
1

TCP-Probing: Towards an Error Control Schema
with Energy and Throughput Performance Gains

Vassil ios Tsaoussidis
College of Computer Science

Northeastern University
Boston, MA, USA

Hussein Badr
Computer Science

SUNY Stony Brook
NY, USA

Abstract

Today’s universal communications
increasingly involve mobile and battery-powered
devices (e.g. hand-held, laptop) over wired and
wireless networks. Energy efficiency, as well as
throughput, are becoming service characteristics of
dominant importance in communication protocols.
Although standard TCP versions lack the functionality
to efficiently adjust their error-control strategies to
distinct characteristics of network environments and to
specific constraints of communicating devices, the wide
range of TCP-based applications have rendered TCP
the de facto standard for reliable end-to-end
communications. In this work we propose “ grafting”
two components of strategic significance onto standard
TCP: a Probing mechanism and an Immediate
Recovery strategy. Our results show that these
enhancements yield higher throughput while
maintaining lower levels of energy expenditure, and
thus have the potential of promoting TCP’s congestion
control to a universal error-control schema for
heterogeneous wired/wireless channels. Furthermore,
the enhancements do not damage the end-to-end
characteristics of the TCP, nor do they require changes
to its semantics: the mechanisms are implemented as
option extensions to the TCP header. We compare
“T CP-Probing” with Tahoe, Reno, and New Reno, and
show that it can be a protocol of choice for
heterogeneous wired/wireless communications with
respect to energy and throughput performance.

1. Introduction

Computer Networking is rapidly evolving
towards a physicall y heterogeneous but functionally
integrated environment consisting of both wired and
wireless components. Traditionally, throughput
efficiency has been a central concern of reliable

transport protocols. The increasing presence of battery-
powered devices in today’s networking environment
makes energy efficiency an additional focus of
concern.

By and large, TCP [8] has evolved with a
focus on its throughput eff iciency in more-or-less
“homogeneous” environments (e.g. wired vs. wireless);
consequently, homogeneity was also reflected in the
nature of the errors that were considered (e.g.
congestion/transmission errors vs.
random/burst/fading-channel errors). Jacobson [5] was
the first to study the impact of retransmission on
throughput, based on experiments with congested
wired networks. More recently, others have also been
devoting attention to TCP throughput and proposing
modifications in order to enhance its performance.
Floyd & Henderson, for example, have shown that
TCP throughput in wired environments can be made to
improve using Partial Acknowledgments and Fast
Recovery [4]. Other recent enhancements require
intervention at the router or base-station level, and, in
general, the splitting up of the end-to-end characteristic
of TCP behavior. Ramakrishnan and Floyd [9], for
example, propose an Explicit Congestion Notification
to be added to the IP protocol (an approach similar to
RED Gateways) in order to trigger appropriate
behavior in TCP congestion control, and enhance its
performance by avoiding retransmission caused by
congestion. An obvious drawback of this proposal, as
stated by the authors themselves, is the fact that
asymmetric routing will necessaril y ensue. In addition,
the end-to-end autonomy of TCP wil l be damaged, yet
the problem will be only partiall y solved: the level of
congestion wil l not be effectively estimated, since
detection occurs only as a function of routers’
threshold values which, moreover, might differ from
router to router. On the other hand, Balakrishnan et al.
[2], Lakshman & Madhow [7], and others (e.g. [6]),
have shown that TCP throughput degrades when the
protocol is used over satellite or wireless links. The

2

direction in which today’s network environments are
evolving, however, raises some criti cal issues:

� Today’ s TCP applications are expected to run in
physicall y heterogeneous environments composed
of both wired and wireless components. The
existing TCP mechanisms do not satisfy the need
for universal functionality in such environments,
since they do not flexibly adjust the recovery
strategy to the variable nature of the errors.

� The motivating force driving these modifications
ignores energy efficiency, which is becoming a
key performance issue.

Though the energy-conserving capabil ity of
transport protocols can play an important role in
determining the operational li fetime of battery-powered
devices, the subject has not been adequately studied in
the literature. The only published studies of TCP
energy consumption are [3, 13] and [10, 11]. The
authors in [13] present results, based on a stochastic
model of TCP behavior1 while the authors in [10]
present an energy-saving approach using “waves” and
“probing” with an experimental transport level
protocol.

The key to throughput and energy efficiency
in a reliable transport protocol is the error control
mechanism. TCP error-control does have some energy-
conserving capabili ties: in response to segment drops,
it reduces its window size and therefore conserves
transmission effort. The aim here is not only to
alleviate congested switches, but also to avoid
unnecessary retransmission that degrades the protocol’s
performance. When network conditions deteriorate to
an extent that they become the ground for more-or-less
persistent error conditions (e.g. congestion, prolonged
burst errors, fading channel), this kind of back-off
strategy seems to be the correct choice. The error-
recovery mechanism, however, is not always efficient,
especiall y when the error pattern changes since packet
loss is invariably interpreted by the protocol as
resulting from congestion. For example, when
relatively infrequent random or short burst errors
occur, the sender backs off and then applies a
graduated increase to its reduced window size. During
this phase of window expansion, opportunities for
error-free transmission are wasted and communication
time is extended. In other words, in the presence of
infrequent and transient errors, TCP back-off strategy,
at best, avoids only minor retransmission at the cost of
unnecessary and significantly-degraded effective
throughput (“goodput”), and increases in overall
connection time. Conditions of random and short or
infrequent burst errors might actuall y call for an
aggressive behavior instead, which could enhance
throughput and reduce overall connection time in a
combined dynamic that produces energy saving.

1 We have, however, been unable to corroborate some
of their results and conclusions [11].

Another source of energy wastage comes from the
protocol’s inabil ity to efficiently monitor network
conditions without incurring data-segment drops.

In order to enhance TCP throughput and
energy efficiency with respect to the issues discussed
above, we propose grafting a “probing” scheme onto
the basic TCP error-control mechanism. In this scheme,
a “Probe Cycle” consists of a structured exchange of
“probe” segments between the sender and receiver.
These segments carry no payload and are implemented
using option extensions to the TCP header. We call our
version of TCP with probing “TCP-Probing”. When a
data segment is unduly delayed and possibly lost, the
sender, rather than immediately retransmitting the
segment and adjusting the congestion window and
threshold downward, suspends data transmission and
initiates a probe cycle instead. Since probe segments
are composed of only segment headers, this enables the
sender to eff iciently monitor the network on an end-to-
end basis, at much less cost in transmission effort (and
hence energy cost) than would otherwise be expended
on the (re)transmission of data segments that might not
have a good chance of getting through during periods
of degraded network conditions. It also contributes
more effectively to alleviating congestion, should that
happen to be the cause of the error, than would
retransmitting a full data segment. The probe
terminates when network conditions have improved
sufficiently that the sender can make two successive
round-trip-time (RTT) measurements from the
network, at which point it will have more information
on which to base its error-correction response than
does “standard” TCP. In the event that persistent error
conditions are detected, the sender backs off by
adjusting the congestion window and threshold
downwards as would standard TCP. On the other hand,
if the conditions detected indicate only a transient
random error that did not impact the network's
effective throughput capacity, the sender could
immediately resume transmission at a level that makes
appropriate use of available network bandwidth.
 In this paper we describe our implementation
of TCP-Probing, and compare its throughput and
energy efficiency with those of TCP Tahoe, Reno and
New Reno. Although other versions of TCP have been
recently proposed (e.g. TCP SACK), we have selected
these three for two reasons:
(i) All three use the same acknowledgment

strategy for successfully-transmitted
segments, unli ke TCP SACK for example.
This enables uniform comparison of their
mechanisms with TCP-Probing, which also
uses the same strategy. Thus, differences in
energy and throughput performance are a
direct function of their distinct congestion-
control strategies. We can therefore compare
these strategies’ abil ity to adjust transmission
to varying error conditions, not the least of

3

which is the abil ity to effectively utili ze
available bandwidth within the limits of both
deteriorating and improving congestion levels.
Any shortfall from this behavioral dynamic is
reflected directly as additional energy
consumption and/or degraded goodput.

(ii) Tahoe, Reno and New Reno represent two
different approaches to congestion control, the
one conservative (Tahoe) and the other more
aggressive (Reno/New Reno). TCP-Probing
dynamically traverses a spectrum of
conservative-through-to-aggressive behavior
in response to varying error conditions. The
effectiveness of this flexibility is highlighted
by the contrast in performance between Tahoe
and Reno/New Reno, given that these use
fixed conservative and aggressive strategies,
respectively.

“Probing” in the context of a reliable, transport-level
protocol such as TCP is a fairly generic concept. It can
be implemented in a variety of different ways, and
further refined in several yet more directions. Our
TCP-Probing serves to demonstrate the validity and
effectiveness of the concept, and to indicate the
direction of further research.

Section 2 gives an overview of TCP Tahoe,
Reno and New Reno. The design and implementation
of TCP-Probing is detailed in Section 3. Section 4
outlines our testing environment and methodology, and
presents our results along with an analysis of the
protocols’ behavior. In Section 5, we briefly discuss
some open issues for further research. Finally, we close
with some concluding remarks in Section 6.

2. TCP Overview

Historicall y, TCP Tahoe was the first
modification to TCP. The newer TCP Reno included
the Fast Recovery algorithm [1]. This was followed by
New Reno [4] and the Partial Acknowledgment
mechanism for multiple losses in a single window of
data. As noted, TCP Tahoe, Reno and New Reno, all
use basicall y the same algorithm at the receiver, but
implement different variations of the transmission
process at the sender. The receiver advertises a window
size, and the sender ensures that the number of
unacknowledged bytes does not exceed this size. For
each segment correctly received, the receiver sends an
acknowledgment which includes the sequence number
identifying the next in-sequence segment (byte). The
sender implements a congestion window that defines
the maximum number of transmitted-but-
unacknowledged bytes permitted. This adaptive
window can increase and decrease, but never exceeds
the receiver's advertised window. TCP applies
graduated multipli cative and additive increases to the
sender's congestion window. The versions of the
protocol differ from each other essentially in the way

that the congestion window is manipulated in response
to acknowledgments and timeouts.

TCP error-control mechanism is primaril y
oriented towards congestion control. Congestion
control can be beneficial also for the flow that
experiences it, since avoiding unnecessary
retransmission can lead to better throughput [5]. The
basic idea is for each source to determine how much
capacity is available in the network, so that it knows
how many segments it can safely have in transit. TCP
utilizes acknowledgments to pace the transmission of
segments and interprets timeout events as indicating
congestion. In response, the TCP sender reduces the
transmission rate by shrinking its window. Tahoe and
Reno are the two most common reference
implementations for TCP. New Reno is a modified
version of Reno that attempts to solve some of Reno’s
performance problems when multiple packets are
dropped from a single window of data.

2.1 TCP Tahoe.

The congestion-control algorithm includes
Slow Start, Congestion Avoidance, and Fast
Retransmit [1, 5]. It also implements an RTT-based
estimation of the retransmission timeout. In the Fast
Retransmit mechanism, a number of successive (the
threshold is usually set at three), duplicate
acknowledgments (dacks) carrying the same sequence
number triggers off a retransmission without waiting
for the associated timeout event to occur. The window
adjustment strategy for this “early timeout” is the same
as for a regular timeout: Slow Start is applied. The
problem, however, is that Slow Start is not always
efficient, especially if the error was purely transient or
random in nature, and not persistent. In such a case the
shrinkage of the congestion window is, in fact,
unnecessary, and renders the protocol unable to full y
utilize the available bandwidth of the communication
channel during the subsequent phase of window re-
expansion.

2.2 TCP Reno.

Reno introduces Fast Recovery in conjunction
with Fast Retransmit. The idea behind Fast Recovery is
that a dack is an indication of available channel
bandwidth since a segment has been successfully
deli vered. This, in turn, implies that the congestion
window (cwnd) should actually be incremented.
Receiving the threshold number of dacks triggers Fast
Recovery: the sender retransmits the missing segment,
then, instead of entering Slow Start as in Tahoe,
increases cwnd by the dack threshold number.
Thereafter, and for as long as the sender remains in
Fast Recovery, cwnd is increased by one for each
additional dack received. This procedure is called
“ inflating” cwnd. The Fast Recovery stage is

4

completed when an acknowledgment (ack) for new
data is received. The sender then halves cwnd
(“deflating” the window), sets the congestion threshold
to cwnd, and resets the dack counter. In Fast
Recovery, cwnd is thus effectively set to half its
previous value in the presence of dacks, rather than
performing Slow Start as for a general retransmission
timeout. Reno, however, is not optimized for multiple
segment drops from a single window.

2.3 TCP New Reno.

New Reno [4] addresses the problem of
multiple segment drops. In effect, it can avoid many of
the retransmit timeouts of Reno. The New Reno
modification introduces a partial acknowledgment
strategy in Fast Recovery. A partial acknowledgment is
defined as an ack for new data which does not
acknowledge all segments that were in flight at the
point when Fast Recovery was initiated. It is thus an
indication that not all data sent before entering Fast
Recovery has been received. In Reno, a partial ack
causes exit from Fast Recovery. In New Reno it is an
indication that (at least) one segment is missing and
needs to be retransmitted. This retransmission is
effectuated and Fast Recovery continues. In this way,
when multiple segments are lost from a window of
data, New Reno can recover without waiting for a
retransmission timeout. However, the retransmission
triggered off by a partial ack might be for a delayed
rather than lost segment; thus, the strategy risks making
multiple successful transmissions for the segment,
which can seriously impact its energy efficiency with
no compensatory gain in goodput.

3. TCP-Probing

When a data segment goes missing, the
sender, instead of retransmitting and adjusting the
congestion window and threshold, initiates a probe
cycle during which data transmission is suspended and
only probe segments are sent. In the event of persistent
error conditions (e.g. congestion), the duration of the
probe cycle will be naturall y extended and is li kely to
be commensurate with that of the error condition, since
probe segments wil l be lost. The data transmission
process is thus effectively “sitting out” these error
conditions awaiting successful completion of the probe
cycle. In the case of random loss, however, the probe
cycle will complete much more quickly, in proportion
to the prevailing density of occurrence for the random
errors.

The sender enters a probe cycle when either of
two situations apply:
1. A timeout event occurs. If network conditions
detected when the probe cycle completes are
sufficiently good, then instead of entering Slow Start,

TCP-Probing simply picks up from the point where
the timeout event occurred. In other words, neither
congestion window nor threshold is adjusted
downwards. We call this “ Immediate Recovery” .
Otherwise, Slow Start is entered.

2. Three dacks are received. Again, if prevail ing
network conditions at the end of the probe cycle are
sufficiently good, Immediate Recovery is executed.
Note that here, however, Immediate Recovery will
also expand the congestion window in response to all
dacks received by the time the probe cycle
terminates. This is analogous to the window inflation
phase of Fast Retransmit in Reno and New Reno.
Alternatively, if deteriorated network conditions are
detected at the end of the probe cycle, the sender
enters Slow Start. This is in marked distinction to
Reno and New Reno behavior at the end of Fast
Retransmit. The logic here is that, having sat out the
error condition during the probe cycle and finding
that network throughput is nevertheless still poor at
the end of the cycle, a conservative transmission
strategy is more clearly indicated.

3.1 Implementation.
A probe cycle uses two probing segments

(PROBE1, PROBE2) and their corresponding
acknowledgments (PR1_ACK and PR2_ACK),
implemented as option extensions to the TCP header.
The segments carry no payload. The option header
extension consists of fields: (i) type, in order to
distinguish between the four probe segments (this is
effectively the option code field); (i) (options) length;
(ii i) id number, used to identify an exchange of probe
segments.

The sender initiates a probe cycle by
transmitting a PROBE1 segment to which the receiver
immediately responds with a PR1_ACK, upon receipt
of which the sender transmits a PROBE2. The receiver
acknowledges this second probing with a PR2_ACK
and returns to the ESTAB state (see Figure 1). The
sender makes an RTT measurement based on the time
delay between sending the PROBE1 and receiving the
PR1_ACK, and another based on the exchange of
PROBE2 and PR2_ACK.

Figure 1: Probing State Transition Diagram

ESTABPR1_SENT

PR2_SENT

PR1_RCVD

(3 Dacks or Timeout)
PROBE1

Timeout
PROBE1

PROBE1
PR1_ACK

PR1 ACK
PROBE2

Probe Timeout
PROBE1

PROBE2
PR2_ACK

PR2_ACK

5

The sender makes use of two timers during probing.
The first is a probe timer, used to determine if a
PROBE1 or its corresponding PR1_ACK segment are
missing, and the same again for the
PROBE2/PR2_ACK segments. The second is a
measurement timer, used to measure each of the two
RTTs from the probe cycle, in turn. The probe timer is
set to the estimated RTT value current at the time the
probe cycle is triggered.

The value in the option extension id number
identifies a full exchange of PROBE1, PR1_ACK,
PROBE2 and PR2_ACK segments, rather than
individual segments within that exchange. Thus, in the
event that the PROBE1 or its PR1_ACK is lost (i.e. the
probe timer expires), the sender reinitializes the probe
and measurement timers, and retransmits PROBE1
with a new id number. Similarly, if a PROBE2 or its
PR2_ACK is lost, the sender reinitiates the exchange of
probe segments from the beginning by retransmitting a
PROBE1 with a new id number. A PR1_ACK carries
the same id number as the corresponding PROBE1 that
it is acknowledging; this is also the id number used by
the subsequent PROBE2 and PR2_ACK segments. The
receiver moves to the ESTAB state after sending the
PR2_ACK that should terminate the probe cycle. In
this state, and should the PR2_ACK be lost, the
receiver would receive - instead of data segments - a
retransmitted PROBE1 that is reinitiating the exchange
of probe segments since the sender’s probe timer, in
the meantime, will have expired.

A criti cal part of the probing mechanism is the
decision rules that determine action at the end of the
probe cycle. The following simple algorithm proved
sufficient to demonstrate the potential of probing in our
experiments. Upon exiting the probe cycle, the two
RTTs measured are compared. If both lie in the range
[best RTT, last RTT], Immediate Recovery is applied.
Last RTT is the estimated RTT value current at the
time the probe cycle is triggered. Otherwise, the sender
enters a Slow Start phase. More sophisticated decision
criteria can be developed. For example, the value of
each of the two RTTs with respect to the range [best
RTT, last RTT], and the delay variation (jitter) between
them, are potentiall y useful sources of information that
we have not attempted to make use of.

Other issues need to be considered for the
implementation of probing. For instance, the sender
could receive acks during the probe cycle, in which
case it updates its sending window as would standard
TCP, but does not send out new data before the
completion of the probe cycle. Of course, in a full
duplex connection the sender might nevertheless need
to respond with acks to the receiver’s data. Duplicate
acknowledgment delivery during a probe cycle is
another issue that needs to be addressed. When a probe
cycle is triggered because of a timeout, dacks are
ignored. For a probe cycle triggered by dacks,

however, we keep count of the total number of dacks.
This count is used to increase the congestion window
size if the ensuing phase is Immediate Recovery.

Probing proves to be a more useful device
than would be sending data that is likely to be dropped,
on the one hand; or reducing the window size and
degrading the connection throughput, possibly for no
good reason, on the other. The first option would
negatively impact energy expenditure. The second
would needlessly degrade the goodput and also, by
unnecessaril y prolonging the connection time, impact
energy consumption.

4. Results and Discussion

The four versions of TCP were implemented
(not simulated) as full y developed functioning protocol
code using the x-kernel framework [12]. The tests were
carried out in a single session, with the client and the
server running on two directly-connected dedicated
hosts, so as to avoid unpredictable conditions with
distorting effects on the protocol's performance. Each
version of the protocol was tested by itself, separately
from the others, so that its error-control mechanism can
demonstrate its capabil ity without being influenced by
the presence of other flows in each channel. We
simulated a fairly low-bandwidth network environment
since we are primarily interested in heterogeneous
wired/wireless networks; and error conditions of
different intensity and duration in order to evaluate the
protocols’ performance in response to changes in that
environment.

In order to simulate the error conditions, we
developed a new x-kernel “virtual protocol” [12],
VDELDROP, which was configured between TCP and
IP. VDELDROP’s core mechanism consists of a 2-
state continuous-time Markov chain. Each state has a
mean sojourn time mi and a drop rate ri (i=1, 2)
whose values are set by the user. The drop rate ri

takes a value between 0 and 1, and determines the
proportion of segments to be dropped during state i.
Thus, when it visits state i , the mechanism remains
there for an exponentially-distributed amount of time
with mean mi , during which it randomly drops a
proportion ri of segments being transmitted, and then
transits to the other state.

In our experiments we configured the two
states to have equal mean sojourn time. The value of
this mean time varied from experiment to experiment,
of course, but was always set equal for the two states.
Furthermore, one state was always configured with a
zero drop rate. Thus, simulated error conditions during
a given experiment alternated between “On” and “Off”
phases during which drop actions were in effect and
were suspended, respectively. Error conditions of
various intensity, persistence and duration could thus

6

be simulated, depending on the choice of mean state-
sojourn time and drop rate for the On state.

All tests were undertaken using 5-MByte
(5,242,880 bytes) data sets for transmission. The
results we report are based on the average of five
replications for each test. We took measurements of the
total connection time and of the total number of bytes
transmitted (i.e. including protocol control overhead
transmissions, data segment retransmission, etc.). Both
factors significantly affect energy expenditure as well
as throughput. Detailed results are presented in Table 1
(see Appendix). The table gives results for
VDELDROP with mean On/Off phase duration set to 1
second (columns 1.1, 1.2, & 1.3) and 10 seconds
(columns 2.1, 2.2, & 2.3). In order to represent the
(transmission) energy expenditure overhead required to
complete reliable transmission under different
conditions, we use Overhead as a metric (columns 1.3
& 2.3). This is the total extra number of bytes the
protocol transmits, expressed as a percentage, over and
above the 5 MBytes deli vered to the application at the
receiver, from connection initiation through to
connection termination. The Overhead is thus given
by the formula:

Overhead = 100*(Total -
Original)/5Mbytes, where,

� Original Data is the number of bytes
delivered to the high-level protocol at the receiver.
It is a fixed 5 Mbytes data set for all tests.

� Total is the total of all bytes transmitted by the
sender and receiver transport layers. This includes
protocol control overhead, data segment
retransmission, as well as the deli vered data.

The Connection Time required to complete
reliable transmission under different conditions, from
connection initiation through to connection
termination, is given in columns Time in seconds (1.1
& 2.1). The measured performance of the protocols is
given in columns Goodput (1.2 & 2.2) in bits/sec.,
using the formula: Goodput = Original Data
/ Connection Time. For VDELDROP, the
DROP Rate reported is the dropping rate for segments
during the On phases, not the averaged overall drop
rate across On/Off phases. An entry of 0 in the DROP
rate column signifies error-free conditions. All charts
presented in Sections 4.1 and 4.2 below are based on
the data given in Table 1.

4.1 Effective Throughput Performance
(Goodput)

As can be seen from Chart 1 below, Tahoe,
Reno, New Reno and Probing exhibit somewhat
similar behavior for frequent On/Off phase changes (1-
second mean phase duration). Due to the short phase
periods, the protocols do not get the opportunity to
demonstrate the full range of their behavioral
characteristics by expanding their window sizes and
applying their congestion-/error-control algorithms

over a suff iciently prolonged period of time. In
particular, for example, when TCP-Probing enters
Immediate Recovery, it does so with a window size
that is not significantly different from Slow Start.

Chart 1: Goodput with mean On/Off phase 1
second

The situation, however, changes when the
mean duration of the On/Off phase grows to 10
seconds. Chart 2 shows that none of the three standard
versions of TCP uniformly outperforms the other two
with respect to goodput across the full range of error
rates from 0 to 50%. Reno’s more aggressive strategy
yields better results at lower error rates, while Tahoe’s
conservative strategy proves its worth at higher rates.

Chart 2: Goodput with mean On/Off phase 10
seconds

TCP Googput - 1 sec. drop phase

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

0 0.01 0.05 0.1 0.2 0.33333 0.5

Error Rate

G
o

o
d

p
u

t Tahoe

Reno
New Reno

Probing

TCP Goodput - 10 sec. drop phase

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

0 0.01 0.05 0.1 0.2 0.33333 0.5

Error Rate

G
o

o
d

p
u

t Tahoe

Reno

New Reno

Probing

7

The salient point to note here is that, with only
one exception at rate 20%, TCP-Probing’s goodput is
uniformly no worse than the best of the three standard
versions across the entire range of error rates. As such,
TCP-Probing yields an upper bound - sometimes a
loose upper bound - to the standard versions’ goodput
performance across the range of error rates. Recall that
our On/Off error model simulates exponentially-
distributed On and Off phase duration with a specified
mean value (e.g. 1 second and 10 seconds). During On
periods, segments are randomly dropped at a specified
rate. Thus, despite its stochastic nature, any single
configuration of the model undoubtedly yields a
narrower dynamic range of error patterns than would
be encountered in a real network environment over a
sufficiently long connection time. In other words,
errors during a specific connection are more accurately
exempli fied by some pattern of varying configurations
of our error model. Consequently, the fact that TCP-
Probing does not appreciably under-perform the best of
the three standard versions, and outperforms them for
longer phase duration, across the range of
configurations for the error model shown in Charts 1
and 2, gains further significance.

It is instructive to consider how the probing
and Immediate Recovery mechanisms provide TCP-
Probing with the behavioral flexibilit y underlying its
performance in Chart 2. At relatively low error rates
(0.01/1% to 0.1/10%), it is able to expand its window
in the Off phase. During the On phase its probing
mechanism allows it to explore windows of
opportunity for error-free transmissions, which are then
exploited by Immediate Recovery. It is effectively
backing off for the duration of the probe cycle, but is
also capable of rapid window adjustments with
Immediate Recovery where appropriate. In contrast,
Tahoe, Reno and New Reno’s mechanisms are
exclusively focused on congestion control. The idea is
to alleviate congested routers and avoid flooding the
network, so their mechanisms do not allow for rapid
window adjustments as a recovery strategy after
backing off. This is not necessarily the appropriate
course of action in every instance of random and/or
transient errors. Such errors are not always
symptomatic of degraded network capacity, and so
graduated adjustments could needlessly degrade overall
throughput performance.

Probing gradually induces a distinctly
different pattern of behavior from the above as error-
frequency becomes more dense. The probe cycle
naturally becomes more extended, during which no
data segments at all are transmitted. Furthermore, in
the event of congestion with deteriorating RTTs, the
prolonged probe cycle leads to Slow Start rather than
Immediate Recovery. TCP-Probing behavior thus
becomes more conservative. This conservative bias is
appropriate under the circumstances, as may be seen by
contrasting it against Reno’s and New Reno’s more

aggressive, fixed poli cies. Consider, for example, Reno
at error rates 0.33 and 0.5 (Chart 2). It responds to
some errors by entering a Fast Recovery phase and
continuing relatively aggressive data transmission; it
goes to Slow Start only in response to timeout events.
Its window will have been expanded significantly
during the Off phase. When it enters the On phase,
relatively aggressive transmission could go on for a
while, since graduated downward adjustments in Fast
Recovery allow for data transmission until the window
shrinks. Under the same scenario, New Reno could
sustain aggressive retransmission with a large window
for even longer than Reno does, since, in the absence
of a timeout, it interprets acks during Fast Recovery as
partial acknowledgments. Such attempts to recover
from multiple losses before readjusting its window are
unlikely to be successful as the error phase persists.
Extending the scenario to Tahoe, its conservative
policy call s for the window to shrink immediately; it
will not effectively re-expand for the remainder of the
heavy error phase. As the error rate increases beyond
0.33, Reno and New Reno goodput continues to
deteriorate, while Tahoe goodput improves, finally
matching that of TCP-Probing at 0.5. Despite more
bytes being injected into the network by Reno and New
Reno, goodput achieved is barely half that of Tahoe
and TCP-Probing (Table 1, column 2.2, rows 6.1-6.4).
This confirms our expectation that a conservative mode
of transmission favors goodput when error conditions
are rather intensive, while an aggressive bias results in
worse goodput performance due to retransmission and
timeout adjustments. A consideration of protocol
overhead in light of achieved goodput further confirms
the validity of this point.

The overhead expended by Reno is 3.07% and
2.82% for 33% and 50% error rates, respectively
(Table 1, column 2.3, rows 5.2 & 6.2). New Reno
wastes even more effort on retransmission: 3.86% and
3.71%, respectively (column 2.3, rows 5.3 & 6.3).

Chart 3: Overhead with mean phase 10 seconds

TCP Overhead - 10 sec. drop phase

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

0 0.01 0.05 0.1 0.2 0.33333 0.5

Error Rate

O
ve

rh
ea

d Tahoe

Reno

New Reno

Probing

8

Tahoe’s conservative retransmission poli cy
reduces the overhead to 2.59% and 2.36%, respectively
(column 2.3, rows 5.1 & 6.1). TCP-Probing, despite the
transmission effort expended on probes, comes in even
lower, with 2.52% and 2.02%, respectively (column
2.3, rows 5.4 & 6.4). Overhead expenditure across the
full range of error rates is shown in Chart 3 above.

In conclusion, TCP-Probing outmatches Reno
and New Reno in aggressive bias when an aggressive
strategy yields better goodput. It successfull y competes
with Tahoe in being conservative when aggressiveness
damages goodput. Yet it manages to demonstrate this
flexible functionality using less transmission effort,
which is a significant factor for energy expenditure.

4.2 Energy Issues
Energy expenditure is device-, operation-, and

application-specific. It can only be measured with
precision on a specific device, running each protocol
version separately, and reporting the battery power
consumed per version. Energy is consumed at different
rates during various stages of communication, and the
amount of expenditure depends on the current
operation. For example, the transmitter/receiver expend
different amounts of energy when they, respectively,
are sending or receiving segments, are waiting for
segments to arrive, and are idle. Hence, estimation of
energy expenditure, additional to that consumed by
transmitting the original data, which is common to all
four protocols, cannot be based solely on the byte
overhead due to retransmission, since overall
connection time might have been extended while
waiting or while attempting only a moderate rate of
transmission. On the other hand, the estimation cannot
be based solely on the overall connection time either,

Chart 4: Connection time with mean On/Off phase 10
seconds

since the distinct operations performed during
that time (e.g. transmission vs. idle) consume different

levels of energy. Nevertheless, a protocol’s potential
for energy saving may at least be gauged from the
combination of byte overhead (discussed in the
preceding section) and time savings achieved.
Chart 4 plots the data of column 2.1 in Table 1, giving
the behavior of the protocols with respect to connection
time for mean On/Off phase duration 10 seconds. TCP-
Probing expends less time than the best of the three
standard TCP versions, almost with no exception. The
differences reach extremes of: only about 2/3 of the
time needed by Reno, New Reno, and Tahoe at 33%
error rate; and at 50% error rate, only about 1/2 and 1/3
of Reno’s and New Reno’s times, respectively. Even in
the case of 1-second mean error phases, where TCP-
Probing does not generall y outperform Tahoe, Reno
and New Reno, its associated overhead transmission
effort and connection times (Charts 5 below), and
hence goodput (Chart 1), are better at higher error rates
(around 33% and up).

Chart 5: Overhead and Time with mean On/Off phase
1 second

TCP Overhead - 1 sec. drop phase

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

0 0.01 0.05 0.1 0.2 0.33333 0.5

Error Rate

O
ve

rh
ea

d Tahoe

Reno

New Reno

Probing

TCP Time - 1 sec. drop phase

0.000

100.000

200.000

300.000

400.000

500.000

600.000

700.000

800.000

900.000

1000.000

0 0.01 0.05 0.1 0.2 0.33333 0.5

Error Rate

T
im

e
(s

ec
o

n
d

s)

Tahoe
Reno
New Reno

Probing

TCP Time - 10 sec. drop phase

0.000

50.000

100.000

150.000

200.000

250.000

300.000

0 0.01 0.05 0.1 0.2 0.33333 0.5

Error Rate

T
im

e
(s

ec
o

n
d

s)

Tahoe

Reno

New Reno

Probing

9

At these higher rates, more energy needs to be
expended due to the increasing number of lost
segments. By the same token, any relative gains at
these higher expenditure levels translates into greater
energy savings in absolute terms. Clearly, TCP-
Probing’s performance under more intensive and/or
prolonged error patterns renders it the energy-
conserving protocol of choice.

5. Open Issues

Probing represents a strategy wherein
transmission effort and time are invested in probe
cycles in order to determine the nature of prevail ing
error conditions. This “cost of probing” is recouped
and made to yield effective returns by adopting
appropriately conservative and aggressive transmission
tactics in response to the conditions detected. The 1-
second phase tests indicate that the decision-making
component of the probing mechanism is amenable to
locali zed, heuristic improvement. The two tests at error
rates 10% and 20% are noteworthy for the fact that
TCP-Probing performance fall s well below the best of
the three standard TCP versions, which happens to be
Reno in this case. An examination of the data in the
Table shows that the shortfall comes not so much from
extra overhead expended by TCP-Probing, but rather
from extended connection times: TCP-Probing
connection times come in very close to Tahoe’s in both
cases. At these error rates probing cycles are not
particularly extended, so their impact on both overhead
and connection times is minimal. The problem seems
to be the unduly conservative decision-making criteria
whereby Immediate Recovery is entered at the end of
probing only if both probe-cycle RTTs are less than the
last estimated RTT. Simply stated, TCP-Probing
behavior is insuff iciently aggressive under the
circumstances. This is currently the subject of ongoing
research.

Another interesting issue is the
energy/throughput tradeoff as TCP-Probing behavior
scales down from a net aggressive bias at low error
rates, where expenditure of extra transmission effort
yields improved goodput, to a net conservative one at
high rates, where goodput eff iciency is attained by
adjusting transmission rates downwards. At some
“intermediate” level of error rates aggressive tactical
choices are counterbalanced by conservative ones,
yielding a mix that displays neither conservative nor
aggressive bias overall. The 10-second phase test at
20% error rate indicates that the protocol’s adjustment
mechanisms could be better calibrated. The dynamics
of the energy/throughput tradeoff need to be further
investigated.

Finally, TCP behavior under extended RTTs
is worth investigating. It should be noted that TCP
response is strictly governed by events that occur on an

RTT time scale. As such, one would not anticipate
dramatic changes in the relative performance of the
four versions under consideration. Nevertheless, TCP
with long RTTs might usefull y serve to indicate the
latitudes within which probing mechanisms could be
amenable to further refinement and development.

6. Conclusion

In today’s heterogeneous wired/wireless internets,
with proli ferating battery-powered devices, TCP
exhibits two shortcomings. It does not integrate energy
efficiency as a focus of concern; and its error-recovery
mechanism is not always efficient. Underlying both
deficiencies is TCP’s inabil ity to distinguish between
different types of errors and apply a flexible strategy
for error recovery. TCP-Probing achieves energy and
throughput eff iciency by implementing a self-adjusting
strategy which is responsive to the nature of errors.
Probing enables TCP to go beyond a circumscribed
functionality exclusively focused on congestion
control, and to move towards a universal error control
with energy-conserving capabil ities. The results
presented in this paper serve to demonstrate the
validity of the concept, and to provide directions for
further research.

References
1. M. Allman, V. Paxson, W. Stevens, "TCP

Congestion Control", RFC 2581, April 1999
2. H. Balakrishnan, V. Padmanabhan, S. Seshan, R.

Katz, “ A comparison of mechanisms for
improving TCP performance over wireless links”,
ACM/IEEE Transactions on Networking, Dec.
1997.

3. A. Chockalingam, M. Zorzi, R. R. Rao,
“Performance of TCP on Wireless Fading Links
with memory” , in Proc. of IEEE ICC’98, June
1998

4. S. Floyd, T. Henderson, “The New Reno
Modification to TCP’s Fast Recovery Algorithm”,
RFC 2582, April 1999.

5. V. Jacobson, “Congestion avoidance and control”
in Proc. of ACM SIGCOMM ’88, August 1988.

6. A. Kumar, “Comparative performance analysis of
versions of TCP in a local network with a lossy
link” , ACM/IEEE Transactions on Networking,
August 1998.

7. T. Lakshman, U. Madhow, “The performance of
TCP/IP for networks with high bandwidth-delay
products and random loss” , IEEE/ACM
Transactions on Networking, pp. 336-350, June
1997.

8. J. Postel, Transmission Control Protocol, RFC
793, September 1981

10

9. K. Ramakrishnan, S. Floyd, “ A Proposal to add
Explicit Congestion Notification (ECN) to IP”,
RFC 2481, January 1999.

10. V. Tsaoussidis, H. Badr, R. Verma, "Wave and
Wait: An Energy-saving Transport Protocol for
Mobile IP-Devices", in Proc. of IEEE ICNP ’99,
Toronto, Canada, Oct. 1999.

11. V. Tsaoussidis, H. Badr, “Energy / Throughput
Tradeoffs of TCP Error Control Strategies”, 5th

IEEE Symposium on Computers and
Communications, IEEE ISCC 2000, France, 2000.

12. TheX-kernel: http://www.cs.princeton.edu/xkernel
13. M. Zorzi, R. Rao, “Energy Efficiency of TCP” ,

ACM Monet, Special Issue on Energy Conserving
Protocols, January/February 2000.

Appendix: Tables: Test Results with mean On/Off phase duration 1 second (columns 1.1, 1.2,& 1.3) and 10 seconds (columns 2.1, 2.2, & 2.3)

Test Protocol Drop rate Time Goodput Overhead Time Goodput Overhead

1.1 1.2 1.3 2.1 2.2 2.3

0.1 Tahoe 0 40.000 1,048,576 1.48% 40.00 1,048,576 1.48%

0.2 Reno 0 40.000 1,048,576 1.48% 40.00 1,048,576 1.48%

0.3 New Reno 0 40.000 1,048,576 1.48% 40.00 1,048,576 1.48%

0.4 Probing 0 40.000 1,048,576 1.48% 40.00 1,048,576 1.48%

1.1 Tahoe 0.01 53.591 782,650 1.92% 57.52 729,215 2.06%

1.2 Reno 0.01 62.970 666,079 2.13% 53.02 791,020 1.91%

1.3 New Reno 0.01 51.003 822,369 1.80% 70.02 598,996 3.48%

1.4 Probing 0.01 53.260 787,426 1.92% 50.87 824,514 1.90%

2.1 Tahoe 0.05 79.198 529,598 2.69% 75.06 558,766 2.13%

2.2 Reno 0.05 77.127 543,820 2.76% 76.42 548,857 2.39%

2.3 New Reno 0.05 79.734 526,037 2.76% 78.18 536,524 3.76%

2.4 Probing 0.05 81.002 517,802 2.82% 67.47 621,654 2.17%

3.1 Tahoe 0.1 126.023 332,822 3.70% 89.16 470,415 2.45%

3.2 Reno 0.1 107.944 388,561 3.44% 90.05 465,783 2.73%

3.3 New Reno 0.1 118.079 355,213 3.76% 87.35 480,162 3.61%

3.4 Probing 0.1 124.086 338,015 3.49% 58.87 712,468 1.87%

4.1 Tahoe 0.2 192.219 218,205 4.74% 95.81 437,796 2.61%

4.2 Reno 0.2 146.059 287,164 3.93% 135.55 309,421 2.96%

4.3 New Reno 0.2 210.476 199,277 5.09% 104.56 401,155 3.71%

4.4 Probing 0.2 191.146 219,482 4.42% 110.12 381,137 2.58%

5.1 Tahoe 0.33333 445.242 94,203 6.44% 154.67 271,176 2.59%

5.2 Reno 0.33333 374.421 112,021 6.54% 186.83 224,498 3.07%

5.3 New Reno 0.33333 257.884 162,643 5.55% 166.89 251,326 3.86%

5.4 Probing 0.33333 258.228 162,443 4.71% 111.88 374,893 2.52%

6.1 Tahoe 0.5 532.897 78,708 7.57% 101.01 415,247 2.36%

6.2 Reno 0.5 870.334 48,192 8.51% 201.18 208,488 2.82%

6.3 New Reno 0.5 697.130 60,165 6.93% 283.44 147,977 3.71%

6.4 Probing 0.5 402.877 104,128 5.90% 103.15 406,621 2.02%

