic
of TCP behavior. Ramakrishnan and Foyd [9], for
example, propose an Explicit Congestion Notification
to be added to the IP protocol (an approach similar to
RED Gateways) in order to trigger appropriate
behavior in TCP congestion control, and enhance its
performance by avoiding retransmisson caused by
congestion. An obvious drawback of this proposal, as
stated by the authors themsdlves, is the fact that
asymmetric routing will necessarily ensue. In addition,
the end-to-end autonomy of TCP will be damaged, yet
the problem will be only partidly solved: the level of
congestion will not be dfectively estimated, since
detedion ocaurs only as a function of routers
threshold values which, moreover, might differ from
router to router. On the other hand, Balakrishnan et d.
[2], Lakshman & Madhow [7], and others (e.g. [6]),
have shown that TCP throughpu degrades when the
protocol is used over satellite or wireless links. The
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diredion in which today's network environments are

evolving, however, raises me aiticd ises:

= Today's TCP applications are expeded to run in
physically heterogeneous environments composed
of both wired and wirdess components. The
existing TCP mechanisms do not satisfy the need
for universal functiondity in such environments,
since they do not flexibly adjust the recovery
strategy to the variable nature of the errors.

= The motivating force driving these modifications
ignores energy efficiency, which is beawoming a
key performanceisale.

Though the energy-conserving capability of
transport protocols can play an important role in
determining the operational li fetime of battery-powered
devices, the subjed has not been adequately studied in
the literature. The only published sudies of TCP
energy consumption are [3, 13] and [10, 11]. The
authors in [13] present results, based on a stochagtic
model of TCP behavior' while the authors in [10]
present an energy-saving approach using “waves’ and
“probing” with an experimental transport leve
protocol.

The key to throughput and energy efficiency
in a reliable trangport protocol is the error control
mechanism. TCP error-control does have some energy-
conserving capabilities: in response to segment drops,
it reduces its window size and therefore @nserves
tranamisgon effort. The am here is not only to
dleviate ngested switches, but aso to avoid
unnecessary retransmisson that degrades the protocol’s
performance When network conditions deteriorate to
an extent that they become the ground for more-or-less
persistent error conditions (e.g. congestion, prolonged
burst errors, fading channd), this kind of back-off
strategy seams to be the wrred choice The aror-
recovery medianism, however, is not always efficient,
especially when the error pattern changes snce packet
loss is invariably interpreted by the protocol as
resulting from congestion. For example, when
relatively infrequent random or short burst errors
occur, the sender backs off and then applies a
graduated increase to its reduced window size. During
this phase of window expansion, opportunities for
error-free trangmisgon are wasted and communication
time is extended. In other words, in the presence of
infrequent and transient errors, TCP back-off strategy,
at best, avoids only minor retransmisson at the st of
unnecessry and dgnificantly-degraded  effedive
throughpu (“goodpu”™), and increases in overall
connedion time. Conditions of random and short or
infrequent burst errors might actually call for an
aggressve behavior instead, which could enhance
throughpu and reduce overall connedion time in a
combined dynamic that produces energy saving.

1 We have, however, been unable to corrobarate some
of their results and conclusions [11].

Another source of energy wastage mmes from the
protocol’s inability to efficiently monitor network
conditi ons without incurring data-segment drops.

In order to enhance TCP throughpu and
energy efficiency with resped to the issues discussed
above, we propose grafting a “probing” scheme onto
the basic TCP error-control mechanism. In this <heme,
a “Probe Cycle’ consists of a structured exchange of
“probe” segments between the sender and recever.
These segments carry no payload and are implemented
using option extensionsto the TCP healer. We cal our
version of TCP with probing “TCP-Prohing”. When a
data segment is unduly delayed and posshbly lost, the
sender, rather than immediately retransmitting the
segment and adjusting the congestion window and
threshold downward, suspends data transmisson and
initiates a probe cycle instead. Since probe segments
are omposed of only segment headers, this enables the
sender to efficiently monitor the network on an end-to-
end basis, at much lesscost in transmisson effort (and
hence aergy cost) than would otherwise be expended
on the (re)transmisson of data segments that might not
have a good chance of getting through during periods
of degraded network conditions. It also contributes
more dfedivey to aleviating congestion, should that
happen to be the caise of the eror, than would
retransmitting a full data segment. The probe
terminates when network conditions have improved
sufficiently that the sender can make two successve
rond-trip-time  (RTT) measurements from the
network, a which point it will have more information
on which to base its error-corredion response than
does “standard” TCP. In the event that persistent error
conditions are deteded, the sender backs off by
adjusting the congestion window and threshold
downwards as would standard TCP. On the other hand,
if the onditions deteded indicate only a transient
random eror that did not impact the network's
effedive throughput capacity, the sender could
immediately resume transmisson at alevel that makes
appropriate use of avail able network bandwidth.

In this paper we describe our implementation
of TCP-Probing, and compare its throughput and
energy efficiency with those of TCP Tahoe, Reno and
New Reno. Although other versions of TCP have been
recently proposed (e.g. TCP SACK), we have sdleded
these threefor two reasons:

0] All three use the same acknowledgment
strategy for successfull y-trangmitted
segments, unlike TCP SACK for example.
This enables uniform comparison of their
medcanisms with TCP-Probing, which aso
uses the same strategy. Thus, differences in
energy and throughput performance ae a
direa function of their distinct congestion-
control strategies. We can therefore mmpare
these strategies' ability to adjust transmisson
to varying error conditions, not the least of
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which is the ability to effectively utilize
available bandwidth within the limits of bath
deteriorating and improving congestion levels.
Any shortfall from this behavioral dynamic is
refleded dredly as additiona energy
consumption and/or degraded goodpu.

(i) Tahoe, Reno and New Reno represent two
different approaches to congestion control, the
one @nservative (Tahoe) and the other more
aggressve (Reno/New Reno). TCP-Prohing
dynamically traverses a spedrum  of
conservative-through-to-aggressve  behavior
in response to varying error conditions. The
effediveness of this flexibility is highlighted
by the @ntrast in performance between Tahoe
and Reno/New Reno, given that these use
fixed conservative and aggressve strategies,
respedively.

“Probing” in the context of a reliable, transport-level

protocol such as TCP is afairly generic concept. It can

be implemented in a variety of different ways, and
further refined in several yet more diredions. Our

TCP-Probing serves to demonstrate the validity and

effediveness of the ncept, and to indicae the

diredion of further research.
Sedion 2 gves an overview of TCP Tahoe,

Reno and New Reno. The design and implementation

of TCP-Prohbing is detailed in Sedion 3. Sedion 4

outlines our testing environment and methodol ogy, and

presents our results dong with an analysis of the
protocols behavior. In Sedion 5, we briefly discuss
some open issues for further research. Finally, we dose

with some @ncluding remarksin Sedion 6.

2. TCPOverview

Historically, TCP Tahoe was the firg
modification to TCP. The newer TCP Reno included
the Fast Recovery algorithm [1]. This was followed by
New Reno [4] and the Partial Acknowledgment
medhanism for multiple losses in a single window of
data. As noted, TCP Tahoe, Reno and New Reno, all
use basically the same algorithm at the recever, but
implement different variations of the transmisson
processat the sender. The recever advertises a window
size, and the sender ensures that the number of
unacknowledged bytes does not exceal this gze. For
each segment corredly recaved, the recever sends an
acknowledgment which includes the sequence number
identifying the next in-sequence segment (byte). The
sender implements a congestion window that defines
the maximum number of  transmitted-but-
unacknowledged hytes permitted. This adaptive
window can increase and deaease, but never exceals
the recever's advertised window. TCP applies
graduated multiplicative and additive increases to the
sender's congestion window. The versions of the
protocol differ from each other essntialy in the way

that the mngestion window is manipulated in response
to acknowledgments and timeouts.

TCP eror-control mechanism is primarily
oriented towards congestion control. Congestion
control cen be beneficial aso for the flow that
experiences it, since avoiding wnecessry
retransmisson can lead to better throughput [5]. The
basic idea is for each source to determine how much
capacity is available in the network, so that it knows
how many segments it can safely have in transit. TCP
utilizes acknowledgments to pace the transmisgon of
segments and interprets timeout events as indicating
congestion. In response, the TCP sender reduces the
transmisgon rate by shrinking its window. Tahoe and
Reno are the two most common reference
implementations for TCP. New Reno is a modified
version of Reno that attempts to solve some of Reno's
performance probems when multiple packets are
dropped from a single window of data.

2.1 TCP Tahoe.

The @ngestion-control algorithm includes
Sow Start, Congestion Avoidance and Fast
Retransmit [1, 5]. It dso implements an RTT-based
estimation of the retranamisson timeout. In the Fast
Retransmit mechanism, a number of successve (the
threshold is wusualy set a thre@, dugicate
acknowledgments (dacks) carying the same sequence
number triggers off a retransmisson without waiting
for the associated timeout event to ocaur. The window
adjustment strategy for this “early timeout” is the same
as for a regular timeout: Sow Start is applied. The
problem, however, is that Slow Start is not aways
efficient, espedally if the error was purely transient or
random in nature, and not persigent. In such a @ase the
shrinkage of the ngestion window is, in fact,
unnecessry, and renders the protocol unable to fully
utilize the available bandwidth of the communicaion
channel during the subsequent phase of window re-
expansion.

2.2 TCP Reno.

Reno introduces Fast Recovery in conjunction
with Fast Retranamit. The ideabehind Fast Remvery is
that a dack is an indicaion of available dannd
bandwidth since a segment has been successfully
ddivered. This, in turn, implies that the @ngestion
window (cwnd) should actually be incremented.
Recdving the threshold number of dacks triggers Fast
Remvery: the sender retransmits the missng segment,
then, instead o entering Slow Start as in Tahoe,
increases cwnd by the dack threshold number.
Thereafter, and for as long as the sender remains in
Fast Recovery, cwnd is increased by one for each
additional dack receved. This procedure is cdled
“inflating” cwnd. The Fast Recovery stage is
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completed when an acknowledgment (ack) for new
data is recaved. The sender then halves cwnd
(“deflating” the window), sets the congestion threshold
to cwnd, and resets the dack counter. In Fast
Rewvery, cwnd is thus effedively set to half its
previous value in the presence of dacks, rather than
performing Slow Start as for a general retransmisson
timeout. Reno, however, is not optimized for multiple
segment drops from a single window.

2.3 TCP New Reno.

New Reno [4] addresses the prodem of
multiple segment drops. In effed, it can avoid many of
the retranamit timeouts of Reno. The New Reno
modification introduces a partial acknowledgment
strategy in Fast Recovery. A partial acknoMedgment is
defined as an ack for new data which does not
acknowledge all segments that were in flight at the
point when Fast Recovery was initiated. It is thus an
indicaion that not all data sent before entering Fast
Rewvery has been receved. In Reno, a partia ack
causes exit from Fast Recovery. In New Reno it is an
indicdion that (at least) one segment is missng and
neads to bhe retransmitted. This retransmisson is
effeduated and Fast Rewvery continues. In this way,
when multiple segments are lost from a window of
data, New Reno can recver without waiting for a
retransmisson timeout. However, the retransmisson
triggered off by a partial ack might be for a delayed
rather than lost segment; thus, the strategy risks making
multiple successful transmisdons for the segment,
which can serioudy impact its energy efficiency with
Nno compensatory gain in goodpu.

3. TCP-Probing

When a data segment goes missng, the
sender, instead o retransmitting and adjusting the
congestion window and threshold, initiates a probe
cycle during which data transmisson is suspended and
only probe segments are sent. In the event of persistent
error conditions (e.g. congestion), the duration of the
probe cycle will be naturally extended and is likdly to
be commensurate with that of the error condition, since
probe segments will be lost. The data transmisson
process is thus effectively “sitting aut” these aror
conditi ons awaiting successful completion of the probe
cycle. In the @ase of random loss however, the probe
cycle will complete much more quickly, in proportion
to the prevailing densty of occurrence for the random
erors.

The sender enters a probe cycle when either of
two situations apply:

1 A timeout event ocaurs. If network conditions
deteded when the probe cycle completes are
sufficiently good, then instead of entering Slow Start,

TCP-Probing smply picks up from the point where
the timeout event occurred. In other words, neither
congestion window nor threshold is adjusted
downwards. We all this “Immediate Remvery’.
Otherwise, Slow Start is entered.

2.Three dacks are recaved. Again, if prevailing
network conditions at the end o the probe cycle are
sufficiently good, Immediate Remvery is exeauted.
Note that here, however, Immediate Remvery will
also expand the angestion window in response to all
dacks recaved by the time the probe cycle
terminates. Thisis ana ogous to the window inflation
phase of Fast Retransmit in Reno and New Reno.
Alternatively, if deteriorated network conditions are
deteded at the end of the probe cycle, the sender
enters Slow Start. This is in marked distinction to
Reno and New Reno behavior at the end of Fast
Retransmit. The logic hereis that, having sat out the
error condition during the probe cycle and finding
that network throughput is nevertheless ¢ill poor at
the end of the cycle, a conservative tranamisson
strategy is more dealy indicated.

3.1 Implementation.

A probe cycle uses two prohing segments
(PROBE1, PROBE2) and ther corresponding
acknowledgments (PR1_ACK and PR2_ACK),
implemented as option extensions to the TCP header.
The segments cary no payload. The option header
extension consists of fields (i) type, in order to
distingush between the four probe segments (this is
effedively the option code fied); (i) (options) length;
(iii) id number, used to identify an exchange of probe
segments.

The sender initiates a probe cycle by
tranamitting a PROBE1 segment to which the recever
immediately responds with a PR1_ACK, upon recept
of which the sender tranamits a PROBE2. The recever
acknowledges this smnd probing with a PR2_ACK
and returns to the ESTAB dtate (see Figure 1). The
sender makes an RTT measurement based on the time
delay between sending the PROBE1 and receving the
PR1_ACK, and another based on the echange of
PROBE2 and PR2_ACK.

Timeout (3 Dacks or Timeout) PROBE1

BE1 PROBE1 PR1 ACK
Rl SENT & ESTAB ———% PRLRCVD

racd [T
PROBE2
PR2_SENT PR2 ACK
PROBE?
PR2 ACK

Figure 1: Probing Sate Transtion Diagram



The sender makes use of two timers during probing.
The firs is a probe timer, used to determine if a
PROBEL1 or its corresponding PR1_ACK segment are
mising, and the same again for the
PROBE2/PR2_ACK segments The sewmnd is a
measurement timer, used to measure each of the two
RTTs from the probe cycle, in turn. The probe timer is
st to the estimated RTT value aurrent at the time the
probe cycleistriggered.

The value in the option extension id number
identifies a full exchange of PROBE1, PR1_ACK,
PROBE2 and PR2_ACK segments, rather than
individual segments within that exchange. Thus, in the
event that the PROBEL or its PR1_ACK islost (i.e. the
probe timer expires), the sender reinitializes the probe
and measurement timers, and retransmits PROBE1L
with a new id number. Similarly, if a PROBE2 or its
PR2_ACK islost, the sender reinitiates the exchange of
probe segments from the beginning by retranamitting a
PROBEL1 with a new id number. A PR1_ACK caries
the same id number as the corresponding PROBEL1 that
it is acknowledging; thisis also the id number used by
the subsequent PROBE2 and PR2_ACK segments. The
recever moves to the ESTAB state after sending the
PR2_ACK that should terminate the probe cycle. In
this dsate, and should the PR2_ACK be lost, the
recever would receve - instead o data segments - a
retransmitted PROBEL1 that is reinitiating the exchange
of probe segments snce the sender’s probe timer, in
the meantime, will have epired.

A criticd part of the probing mechanism isthe
dedsion rules that determine action at the end o the
probe cycle. The following smple dgorithm proved
sufficient to demonstrate the potential of prolbing in our
experiments. Upon exiting the probe cycle, the two
RTTs measured are ompared. If bath lie in the range
[best RTT, last RTT], Immediate Recovery is applied.
Last RTT is the estimated RTT value arrent at the
time the probe cycleis triggered. Otherwise, the sender
enters a Slow Start phase. More sophigticaed dedsion
criteria can be developed. For example, the value of
each of the two RTTs with resped to the range [best
RTT, last RTT], andthe delay variation (jitter) between
them, are potentialy useful sources of information that
we have not attempted to make use of.

Other iswues neal to be mnsidered for the
implementation of probing. For instance the sender
could receve acks during the probe cycle, in which
case it updetes its snding window as would standard
TCP, but does not send out new data before the
completion of the probe cycle. Of course, in a full
dudex connedion the sender might nevertheless neal
to respond with acks to the recever's data. Duplicae
acknowledgment delivery during a probe cycle is
another isaue that neads to be addressed. When a probe
cycle is triggered becuse of a timeout, dacks are
ignored. For a probe cycle triggered by dacks,

however, we keg count of the total number of dacks.
This count is used to increase the congestion window
sizeif the ensuing phaseis Immediate Recovery.

Probing proves to be a more useful device
than would be sending data that is likely to be dropped,
on the one hand; or reducing the window size ad
degrading the connedion throughput, possbly for no
goad reason, on the other. The firs option would
negatively impact energy expenditure. The secnd
would neellesdy degrade the goodpu and also, by
unnecessarily prolonging the mnnedion time, impact
energy consumption.

4. Reaults and Discussion

The four versions of TCP were implemented
(not smulated) as fully developed functioning protocol
code using the x-kernel framework [12]. The tests were
carried out in a single sesgon, with the client and the
server running on two diredly-conneded dedicated
hosts, so as to avoid urpredictable @nditions with
distorting effeds on the protocol's performance Each
version of the protocol was tested by itself, separately
from the others, so that its error-control medanism can
demonstrate its capability without being influenced by
the presence of other flows in each channd. We
simulated afairly low-bandwidth network environment
since we ae primarily interested in heterogeneous
wired/wirdess networks, and eror conditions of
different intensity and duration in order to evaluate the
protocols performance in response to changes in that
environment.

In order to simulate the error conditions, we
developed a new x-kerne “virtual protocol” [17],
VDELDROP, which was configured between TCP and
IP. VDELDROF's core medhanism consists of a 2-
state @ntinuous-time Markov chain. Each state has a
mean sojourn time m and a drop rate r, (i =1, 2)
whose values are set by the user. The drop rate r,
takes a value between 0 and 1, and determines the
proportion of segments to be dropped during date i.
Thus, when it visits date i , the medhanism remains
there for an exponentially-distributed amount of time
with mean m , during which it randomly drops a
proportion r, of segments being transmitted, and then
trangits to the other state.

In our experiments we mnfigured the two
states to have equal mean sojourn time. The value of
this mean time varied from experiment to experiment,
of course, but was always st equal for the two states.
Furthermore, one sate was always configured with a
zero drop rate. Thus, simulated error conditions during
a given experiment alternated between “On” and “ Off”
phases during which drop actions were in effed and
were suspended, respedively. Error conditions of
various intensity, persistence and duration could thus
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be simulated, depending an the choice of mean state-
sojourn time and drop rate for the On Sate.

All tests were undertaken using 5MByte
(5,242,880 bytes) data sets for trangmisson. The
results we report are based on the average of five
replications for each test. We took measurements of the
total connedion time and of the total number of bytes
tranamitted (i.e. induding protocol control overhead
transmisgons, data segment retransmisson, etc.). Both
factors sgnificantly affect energy expenditure as well
as throughput. Detail ed results are presented in Table 1
(see Appendix). The table gives results for
VDELDROP with mean On/Off phase duration set to 1
second (columns 1.1, 1.2, & 1.3) and 10 semnds
(columns 2.1, 2.2, & 2.3). In order to represent the
(transmisdgon) energy expenditure overhead required to
complete reliable transmisdon under different
conditi ons, we use Over head as a metric (columns 1.3
& 2.3). This is the total extra number of bytes the
protocol transmits, expressed as a percentage, over and
above the 5 MBytes ddlivered to the application at the
recever, from connedion initiation through to
connedion termination. The Overhead is thus given
by the formula:

Over head = 100* ( Tot al -
Origi nal )/ 5Moyt es, where,
= Oiginal Data is the number of bytes

delivered to the high-level protocal at the recaver.

It isafixed 5 Mbytes data set for all tests.
= Total isthetotal of al bytes transmitted by the

sender and recaver transport layers. This includes

protocol control overhead, data segment

retransmisdgon, as well asthe delivered data.
The Connection Tine required to complete
reliable transmisgon under different conditions, from
connedion initiagtion  through to  connedion
termination, is given in columns Time in seconds (1.1
& 2.1). The measured performance of the protocols is
given in columns Goodput (1.2 & 2.2) in bits/sec,
using the formulas Goodput = Origi nal Data
/ Connection Tinme. For VDELDROP, the
DROP Rate reported is the dropping rate for segments
during the On phases, not the averaged overal drop
rate across On/Off phases. An entry of O in the DROP
rate column signifies error-free onditions. All charts
presented in Sedions 4.1 and 4.2 below are based on
thedatagivenin Table 1.
41 Effective Per for mance
(Goodput)

As can be seen from Chart 1 below, Tahoe,

Reno, New Reno and Prohbing exhibit somewhat
similar behavior for frequent On/Off phase thanges (1-
second mean phase duration). Due to the short phase
periods, the protocols do not get the opportunity to
demonstrate the full range of their behaviord
characteristics by expanding their window sizes and
applying their congestion-/error-control  algorithms

Throughput

Goodput

Goodput

1,

1

over a sufficiently prolonged period of time. In
paticular, for example, when TCP-Probing enters
Immediate Remvery, it does © with a window size
that is not significantly different from Sow Start.

TCP Googput - 1 sec. drop phase
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Chart 1: Goodpu with mean On/Off phase 1
seoond

The dtuation, however, changes when the
mean duration of the On/Off phase grows to 10
seconds. Chart 2 shows that none of the three standard
versions of TCP uniformly outperforms the other two
with resped to goodpu across the full range of error
rates from 0 to 50%. Reno’s more aygressve strategy
yields better results at lower error rates, while Tahoe's
conservative strategy proves its worth at higher rates.
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The sdient point to note hereis that, with only
one eception at rate 20%, TCP-Probing’'s goodpu is
uniformly no worse than the best of the three standard
versions acrossthe entire range of error rates. As siuch,
TCP-Probing yields an uppr bound - sometimes a
loose upper bound - to the standard versions' goodpu
performance acrossthe range of error rates. Recll that
our On/Off error modd simulates exponentialy-
distributed On and Off phase duration with a spedfied
mean value (e.g. 1 second and 10se@nds). During On
periods, segments are randomly dropped at a spedfied
rate. Thus, despite its stochastic nature, any single
configuration of the model undoubtedly yidds a
narrower dynamic range of error patterns than would
be encountered in a real network environment over a
sufficiently long connedion time. In other words,
errors during a spedfic connedion are more accurately
exemplified by some pattern of varying configurations
of our error model. Consequently, the fact that TCP-
Prohing does not appredably under-perform the best of
the three standard versions, and outperforms them for
longer phase duration, across the range of
configurations for the error modd shown in Charts 1
and 2, gains further significance

It is ingructive to consider how the probing
and Immediate Recovery mechanisms provide TCP-
Probing with the behavioral flexibility underlying its
performance in Chart 2. At relatively low error rates
(0.01/1% to 0.1/10%), it is able to expand its window
in the Off phase. During the On phase its probing
medhanism alows it to explore windows of
opportunity for error-freetransmissons, which are then
exploited by Immediate Recovery. It is effectively
backing off for the duration of the probe cycle, but is
aso capable of rapid window adjustments with
Immediate Recovery where appropriate. In contrast,
Tahoe, Reno and New Reno's medanisms are
exclusively focused on congestion control. The ideais
to alleviate mngested routers and avoid flooding the
network, so their medanisms do not allow for rapid
window adjustments as a rewmvery strategy after
backing of. This is not necessarily the appropriate
course of action in every ingance of random and/or
trandent erors. Such erors ae not aways
symptomatic of degraded network capacity, and so
graduated adjustments could needlesdy degrade overall
throughpu performance

Probing gadudly induces a distinctly
different pattern of behavior from the above as error-
frequency becomes more dense. The probe cycle
naturally becomes more extended, during which no
data segments at al are transmitted. Furthermore, in
the event of congestion with deteriorating RTTS, the
prolonged probe cycle leads to Sow Start rather than
Immediate Rewvery. TCP-Probing behavior thus
becomes more mnservative. This conservative bias is
appropriate under the drcumstances, as may be seen by
contrasting it against Reno’'s and New Reno's more

aggressve, fixed policies. Condder, for example, Reno
at error rates 0.33 and 0.5 (Chart 2). It responds to
some erors by entering a Fast Rewmvery phase ad
continuing relatively aggressve data transmisgon; it
goes to Slow Start only in response to timeout events.
Its window will have been expanded significantly
during the Off phase. When it enters the On phase,
relatively aggressve transmisson could go on for a
while, since graduated downward adjustments in Fast
Reoovery alow for data transmisson until the window
shrinks. Under the same scenario, New Reno could
sustain aggressve retranamisson with a large window
for even longer than Reno does, since, in the absence
of a timeout, it interprets acks during Fast Recovery as
partial acknowledgments. Such attempts to remver
from multiple losses before readjusting its window are
unlikely to be successful as the error phase persists.
Extending the scenario to Tahoe, its conservative
policy calls for the window to shrink immediately; it
will not effedively re-expand for the remainder of the
heavy error phase. As the eror rate increases beyond
0.33, Reno and New Reno goodpu continues to
deteriorate, while Tahoe goodpu improves, finaly
matching that of TCP-Probing at 0.5. Despite more
bytes being injeded into the network by Reno and New
Reno, goodpu achieved is bardly half that of Tahoe
and TCP-Probing (Table 1, column 2.2, rows 6.1-6.4).
This confirms our expedation that a @nservative mode
of transmisson favors goodpu when error conditions
arerather intensive, while a aggressve bias resultsin
worse goodput performance due to retransmisson and
timeout adjustments. A consideration of protocol
overhead in light of achieved goodput further confirms
the validity of this point.

The overhead expended by Reno is 3.07% and
2.82% for 33% and 50% error rates, respedively
(Table 1, column 2.3, rows 5.2 & 6.2). New Reno
wastes even more dfort on retransmisson: 3.86% and
3.71%, respedively (column 23, rows 53 & 6.3).
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Tahoe's conservative retransmisson policy
reduces the overhead to 259% and 2.36%, respedively
(column 2.3, rows 5.1 & 6.1). TCP-Prohing, despite the
transmisdgon effort expended on probes, comes in even
lower, with 2.52% and 2.02%, respedively (column
2.3, rows 5.4 & 6.4). Overhead expenditure acrossthe
full range of error ratesis shown in Chart 3 above.

In conclusion, TCP-Probing cutmatches Reno
and New Reno in aggressve bias when an aggressve
strategy yields better goodput. It successfully competes
with Tahoe in being conservative when aggressveness
damages goodpu. Yet it manages to demonstrate this
flexible functionality using less transmisson effort,
which isasignificant factor for energy expenditure.

4.2 Energy Issues

Energy expenditureis device-, operation-, and
application-spedfic. It can only be measured with
predsion on a spedfic device, running each protocol
version separately, and reporting the battery power
consumed per version. Energy is consumed at different
rates during various gages of communication, and the
amount of expenditure depends on the arrent
operation. For example, the tranamitter/recever expend
different amounts of energy when they, respedively,
are sending o recaving segments, are waiting for
segments to arrive, and are idle. Hence estimation of
energy expenditure, additional to that consumed by
tranamitting the original data, which is common to all
four protocols, cannot be based soldly on the byte
overhead due to retransmisson, since overal
connedion time might have been extended while
waiting o while attempting only a moderate rate of
transmisgon. On the other hand, the estimation cannot
be based solely on the overall connedion time éather,
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since the distinct operations performed during
that time (e.g. transmisdon vs. idle) consume different

levels of energy. Nevertheless a protocol’s potential
for energy saving may at least be gauged from the
combination of byte overhead (discused in the
precaling sedion) and time savings achieved.

Chart 4 plots the data of column 21 in Table 1, giving
the behavior of the protocols with resped to connedion
timefor mean On/Off phase duration 10 seands. TCP-
Probing expends less time than the best of the three
standard TCP versions, amost with no exception. The
differences reach extremes of: only about 2/3 of the
time nealed by Reno, New Reno, and Tahoe at 33%
error rate; and a 50% error rate, only about 1/2 and 1/3
of Reno’s and New Reno’s times, respedively. Even in
the @se of 1-second mean error phases, where TCP-
Probing does not generaly outperform Tahoe, Reno
and New Reno, its assciated overhead transmisson
effort and connedion times (Charts 5 below), and
hence goodpu (Chart 1), are better at higher error rates
(around 33% and up).
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At these higher rates, more energy neels to be
expended dwe to the increasing number of lost
segments. By the same token, any reative gains at
these higher expenditure levels trandates into greater
energy savings in absolute terms. Clealy, TCP-
Probing’'s performance under more intensive and/or
prolonged eror patterns renders it the energy-
conserving protocol of choice

5. Open Issues

Probing represents a drategy wherein
transmisgon effort and time ae invested in probe
cycles in order to determine the nature of prevailing
error conditions. This “cost of probing” is remuped
and made to yield effective returns by adopting
appropriately conservative and aggressve transmisson
tactics in response to the mnditions deteded. The 1-
second phase tests indicate that the dedsion-making
component of the probing medanism is amenable to
locali zed, heuristic improvement. The two tests at error
rates 10% and 20% are noteworthy for the fact that
TCP-Prohbing performance falls well below the best of
the three standard TCP versions, which happens to be
Reno in this case. An examination of the data in the
Table shows that the shortfall comes not so much from
extra overhead expended by TCP-Prohing, but rather
from extended connedion times. TCP-Probing
connedion times come in very close to Tahoe' sin bath
cases. At these aror rates probing cycles are not
particularly extended, so their impact on bath overhead
and connedion times is minimal. The probem seans
to be the unduy conservative dedsion-making criteria
whereby Immediate Recovery is entered at the end of
probing only if both probe-cycle RTTs are lessthan the
last estimated RTT. Simply stated, TCP-Prohing
behavior is insufficiently aggressve under the
circumstances. Thisis currently the subjed of ongoing
reseach.

Another interesting iszle is  the
energy/throughpu tradeoff as TCP-Probing behavior
scales down from a net aggressve bias at low error
rates, where expenditure of extra transmisson effort
yieds improved goodpu, to a net conservative one at
high rates, where goodpu efficiency is attained by
adjusting transmisson rates downwards. At some
“intermediate” level of error rates aggressve tactical
choices are munterbalanced by conservative ones,
yidding a mix that displays neither conservative nor
aggressve bias overall. The 10-second phase test at
20% error rate indicaes that the protocol’s adjustment
medhanisms could be better calibrated. The dynamics
of the energy/throughput tradeoff need to be further
investigated.

Finally, TCP behavior under extended RTTs
is worth investigating. It should be noted that TCP
responseis strictly governed by eventsthat occur on an

RTT time scde. As such, one would not anticipate
dramatic changes in the relative performance of the
four versions under consideration. Nevertheless TCP
with long RTTs might usefully serve to indicate the
latitudes within which probing medanisms could be
amenabl e to further refinement and devel opment.

6. Conclusion

In today’s heterogeneous wired/wirel ess internets,
with proliferating bettery-powered devices, TCP
exhibits two shortcomings. It does not integrate energy
efficiency as a focus of concern; and its error-recovery
medhanism is not always efficient. Underlying bath
deficiencies is TCP's inability to distinguish between
different types of errors and apply a flexible strategy
for error recvery. TCP-Probing achieves energy and
throughpu efficiency by implementing a salf-adjusting
strategy which is responsive to the nature of errors.
Probing enables TCP to go beyond a drcumscribed
functionality exclusively focused on congestion
control, and to move towards a universal error control
with energy-conserving capabilities. The results
presented in this paper serve to demondgtrate the
validity of the @mncept, and to provide diredions for
further reseach.
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