Wave & Wait Protocol (WWP)*
An Energy-Saving Transport Protocol for M obile I P-Devices

Vassilios Tsaoussidis, Hussein Badr, Rohit Verma
Department of Computer Science
State University of New York at Stony Brook
New York 11794-4400

Abstract

This work involves the development of an experimental
transport-level protocol running on top of IP for small,
mobile, wireless stations. The protocol cannot and does not
aim to handle real-time traffic. Its central concern is to
conserve battery-powered energy used for transmission,
even at the expense of dower data throughput. It attempts
to conserve energy expenditure by adjusting the amount of
data transmitted, trying to keep it below perceived network
congestion. The higher the detected congestion risk-level in
the network the less it attempts to transmit, thereby
minimizing the need for duplicate data retransmission due
to congested routers losing packets and so on. We outline
the protocol specification, mechanisms and implementation,
as well as prelimnary evaluation results that clearly
demonstrate the energy-saving capabilities of the protocol.

1. Introduction

Wirdess communications are increasingly dominating
today' s communication infrastructure. Many applications
are being devel oped for mohil e stations, which require very
spedfic protocol support depending on the characteristics
of both applicaion (e.g. email, web, multimedia) and
mohile sation (e.g. laptop, phone, handheld etc.). The
protocol presented here is designed for battery-powered
mohile devices and for non-real-time gplications (eg. e
mail). Sincethe market for such devices and applicationsis
currently still evolving, there ae relatively few appropriate
protocols, and research in the field is being undertaken
mostly by leading vendors.

Energy saving protocols take alvantage of a novel
approach, also used by other application-spedfic protocals:
tradeoffs between different characteristics of QoS, and
device- or application-spedfic characteristics. A familiar
example is the Forward Error Corredion (FEC), used in
high-spead networks, which trades off bandwidth for
reliability. Another example, AOTP [6], trades rdiability

for speed wsing a recever-based approach to dedde
whether or not retrangmisgon is required in order to
conform to the user-prescribed QoS level. A sSmilar
approach, centered on a sender-based transport service is
described in [2, 3]. The Wave & Wait Protocol (WWP)
presented here favors energy-saving at the expense of time,
two resources of varying significance depending on the
application and circumstances.

3COM has designed a set of protocals to support
messaging over TCP/IP for handheld devices using Pam
OS [9]. The protocol attempts to save energy by limiting
the transmitted data: it transmits 500 bytes during each
communication phase under the assumption that the data of
interest to the mohil e user will be included within this limit.
A user wishing to recdve more data re-establishes
communication for the next 500 bytes. The protocol design
is fairly simple but practicd: it trades off the anount of
transmitted data in order to save battery power, and it does
so at the expense of information. The approach takes into
acoount the mohile user' s limitation of time as well as the
fact that newer pieces of information are normally more
significant than older ones.

The work we present here involves the
development of an experimental transport-level protocol
running on top of IP for small, mohile, wireless sations.
The protocol attempts to conserve energy expenditure by
adjusting the amount of data transmitted, trying to keep it
below percdved network congestion: the higher the
deteded congestion risk-level in the network, the less it
attempts to transmit, thereby minimizing the need for
dudicae data retransmisson due to congested routers
losing packets, and so an.

2. Protocol Strategy

The idea behind the protocol is graightforward:
when time is not a crucia factor we @n save energy. The
way to save energy isto avoid retransmissons, unnecessary
headers, and redundant data. In brief, the less time
expended on transmisgons, the better the energy saving.

1 7" |EEE Conferenceon Network Protocols, ICNP’ 99, Toronto, Canada, October 199.

For example, transmisson of packets over a mngested
network will cause packets to be dropped and,
consequently, a rdiable protocol will initiate a
retransmisson medianism. Ingtead, our protocol first
"probes’ the network to estimate prevailing levels of
congestion risk and adjusts its transmisson acoordingly.
This approach is quite different from that of more
conventional, reliable transport protocols. TCPs
congestion-control medianism, for example, aso monitors
congestion and adjusts its congestion-window size in
response. However, its approach to transmisdon at the
window size set is quite aggresdve. It will vigoroudy
tranamit to the limit permitted, and keg expanding its
window at every opportunity, until it "overreaches' itsalf
and is forced to adjust downwards. WWP takes a much
more anservative approach. It will transmit if and only if it
deams therisk of congestion to be sufficiently low, thereby
reducing the need for retransmisson and dugication of
data. It will not attempt to transmit a all during periods
when congestion conditions appea to be too high. It probes
the network to locate windows of sufficiently low
congestion opportunity to exploit for transmisson. This
resultsin lessoverall time being spent actualy tranamitting,
though the connedion time between pea's might last longer
than would be the @se with more @nventional protocols,
especialy if the network is, on the whole, significantly
congested.

Retransmisson-based error corredion - in contrast
to, for example, FEC - is an appropriate approach for
bandwidth-limited communicaions (eg. low frequency
communications with handhelds). It becomes a necessary
mechanism for reliable protocols, espedally in the case of
unreliable networks (e.g. IP networks). Including rdiability
features at the transport layer has two advantages for the
application devel oper:

(1) he does not need to worry about reliable delivery
of the messages ent; and

(i) when a packet (or segment) is "corrupted”, only
this packet (or segment) need be retransmitted and
not the entire message, which is the data unit that
the applicaion layer usually manipulates.

2.1 Protocol Outline and Justification

Broadly speaking, the protocol works as foll ows.
Connedion is first established usng a six-way handshake.
Apart from connedion set-up, this $x-way exchange is aso
used to determine airrent congestion conditions in the
network. Using the establi shed connedion, a sender sends a
"wave' to therecaver consisting of a number of fixed-sized
data segments, and then waits for a response. The number
of segmentsin awave is st according to the current "wave
level" which is determined by the recéver in line with the
estimated prevailing congestion level, and is communicated
to the sender. The lessthe percdved congestion risk in the
network, the higher the "wave level" and the more segments
that a wave wmprises. Therecaver uses the segments of an
arriving wave to estimate network congestion, then sends
just one Negative Seledive ACK (N-S_ACK) for the entire

Page

wave, which also spedfies the level for the next wave. The
N-S ACK isa NACK that identifies all lost segments that
the recaver has not receved up to that point. The sender
has to retransmit these as part of the next wave, together
with new segments, within the limitation of the wave size
determined by the new wave level. This next wave starts
with those segments that need retransmisson, which are
counted as part of this next wave. Only after these have
been sent will the sender, wave size permitting, continue
with new segments. If the recever's N-S ACK spedfies
zero as the next wave leve, then this means that it deams
the network to ke too congested for energy-conserving
transmisgon to be worthwhile at present (i.e., the recever
deams that too many segments might be lost, necesstating
too many retransmissons). The sender would then
periodically probe the recaver. These probes are used by
the recever to continuousdy monitor the network's
congestion level. When conditions improve sufficiently, the
sender resumes transmisson a some appropriate wave
level spedfied by therecaver.

Connedion can be terminated at the initiative of
either side, and involves a separate two-way handshake by
each side as in TCP. The protocol provides a rdiable,
connedion-oriented end-to-end service on the recever
side, segments are ddlivered to the higher-level protocol in
order, with no duplicaes, and with no segments missng.
The protocol first groups sgments into waves on the
sending side and then transmits the segments of a wave one
after the other, rather than simply sending separate
segments individualy when it can. The reason is that, in
order for the recever to effedively estimate network
congestion based on the successve segments reaching it, it
neads ome knowledge about the sender's pattern of
transmisgon of these segments. While data segments are of
fixed size, in any given implementation of the protocol the
segment size can be set s0 as to gptimize the average
number of bytes that neal retransmisdgon, in line with the
network's overall characteristics of burst errors, and so on.
Similarly, the number of wave levels, and the number of
segments comprising each wave level, can aso be set with
an eye to the gplication's message sizes, as wdl as the
protocol's own interna need for wave "granularity”
matching the network's range of congestion behavior (i.e.
small waves containing few segments for transmisson
under significant congestion, through to large waves
containing many segments in order to exploit opportunities
when congestion islow).

2.2 Protocol Description

Our design currently has the fixed-sized segment
headers st at 6 bytes, composed o the foll owing fields:

4| 8 12 | 16
Sour ce Port Destination Port
Sequence Number Type
Wave Control | Checksum
Pay Load

 Source & Dedtination Port Numbers: Used for
identifying the service access points for the higher-
level (application) protocal.

e Type A segment can be one of the following 12 types:

SYN

Used as the firgt step of the six-way connection-
establishment handshake. Section 3.1 below details the
connection-establishment phase, including the handling of
exceptional conditions.
SYN_ACK1& SYN_ACK?2

Used during the connection-establishment phase.
Once the connection is established, data flow between the
two sides is full duplex. The leve of the firs wave sent is
empirically determined based on the measured response
times during the 6-way connection-establishment
handshake (see Section 3.1 below).
D_WAIT

Used during the connection-establishment phase
(see Section 3.1 below).
DATA

A data segment. Each data segment carries a fixed-
sized payload, as well as Wave Control information and a
Sequence Number in the header.
N-S ACK

Negative Sdective Acknowledgement. Each N-
S ACK carries Wave Control information. The payload
field of a N-S_ ACK segment carries an ordered list of 12-
bit sequence numbers for segments tha need
retransmission, oldest segment first. Since thislist can be of
varying Sze, it is aways terminated with the sequence
number of the first new segment that the sender will/should
be tranamitting eventually. Because the number of segments
at a given wave levd is pre-determined, the receiver can
ascertain the sequence number of that new sender segment,
even if the terminating segments of the current wave or
older waves have gone missing. The Seguence Number
fieldisnot used in aN-S_ACK segment.
PROBE1

When the sender receives a N-S_ACK specifying
that the next wave level should be zero, it waits for an
initial period of time (set to one second in our current
implementation). It then starts a "probe cycle”" by sending a
PROBE1 segment carrying a unique identifier in the
Sequence Number field, and initializes a SEND_T timeout
(currently, one second) for that PROBEL (see Figure 1). If,
at the end of the initial waiting period, the sender has no
data to tranamit, it defers starting the probe cycle and
continues waiting till it receives sufficient data from its
higher-level protocol to at least make up a level 1 wave
(which is the smalest wave in terms of number of
segments). The sender expects a PROBE_ACK segment
from the receiver in response to the PROBEL. If no such
response reaches it by the time the SEND_T timeout
triggers off, it sends a new PROBE1 segment with a new
unique identifier number, and renitiaizes the SEND_T
timeout. It keeps doing this until it finaly receives a
PROBE_ACK.

Page

PROBE2

In response to receiving a PROBE_ACK, the
sender immediately sends a PROBE2 segment carrying the
same identifier value as received in the PROBE_ACK, and
reinitializes the SEND_T timeout, which will now be used
for the PROBE2. It also ignores al PROBE_ACKS that
might subsequently arrive. In response to the PROBE2, the
sender expects a P-S ACK from the receiver carrying
Wave Control information for the next wave, which could
again specify wave level 0. The payload field of the P-
S ACK identifies all old segments that need retransmission,
if any, in exactly the same manne as in N-S ACK
segments. Receipt of that P-S_ ACK marks the end of the
probe cycle. If no such P-S ACK is received within the
SEND_T timeout period, the sender abandons the current
probe cycle and initiates a new cycle with a PROBE1
segment carrying anew identifier as described above.
PROBE_ACK

When a receiver receives a PROBEL segment, it
immediately sends a PROBE_ACK carrying, in the
Sequence Number field, the same identifier it received in
the PROBE1l segment. It continues to respond to
subsequent PROBEL segmentsin this fashion until a DATA
segment from the next wave reachesiit. It thereafter ignores
any further PROBE1 segmentsthat arrive.

SENDER RECEIVER

PROBE1

PROBE_ACK

PROBE2
P-S ACK

\

DATA

Figure 1: Probe Cycle

P-S ACK

When the receiver receives the second probing
(PROBE2) segment from the sender, it responds with a P-
S ACK. P-S ACKs cary negative sdective
acknowledgements for missing segments, using the same
format as N-S_ACKs. P-S_ACKs are distinguished from N-
S ACKs in order to avoid conflict in the event that the P-
S ACK probing response is delayed or lost, and the sender
meanwhile receives a delayed N-S_ACK from the previous
wave-connection. Such a delayed N-S_ACK would now be
ignored by the sender. Note that PROBE1, PROBEZ2,
PROBE_ACK, and P-S ACK segments cary Wave
Control information. All carry zero payl oads.
FIN

Used by a side to initiate its two-way handshake
connection-termination process.

FIN_ACK

Seand step in the two-way handshake mnnedion-
termination process Each side has to separately go through
this two-way handshake before the @nnedion can be
gracefully closed. The mnnedion-termination process is
modeled on that of TCP, including the handling exceptiond
conditi ons.

* Wave Control: This 8-bit field is composed dof a 2-bit
wave level sub-field, followed by a 6-bit wave-
identifier sub-field. The "wave level" can be O, 1, 2 or
3: DATA segments always carry the level of the wave
currently being transmitted in this sub-field; N-S_ACK
and P-S ACK segments cary the level that the
recever wishes to spedfy for the next wave; PROBE-
type segments cary the value 0. The 6-bit wave-
identifier sub-field caries an id number for the wave:
DATA segments cary the id number for the arrent
wave, N-S ACK, P-S ACK and PROBE-type
segments cary the id nunber of the next wave to be
tranamitted.

e Seqguence Number: Each DATA segment caries a
sequence number. Clock-based initial sequence
numbers (and wave identifier numbers) are exchanged
between the two sides at connedion set-up time, as in
TCP. The use of the Sequence Number fidd in
PROBE-type segments has already been described
above.

e Checksum: Thisisachedksum field covering segment
header, payload, and posshbly also a pseudo-healer as
in UDP/TCP.

The recever attempts to estimate prevailing congestion

conditions by monitoring the throughpu of the arrent

wave and setting the level of the next wave acoordingly. A

wave at level i (i>=0) is composed o a fixed number W(i)

of data segments. For i=0, W(0) is defined to be 0.

A DATA segment is composed of the 6-byte
header and a fixed-sized data payload. Once the first
segment to reach therecaver from a new wave arives, it is
easy for the recever, given the arrent wave leve i, to
calculate how long it would take the rest of the wave to
reach it if the network were relatively uncongested, using a
"baseline” throughput estimate of BT Kbytes per second for
the uncongested network. The time thus cdculated is the
"baseline time". The value of BT is initialy determined
during the connedion-establi shment phase, as described in
Sedion 3.1 beow. The receéver measures how long it
actually takes for the remaining segments in the wave to
arive. If the throughput thus measured for the wave
exceeds the basdline value BT, therecever firs resets BT to
this higher throughput value and reclculates the wave's
basdline time before procealing. It then uses the basdine
and measured times for the wave to set the level of the next
wave. Our design currently calls for four wave levels,
i=0,1, 2, 3. In the implementation of this design we set the
number of segmentsin awave

W(i) = (12 x1i) fori=0,1, 2, 3;

fixed-sized segment payload was st to 1KByte. The

following simple algorithm was used by the recever to set

the next wave levdl:

Page

Supposethe arrent waveisat level i,i =1, 2, 3.

Let T(i) be the measured time for a level i wave.
Let B(i) be the baseline time for a level i wave.

Forj=1,2,3:

ifT() is in the range (j-1, j) X B(i),

then

next wave level is set to (4-j);

else

set wave-level to 0.

The dgorithm above essentially implies that the when the
recever sets the new wave level tok, k = 1, 2, 3, it is
estimating the current network throughput to be no worse
than approximatdy a fraction 1/(4-k) of the basdine
throughpu value of BT KBytes per semnd (and no better
than approximatdy a fraction 1/(3-k), for k = 1 or 2). The
number of segments in the new wave is then adjusted
proportionately. If the throughput appeas to be less than
1/3 of the basdline throughpu, we go to level 0, deaming it
better to pause for a while than risk expending energy
trangmitting even a small wave that might not have a
sufficiently good chance of getting through undamaged.
Since segments from the airrent wave might never reach
the recever, we implement a timeout, REC_T, on the
recever side so that it does not wait indefinitely for the rest
of the wave to arrive. As mentioned above, if the recever
has st the arrent wave leve at i, it is assuming that
prevailing throughput is no worse than a fraction 1/(4-i) of
the baseline throughput. Given that the wave comprises (12
X'i) segments, the time for the wave to be receved should
not be more than about 36BT semnds. In ow
implementation we initialize REC_T to twice that value.
When the first segment of the wave to reach the recever
arrives, therecever initidizes REC_T. If the wave does not
fully arrive before the timeout triggers off, the recever
asumes that the mising segments are lost and proceals
sending aN-S_ACK, using the time dapsed till the timeout
triggered off asthe value for T(i), the measured time.

In the event therecaver setsthe next wave levd at
0, the sender will probe the recaver after some delay. The
recaever uses the measured time between its recaving the
PROBE1 and corresponding PROBE2 segments from the
sender to determine the current RTT. It then uses this RTT
value to estimate the prevailing network throughput, and
sets the new wave level acoordingly in the P-S ACK
segment it sends to the sender (seesedion 3.2 below).

The sender does not start transmitting segments
until it has a sufficient number to make up a mplete
wave. When it recaves a N-S ACK or P-S ACK setting
the wave level, and if it does not have sufficient old
(nedling retransmisson) and new data up to the spedfied
number of segments in the wave, it will transmit the
segments it has at the highest wave level for which it has
enough segments, setting the wave-level sub-field in the
headers accordingly. If it does not have enough segments to

make e/en a level 1 wave, it waits till its high-level
protocol providesit with sufficient data.

Furthermore, if the sender's higher-level protocol
asks it to close the @mnnedion and the sender still has a few
segments left to transmit that do not come up a cmplete
wave, the protocol transmits those segments it has. It
immediately foll ows this up with a FIN segment that caries
the sequence number of the last segment transmitted so that
the recaver undergtands that this last and final wave is an
incomplete wave, and responds accordingly.

A N-S _ACK from the receéver can be lost. Thus,
when the sender finishes transmitting the last segment of
the arrent wave, it setsa SEND_T timeout. If aN-S_ACK
does not arrive before the timeout triggers off, the sender
initiates a probe cycle. The Wave Control caried by the
PROBE-type segments here mnsist of 0 for the wave-level
sub-fidd, and the number of the next wave that sender
would (eventually) commence in the wave-identifier sub-
field (i.e, the same wave-identifier value that the missng
N-S_ACK caried). If the N-S_ACK arrives after the probe
cycleisinitiated, it isignored.

3. Connection M anagement

Connedion Management in WWP is fairly
compli cated. For example, a TCP-like threeway handshake
for connedion establishment is not adequate since it would
not permit the recaver to both acquire sufficient
infformation to determine the appropriate level for the
sender's first wave, and to communicate that information to
the sender. There are, in fact, threephases during which the
connedion needs to be managed: for connedion
establi shment; during the probing phase; and at connedion
termination. Connedion termination is modeled on TCP's
and will not be further dedt with here.

3.1 Connection Establishment

Figure 2 sketches the state transition diagram
during connedion establishment. An active open initiated
by an application causes a SYN to be sent to the
destination. The sender makes a trangition to state SEND to
wait for a SYN_ACK1. If thisis not recaved within the set
time the sender retries once more If, again, no
SYN_ACK1 isrecaved duing the prescribed waiting time,
thisis taken as an indication of network congestion and, in
compliancewith the protocol's grategy of saving energy by
trading time, connedion establishment is postponed. On
the other hand, if the SYN_ACK1 is recaved in time
(sending the SYN_ACK1 causes the recéver to move to
state LISTEN), the sender responds with a SYN_ACK1 of
its own and transits to the REPEAT state to await a SYN
response from the recaver. At the other site, the recever
responds with the SYN and moves into READY, waiting
for a SYN_ACK2. If the SYN_ACK2 arives within the
recaver's waiting time, the recever sends a D_WAIT. At
this point it establi shes the connedion only if it determines
that the appropriate wave level should be more than O
otherwise it just returns to CLOSED. The sender recaves

Page

the D_WAIT with wave @ntrol information and sends the
first wave, or moves to CLOSED if the wave level is 0. If
the D_WAIT is unduly delayed, the sender moves to
CLOSED asauming inappropriate conditions.

Two Round-Trip-Time (RTT) measurements are
taken during the mnnedion-establishment phase at the
recever. Upon recept of the SYN used by the sender to
initidize the connedion-establishment phase, the recever
sends a SYN_ACK1 and starts measuring the time for the
first RTT. The measurement interval completes upon
recept of the sender's response (SYN_ACK1). Therecaver
initiates the seand measurement interval immediately,
when it sends its SYN in response to the SYN_ACKL1. The
second interval terminates upon recept of SYN_ACK2.

In an eror-free @vironment with no congestion,
the two RTT measurements should be more or less equal.
The recever would then set the wave level in acoordance
with the experienced RTT, which would also be used to set
the value of the basdine throughput BT. For the @ase in
which the RTT is deemed too high to set an acceptable BT
value, connedion is abandoned. The application protocol
can then initialize the nnedion establishment again,
letting the gplication or the user dedde whether, under
such conditions, a mnnedion should be established. A user
may even set the desired wave level according to his
preference (time or energy) although our protocol does not
yet support this mechanism. In the event that one RTT is
significantly different from the other, the recaver first
chedks that the more pessmistic (higher) RTT value does
not indicate unacceptable mngestion; if so, it cancds the
connedion. Otherwisg, it would use the lower RTT value to
st BT and set the wave level at 1. The algorithm below
summarizes the Stuation.

if RTTI1=RTT2
i f RTT1< Threshold
set BT
el se
abandon
else (if RTT1<>RTT2)
i f max[RTT1, RTT2] < Threshold
set Wave Level =1
set BT according to min[RTT1, RTT2]
el se
abandon

There ae several detail s about the @mnnedion-management
strategy of WWP and the appropriate cdibration of its
medanisms that should be discussed further. Although a
detailed analysis of exceptional cases is beyond our
purview, there ae a @uple of cases that ought to be
mentioned. For example, the sender’s timeout for the
D_WAIT state should be quite large: at least as large as the
timeout value that would cause a recever in the READY
state to make atransition to the CLOSED state. In addition,
using an equally large timeout, the recaver in ESTAB
mode moves back to CLOSED if no data is recaved (this
could correspond to the @se where the sender's timeout

5

expires because D_WAIT has not yet been receved).
Another exceptional case that was considered is when the
recaver is forced to re-initiate his first RTT measurement
because the sender timed out and repeated the SYN. Upon
completion of both RTT measurements, and if they were to
yield simil ar values below the threshold, the recaéver would
nevertheless &t wave level 1. The logic here is that the
sender's timeout might indicate higher congestion levels
than the equal-valued RTTs might suggest.

3.2 Probing

The probing phase is ©mewhat similar to the
connedion-establishment phase. A 4-way handshake is
used as shown in the state transition diagram of Figure 3.
The recaver estimates the congestion risk-level using the
Round Trip Time (RTT) measured between its tranamitting
a PROBE_ACK and recaving the crresponding PROBE2
segments, and then sets the next wave level. Only one RTT
measurement is used here rather than two as in the
connedion-establishment phase becuse, by now, the
recever has ganed some eperience of the network's
behavior, which could be used together with the RTT
measurement in setting the next wave level.

4. Implementation & Testing

The protocol was implemented using the x-kernel
[5, 8] protocal framework.
The high-level test protocol sends messages of 1024 tytes
to the underlying WWP layer. These ae then buffered until
there ae enough segments to form a wave at the leve
needed. The sender's buffer was st to 40 segments
Semaphore-based flow control was implemented between
WWP and the test protocol at the sending side, so that the
latter does not try to push new segments into a full buffer.
Therecever's buffer was st to 256 segments < that it will
not be forced to unnecessarily drop incoming segments
during its sledive-repeat mode of operation.

4.1 Testing Environment and M ethodology.

We ran tests smulating a fairly low bandwidth
environment. The tests were caried aut in a single sesson,
with bath client and server running on one ad the same
host, so as to avoid unpredictable mnditions with dstorting
effeds on the protocol's performance Congestion was
simulated by dropping and ddlaying segments using the x-
kerne protocols VDROP and VDELAY. VDROP
determinigtically drops sgments at a fixed rate spedfied
for the duration of a test. VDELAY holds (delays) each
segment for an amount of time randomly distributed
between 0 and the time value spedfied for the test, and
independently chosen for each segment in turn. Since the
action of x-kernd's VDRORP is in effed for the entire
duration of an exeaition run, we developed a secnd
version that alternates On/Off phases during which the
action of VDROP is in effea and is suspended,
respedivey. Thus, during a nnedion period, the protocol

Page

would experience phases that are error free ad ahers with
simulated congestion effects. This modification enabled us
to test the protocol's behavior in response to sudden
changes in the simulated environment, and its ability to
rapidly re-adapt to varying congestion conditions. VDROP
and VDELAY combined simulate different congestion
conditi ons, while VDROP used just by itself may be viewed
as smulating unreliable mnnedions. Both protocols were
configured above 1P, with WWP configured on top of them,
and our high-level testing protocol configured above WWP.
We also ran TCP (Tahoe) under a smilar configuration.
Representative results from our tests are given in the table
bel ow.

We compare our protocol with TCP sinceTCPisa
reliable protocol with end-to-end service similar to WWP.
It isalso atopic of current reseach interest with resped to
its behavior in wireless environments. However, TCP does
not distinguish well between congestion, on the one hand,
and transmisgon burst errors, on the other, athough each
reguires distinct actions in response to its ocaurrence (e.g.
dow down, and feed the network, respedively). TCPs
optimization capability is well known (eg. [1], [7]), and
implementation problems can be predicted or avoided
atogether [4], makingit agood standard of comparison.

Note that our WWP implementation makes no
attempt to calibrate the various protocol parameters (data
segment size, number of segments per wave at each wave
level, timeout values, etc.) for optima performance with
resped to the overall characteristics of the protocol's
operational environment. The segment payload was
1Kbyte; W(i) = 12 Xi, i =0,1,23 ; SEND_T = 1 sewnd;
REC_T = 2 semnds, BT was asuumed fixed at the rather
conservative value of 40 Kbyte/second, and was not
increased when the recever deteded higher throughput. All
this probably causes WWP to understateits potential.

In order to represent the protocol overhead rate
required to complete reliable transmisson under different
conditi ons, we used the formula:

Effort Overhead = (Total - Effective) / Effective,
where,

. Ef f ecti ve isthe number of bytes delivered to the
high level protocol at the recaver, and is shown in
the clumn Original Data of the table;

* Total isthe sum of the number of bytes transmitted
by the transport layers at the sender and the recaver,
which are given in the @wlumns Sender Total Bytes
and Receiver Over head, respedively.

While the formula gives a measure for the overall
effediveness of a protocol, where energy saving in
particular is concerned Sender Total Bytes gives ameasure
of the energy expenditure for the sender, and (Original
Data + Receiver Over head) similarly for therecever.

Entriesin the Original Data, Receiver Overhead,
and Sender Total Bytes columns are based on 1-minute
snapshots. For VDROP with On/Off phase behavior, On
and Off phases were of equal duration; this phase duration
is given in the column VDROP Phase in which the entry
Always means that VDROP was on throughout. The

VDROP Rate reported is the dropping rate for the On
phases, not the averaged overall rate acrossOn/Off phases.

4.2 Analysis of Protocol Behavior.

WWP is designed for low-bandwidth, error-prone
environments with unstable characteristics. Energy saving
is a mgjor concern when the protocol is used for battery-
powered devices.

Energy: As demondrated by test sets 1, 2, 4, and 5 the
throughpu achieved by WWP in a probematic
environment in which congestion is the cause of packets
being dropped, is 6-10 times more than the throughput
achieved with TCP. For an equa amount of data to be
tranamitted, TCP would require up to 5 times longer.
During this time, TCP tranamits relatively aggressvely -
depending on the environment - and so increases the actua
transmisgon time, thereby expending more energy. While
comprehensive and extensive results are not being reported
in this paper, the tests above dearly demonstrate the
validity of our statement. In addition, it is notable that the
effediveness of the protocol is very high. The overhead
neeaded for completion of the transmisgon is much lower
than TCP.

Behavior under continuous congestion: In contrast to the
behavior described above for dtuations of adequate
bandwidth, the protocol becomes very conservative when
problems are deteded. As shown in the 3 test set, under a
consistently high dropping rate WWP delivers half as much
bytes to the applicaion as TCP, but at comparable dfort
overhead. Thisresultsin lessoverall data transmisson, and
so energy is saved for later, possbly better, conditions
when tranamisson can take place at lessr energy cost.
Both protocols deted congestion in an intelligent manner,
and their effort overhead is amilar, but the dedsion as to
whether to transmit or back off differs. A dudity exists
between WWP's "relaxed” attitude to transmisson in the
presence of congestion, on the one hand, and the delay
tolerance of low-priority traffic in the presence of higher-
priority traffic, on the other. As such, WWP can be adapted
for low-priority applications in other network environments
(e.g. wired).

Behavior under periodic congestion: When congestion
appeas on a periodic basis, WWP attemptsto back-off and
save eergy while mntinuously probing. As on as
available bandwidth is deteded, WWP aggressvely
tranamits data. There is benefit to bah throughput and
effedivenessas shown in test sets 1, 2, 4, 5.

Behavior in unreliable channdls with available bandnidth:
WWP possesses the important ability of distinguishing
between congestion, and transmisson burst erors, due to
an unreliable link or a low frequency channd. When
congestion is the problem, the probe does not come
through or it comes through celayed. The duration of such
conditions vary. Unlike @mngestion, an error caused by a
lossy network is transient. WWP deteds this by prohing:
when the probe reaches the destination with acceptable
RTT characterigtics, the protocol's dedsion isto send waves
acoordingly. In an environment with relatively infrequent

Page

errors ocaurring in a stably-sustained pattern, WWP is not
aggressve. TCP also adapts itsalf quite well. However,
when the error pattern becomes unstable and varying, TCP
is unableto readjust itself, and wastes enormous amounts of
energy and timeto tranamit the required data, behaving as if
the problem were mngestion. WWP, on the other hand, is
able to deted opportunities of error-free ©nditions, and
takes advantage of them using appropriate wave levels. It
kees transmitting at high rates. Thisis demongrated by the
6™ and 7" sets of tests.

5. Conclusion and Future Work

We have presented a protocol that trades connedion time
for energy saving. Our results clealy demonstrate that
network conditions can be dfedively deteded, and
retransmissons and duplicaions can be avoided. In a
sender - recever context, the recever passes control
information to the sender which adjusts the data-wave
length accordingly. The risk of congestion is estimated at
the recever and the higher this risk, the lower the wave
levd attempted. When the risk is too high, the sender
remains idle, periodically probing the recever for updates
on congestion level. The total number of bytes transmitted
is not significantly greater than the gplication's origina
message. Comparison results at different congestion levels
demonstrate suitable behavior by the protocol. In contrast to
TCP, totals for overall bytes transmitted are significantly
less so energy saving is proportionally higher. As
mentioned above, the protocal has not yet been optimized.
Results from the eigting version of the protocol already
clearly demonstrate that significant time/energy tradeoffs
are being tapped.

Acknowledgements. We gratefully acknowledge
Peter Konemy for his contribution and help in coding the x-
kernel-based implementation of the protocol.

. References
M. Allman, V. Paxson, W. Stevens, "TCP Congestion
Control", RFC 2581, April 1999

2. R Maadi, P. Amer, P. Conrad, "An andytic Study of
Partially ordered Transport Services' Computer Networks
andISDN Systems, 1998

3. R. Maradli, P. Amer, P. Conrad, "Partially Reliable Transport
Service" ISCC'97, Alexandria, Egypt, July 1997

4. V. Paxson, et.d., "Known TCP implementation problems",
RFC 2525, March 1999.

5. L. Peterson, B. Davie, "Computer Networks. A Systems
Approach”, Morgan Kaufman, 1996

6. Wei S and V. Tsaoussdis, "An Application aiented
Transport Protocol for multimedia communications over IP',
IEEE Conference on Computational Intelligence and
Multimedia Applications, ICCIMA '99, September 1999.

7. J. Touch, John Heidemann, Amy Hughes, "Issues in TCP
Slow-Start Restart After Idle", 04/10/1998, <draft-ietf-
tepi mpl-restart-00.txt>

8. The X-kernel: www.cs.arizona.edu/xkernel

9. 3COM, Technica Documents. "Pam OS 3.0 Documentation

" www.3com.com, April 1998

P~

Appendix: Figuresand Tables.

ss\:(r\,il_AA%ﬁll/ Active Open/ SYN
_ CLOSED

SYN/SYN ACK1

SYN_ACK2 + T

SYN_ACK 1/ SYN

Time-out v
REPEAT
- READY
ime-out or O
+ Time-out level
READY
| 4 ESTAB <

Figure. 2: Connection Establishment State Diagram

Timeout "Wait" expires PROBE1

Send PRORF1 PRORF ACK

PROBE_ACK IDLE 3
______________ PROBE1 I‘ LISTEN
PROBE2 T PROBE Timeout j i
PROBE2 .
PROBE Timeout
P-5 ACK v ACCEPT
DATA SEND

Figure 3: Probing: Sate Diagram

SYN_ACK2/

D_WAIT

Rate Phase Data Over head B es Over head
IM—IWIIWIIWIMO—IIWIITIWIWI
oo o J5 J0es Jooweo Joeee Joosie oo]
(2 Jowe Jo oo Jouwes Jousoe e _Jlweon Jowo |
Co oo Jo Yoo Jooeo oo Joewes Jliowse oo |
CzJowe Jo oo e osonse Jsoee Jasomo Jooor |

Table 1: TCP and WWP test results

Page

