
Page 1

Wave & Wait Protocol (WWP)1

An Energy-Saving Transport Protocol for Mobile IP-Devices

Vassilios Tsaoussidis, Hussein Badr, Rohit Verma
Department of Computer Science

State University of New York at Stony Brook
New York 11794-4400

1 7th IEEE Conference on Network Protocols, ICNP ’99, Toronto, Canada, October 1999.

Abstract

This work involves the development of an experimental
transport-level protocol running on top of IP for small,
mobile, wireless stations. The protocol cannot and does not
aim to handle real-time traffic. Its central concern is to
conserve battery-powered energy used for transmission,
even at the expense of slower data throughput. It attempts
to conserve energy expenditure by adjusting the amount of
data transmitted, trying to keep it below perceived network
congestion. The higher the detected congestion risk-level in
the network the less it attempts to transmit, thereby
minimizing the need for duplicate data retransmission due
to congested routers losing packets and so on. We outline
the protocol specification, mechanisms and implementation,
as well as preliminary evaluation results that clearly
demonstrate the energy-saving capabilities of the protocol.

1. Introduction

Wireless communications are increasingly dominating
today' s communication infrastructure. Many applications
are being developed for mobile stations, which require very
specific protocol support depending on the characteristics
of both application (e.g. e-mail, web, multimedia) and
mobile station (e.g. laptop, phone, handheld etc.). The
protocol presented here is designed for battery-powered
mobile devices and for non-real-time applications (e.g. e-
mail). Since the market for such devices and applications is
currently still evolving, there are relatively few appropriate
protocols, and research in the field is being undertaken
mostly by leading vendors.

Energy saving protocols take advantage of a novel
approach, also used by other application-specific protocols:
tradeoffs between different characteristics of QoS, and
device- or application-specific characteristics. A familiar
example is the Forward Error Correction (FEC), used in
high-speed networks, which trades off bandwidth for
reliabil ity. Another example, AOTP [6], trades reliabil ity

for speed using a receiver-based approach to decide
whether or not retransmission is required in order to
conform to the user-prescribed QoS level. A similar
approach, centered on a sender-based transport service is
described in [2, 3]. The Wave & Wait Protocol (WWP)
presented here favors energy-saving at the expense of time,
two resources of varying significance depending on the
application and circumstances.

 3COM has designed a set of protocols to support
messaging over TCP/IP for handheld devices using Palm
OS [9]. The protocol attempts to save energy by limi ting
the transmitted data: it transmits 500 bytes during each
communication phase under the assumption that the data of
interest to the mobile user wil l be included within this limit.
A user wishing to receive more data re-establi shes
communication for the next 500 bytes. The protocol design
is fairly simple but practical: it trades off the amount of
transmitted data in order to save battery power, and it does
so at the expense of information. The approach takes into
account the mobile user' s limitation of time as well as the
fact that newer pieces of information are normally more
significant than older ones.

The work we present here involves the
development of an experimental transport-level protocol
running on top of IP for small, mobile, wireless stations.
The protocol attempts to conserve energy expenditure by
adjusting the amount of data transmitted, trying to keep it
below perceived network congestion: the higher the
detected congestion risk-level in the network, the less it
attempts to transmit, thereby minimizing the need for
duplicate data retransmission due to congested routers
losing packets, and so on.

2. Protocol Strategy

The idea behind the protocol is straightforward:
when time is not a crucial factor we can save energy. The
way to save energy is to avoid retransmissions, unnecessary
headers, and redundant data. In brief, the less time
expended on transmissions, the better the energy saving.

Page 2

For example, transmission of packets over a congested
network wil l cause packets to be dropped and,
consequently, a reliable protocol will initiate a
retransmission mechanism. Instead, our protocol first
"probes" the network to estimate prevailing levels of
congestion risk and adjusts its transmission accordingly.
This approach is quite different from that of more
conventional, reliable transport protocols. TCP's
congestion-control mechanism, for example, also monitors
congestion and adjusts its congestion-window size in
response. However, its approach to transmission at the
window size set is quite aggressive. It wil l vigorously
transmit to the limit permitted, and keep expanding its
window at every opportunity, until it "overreaches" itself
and is forced to adjust downwards. WWP takes a much
more conservative approach. It will transmit if and only if it
deems the risk of congestion to be suff iciently low, thereby
reducing the need for retransmission and duplication of
data. It wil l not attempt to transmit at all during periods
when congestion conditions appear to be too high. It probes
the network to locate windows of sufficiently low
congestion opportunity to exploit for transmission. This
results in less overall time being spent actuall y transmitting,
though the connection time between peers might last longer
than would be the case with more conventional protocols,
especiall y if the network is, on the whole, significantly
congested.

Retransmission-based error correction - in contrast
to, for example, FEC - is an appropriate approach for
bandwidth-limited communications (e.g. low frequency
communications with handhelds). It becomes a necessary
mechanism for reliable protocols, especiall y in the case of
unreliable networks (e.g. IP networks). Including reliability
features at the transport layer has two advantages for the
application developer:
(i) he does not need to worry about reliable deli very

of the messages sent; and
(ii) when a packet (or segment) is "corrupted", only

this packet (or segment) need be retransmitted and
not the entire message, which is the data unit that
the application layer usually manipulates.

2.1 Protocol Outline and Justification

Broadly speaking, the protocol works as follows.
Connection is first establi shed using a six-way handshake.
Apart from connection set-up, this six-way exchange is also
used to determine current congestion conditions in the
network. Using the establi shed connection, a sender sends a
"wave" to the receiver consisting of a number of fixed-sized
data segments, and then waits for a response. The number
of segments in a wave is set according to the current "wave
level" which is determined by the receiver in line with the
estimated prevailing congestion level, and is communicated
to the sender. The less the perceived congestion risk in the
network, the higher the "wave level" and the more segments
that a wave comprises. The receiver uses the segments of an
arriving wave to estimate network congestion, then sends
just one Negative Selective ACK (N-S_ACK) for the entire

wave, which also specifies the level for the next wave. The
N-S_ACK is a NACK that identifies all lost segments that
the receiver has not received up to that point. The sender
has to retransmit these as part of the next wave, together
with new segments, within the limitation of the wave size
determined by the new wave level. This next wave starts
with those segments that need retransmission, which are
counted as part of this next wave. Only after these have
been sent will the sender, wave size permitting, continue
with new segments. If the receiver's N-S_ACK specifies
zero as the next wave level, then this means that it deems
the network to be too congested for energy-conserving
transmission to be worthwhile at present (i.e., the receiver
deems that too many segments might be lost, necessitating
too many retransmissions). The sender would then
periodically probe the receiver. These probes are used by
the receiver to continuously monitor the network's
congestion level. When conditions improve sufficiently, the
sender resumes transmission at some appropriate wave
level specified by the receiver.

Connection can be terminated at the initiative of
either side, and involves a separate two-way handshake by
each side as in TCP. The protocol provides a reliable,
connection-oriented end-to-end service: on the receiver
side, segments are deli vered to the higher-level protocol in
order, with no duplicates, and with no segments missing.
The protocol first groups segments into waves on the
sending side and then transmits the segments of a wave one
after the other, rather than simply sending separate
segments individually when it can. The reason is that, in
order for the receiver to effectively estimate network
congestion based on the successive segments reaching it, it
needs some knowledge about the sender's pattern of
transmission of these segments. While data segments are of
fixed size, in any given implementation of the protocol the
segment size can be set so as to optimize the average
number of bytes that need retransmission, in line with the
network's overall characteristics of burst errors, and so on.
Similarly, the number of wave levels, and the number of
segments comprising each wave level, can also be set with
an eye to the application's message sizes, as well as the
protocol's own internal need for wave "granularity"
matching the network's range of congestion behavior (i.e.
small waves containing few segments for transmission
under significant congestion, through to large waves
containing many segments in order to exploit opportunities
when congestion is low).

2.2 Protocol Description

Our design currently has the fixed-sized segment
headers set at 6 bytes, composed of the following fields:

4 8 12 16
Source Port Destination Port

Sequence Number Type
Wave Control Checksum

Pay Load

Page 3

• Source & Destination Port Numbers: Used for
identifying the service access points for the higher-
level (application) protocol.

• Type: A segment can be one of the following 12 types:

SYN
 Used as the first step of the six-way connection-
establishment handshake. Section 3.1 below details the
connection-establishment phase, including the handling of
exceptional conditions.
SYN_ACK1 & SYN_ACK2
 Used during the connection-establishment phase.
Once the connection is established, data flow between the
two sides is full duplex. The level of the first wave sent is
empirically determined based on the measured response
times during the 6-way connection-establishment
handshake (see Section 3.1 below).
D_WAIT

Used during the connection-establishment phase
(see Section 3.1 below).
DATA
 A data segment. Each data segment carries a fixed-
sized payload, as well as Wave Control information and a
Sequence Number in the header.
N-S_ACK
 Negative Selective Acknowledgement. Each N-
S_ACK carries Wave Control information. The payload
field of a N-S_ACK segment carries an ordered list of 12-
bit sequence numbers for segments that need
retransmission, oldest segment first. Since this list can be of
varying size, it is always terminated with the sequence
number of the first new segment that the sender will/should
be transmitting eventually. Because the number of segments
at a given wave level is pre-determined, the receiver can
ascertain the sequence number of that new sender segment,
even if the terminating segments of the current wave or
older waves have gone missing. The Sequence Number
field is not used in a N-S_ACK segment.
PROBE1
 When the sender receives a N-S_ACK specifying
that the next wave level should be zero, it waits for an
initial period of time (set to one second in our current
implementation). It then starts a "probe cycle" by sending a
PROBE1 segment carrying a unique identifier in the
Sequence Number field, and initializes a SEND_T timeout
(currently, one second) for that PROBE1 (see Figure 1). If,
at the end of the initial waiting period, the sender has no
data to transmit, it defers starting the probe cycle and
continues waiting till it receives sufficient data from its
higher-level protocol to at least make up a level 1 wave
(which is the smallest wave in terms of number of
segments). The sender expects a PROBE_ACK segment
from the receiver in response to the PROBE1. If no such
response reaches it by the time the SEND_T timeout
triggers off, it sends a new PROBE1 segment with a new
unique identifier number, and reinitializes the SEND_T
timeout. It keeps doing this until it finally receives a
PROBE_ACK.

 PROBE2
 In response to receiving a PROBE_ACK, the
sender immediately sends a PROBE2 segment carrying the
same identifier value as received in the PROBE_ACK, and
reinitializes the SEND_T timeout, which will now be used
for the PROBE2. It also ignores all PROBE_ACKs that
might subsequently arrive. In response to the PROBE2, the
sender expects a P-S_ACK from the receiver carrying
Wave Control information for the next wave, which could
again specify wave level 0. The payload field of the P-
S_ACK identifies all old segments that need retransmission,
if any, in exactly the same manner as in N-S_ACK
segments. Receipt of that P-S_ACK marks the end of the
probe cycle. If no such P-S_ACK is received within the
SEND_T timeout period, the sender abandons the current
probe cycle and initiates a new cycle with a PROBE1
segment carrying a new identifier as described above.
 PROBE_ACK
 When a receiver receives a PROBE1 segment, it
immediately sends a PROBE_ACK carrying, in the
Sequence Number field, the same identifier it received in
the PROBE1 segment. It continues to respond to
subsequent PROBE1 segments in this fashion until a DATA
segment from the next wave reaches it. It thereafter ignores
any further PROBE1 segments that arrive.

Figure 1: Probe Cycle

P-S_ACK
When the receiver receives the second probing

(PROBE2) segment from the sender, it responds with a P-
S_ACK. P-S_ACKs carry negative selective
acknowledgements for missing segments, using the same
format as N-S_ACKs. P-S_ACKs are distinguished from N-
S_ACKs in order to avoid conflict in the event that the P-
S_ACK probing response is delayed or lost, and the sender
meanwhile receives a delayed N-S_ACK from the previous
wave-connection. Such a delayed N-S_ACK would now be
ignored by the sender. Note that PROBE1, PROBE2,
PROBE_ACK, and P-S_ACK segments carry Wave
Control information. All carry zero payloads.
 FIN
 Used by a side to initiate its two-way handshake
connection-termination process.

SENDER RECEIVER
PROBE1

PROBE_ACK

PROBE2

P-S_ACK

DATA

Page 4

 FIN_ACK
 Second step in the two-way handshake connection-
termination process. Each side has to separately go through
this two-way handshake before the connection can be
gracefully closed. The connection-termination process is
modeled on that of TCP, including the handling exceptional
conditions.
• Wave Control: This 8-bit field is composed of a 2-bit

wave level sub-field, followed by a 6-bit wave-
identifier sub-field. The "wave level" can be 0, 1, 2 or
3: DATA segments always carry the level of the wave
currently being transmitted in this sub-field; N-S_ACK
and P-S_ACK segments carry the level that the
receiver wishes to specify for the next wave; PROBE-
type segments carry the value 0. The 6-bit wave-
identifier sub-field carries an id number for the wave:
DATA segments carry the id number for the current
wave; N-S_ACK, P-S_ACK and PROBE-type
segments carry the id number of the next wave to be
transmitted.

• Sequence Number: Each DATA segment carries a
sequence number. Clock-based initial sequence
numbers (and wave identifier numbers) are exchanged
between the two sides at connection set-up time, as in
TCP. The use of the Sequence Number field in
PROBE-type segments has already been described
above.

• Checksum: This is a checksum field covering segment
header, payload, and possibly also a pseudo-header as
in UDP/TCP.

The receiver attempts to estimate prevail ing congestion
conditions by monitoring the throughput of the current
wave and setting the level of the next wave accordingly. A
wave at level i (i>=0) is composed of a fixed number W(i)
of data segments. For i=0, W(0) is defined to be 0.

A DATA segment is composed of the 6-byte
header and a fixed-sized data payload. Once the first
segment to reach the receiver from a new wave arrives, it is
easy for the receiver, given the current wave level i, to
calculate how long it would take the rest of the wave to
reach it if the network were relatively uncongested, using a
"baseline" throughput estimate of BT Kbytes per second for
the uncongested network. The time thus calculated is the
"baseline time". The value of BT is initiall y determined
during the connection-establi shment phase, as described in
Section 3.1 below. The receiver measures how long it
actuall y takes for the remaining segments in the wave to
arrive. If the throughput thus measured for the wave
exceeds the baseline value BT, the receiver first resets BT to
this higher throughput value and recalculates the wave's
baseline time before proceeding. It then uses the baseline
and measured times for the wave to set the level of the next
wave. Our design currently call s for four wave levels,
i=0,1, 2, 3. In the implementation of this design we set the
number of segments in a wave

W(i) = (12 x i) for i=0, 1, 2, 3;
fixed-sized segment payload was set to 1KByte. The
following simple algorithm was used by the receiver to set
the next wave level:

Suppose the current wave is at level i, i = 1, 2, 3.

__
Let T(i) be the measured time for a level i wave.
Let B(i) be the baseline time for a level i wave.

For j = 1, 2, 3:
if T(i) is in the range (j-1 , j] X B(i),
then
next wave level is set to (4-j);
else
set wave-level to 0.

The algorithm above essentially implies that the when the
receiver sets the new wave level to k, k = 1, 2, 3 , it is
estimating the current network throughput to be no worse
than approximately a fraction 1/(4-k) of the baseline
throughput value of BT KBytes per second (and no better
than approximately a fraction 1/(3-k), for k = 1 or 2). The
number of segments in the new wave is then adjusted
proportionately. If the throughput appears to be less than
1/3 of the baseline throughput, we go to level 0, deeming it
better to pause for a while than risk expending energy
transmitting even a small wave that might not have a
sufficiently good chance of getting through undamaged.
Since segments from the current wave might never reach
the receiver, we implement a timeout, REC_T, on the
receiver side so that it does not wait indefinitely for the rest
of the wave to arrive. As mentioned above, if the receiver
has set the current wave level at i, it is assuming that
prevailing throughput is no worse than a fraction 1/(4-i) of
the baseline throughput. Given that the wave comprises (12
X i) segments, the time for the wave to be received should
not be more than about 36/BT seconds. In our
implementation we initialize REC_T to twice that value.
When the first segment of the wave to reach the receiver
arrives, the receiver initializes REC_T. If the wave does not
fully arrive before the timeout triggers off, the receiver
assumes that the missing segments are lost and proceeds
sending a N-S_ACK, using the time elapsed till the timeout
triggered off as the value for T(i), the measured time.

In the event the receiver sets the next wave level at
0, the sender wil l probe the receiver after some delay. The
receiver uses the measured time between its receiving the
PROBE1 and corresponding PROBE2 segments from the
sender to determine the current RTT. It then uses this RTT
value to estimate the prevailing network throughput, and
sets the new wave level accordingly in the P-S_ACK
segment it sends to the sender (see section 3.2 below).
 The sender does not start transmitting segments
until i t has a suff icient number to make up a complete
wave. When it receives a N-S_ACK or P-S_ACK setting
the wave level, and if it does not have sufficient old
(needing retransmission) and new data up to the specified
number of segments in the wave, it will transmit the
segments it has at the highest wave level for which it has
enough segments, setting the wave-level sub-field in the
headers accordingly. If it does not have enough segments to

Page 5

make even a level 1 wave, it waits till its high-level
protocol provides it with suff icient data.
 Furthermore, if the sender's higher-level protocol
asks it to close the connection and the sender stil l has a few
segments left to transmit that do not come up a complete
wave, the protocol transmits those segments it has. It
immediately follows this up with a FIN segment that carries
the sequence number of the last segment transmitted so that
the receiver understands that this last and final wave is an
incomplete wave, and responds accordingly.
 A N-S_ACK from the receiver can be lost. Thus,
when the sender finishes transmitting the last segment of
the current wave, it sets a SEND_T timeout. If a N-S_ACK
does not arrive before the timeout triggers off, the sender
initiates a probe cycle. The Wave Control carried by the
PROBE-type segments here consist of 0 for the wave-level
sub-field, and the number of the next wave that sender
would (eventually) commence in the wave-identifier sub-
field (i.e., the same wave-identifier value that the missing
N-S_ACK carried). If the N-S_ACK arrives after the probe
cycle is initiated, it is ignored.

3. Connection Management

Connection Management in WWP is fairly
complicated. For example, a TCP-li ke three-way handshake
for connection establi shment is not adequate since it would
not permit the receiver to both acquire suff icient
information to determine the appropriate level for the
sender's first wave, and to communicate that information to
the sender. There are, in fact, three phases during which the
connection needs to be managed: for connection
establi shment; during the probing phase; and at connection
termination. Connection termination is modeled on TCP's
and will not be further dealt with here.

3.1 Connection Establishment

Figure 2 sketches the state transition diagram
during connection establi shment. An active open initiated
by an application causes a SYN to be sent to the
destination. The sender makes a transition to state SEND to
wait for a SYN_ACK1. If this is not received within the set
time, the sender retries once more. If, again, no
SYN_ACK1 is received during the prescribed waiting time,
this is taken as an indication of network congestion and, in
compliance with the protocol's strategy of saving energy by
trading time, connection establi shment is postponed. On
the other hand, if the SYN_ACK1 is received in time
(sending the SYN_ACK1 causes the receiver to move to
state LISTEN), the sender responds with a SYN_ACK1 of
its own and transits to the REPEAT state to await a SYN
response from the receiver. At the other site, the receiver
responds with the SYN and moves into READY, waiting
for a SYN_ACK2. If the SYN_ACK2 arrives within the
receiver's waiting time, the receiver sends a D_WAIT. At
this point it establi shes the connection only if it determines
that the appropriate wave level should be more than 0;
otherwise it just returns to CLOSED. The sender receives

the D_WAIT with wave control information and sends the
first wave, or moves to CLOSED if the wave level is 0. If
the D_WAIT is unduly delayed, the sender moves to
CLOSED assuming inappropriate conditions.

Two Round-Trip-Time (RTT) measurements are
taken during the connection-establi shment phase at the
receiver. Upon receipt of the SYN used by the sender to
initialize the connection-establi shment phase, the receiver
sends a SYN_ACK1 and starts measuring the time for the
first RTT. The measurement interval completes upon
receipt of the sender's response (SYN_ACK1). The receiver
initiates the second measurement interval immediately,
when it sends its SYN in response to the SYN_ACK1. The
second interval terminates upon receipt of SYN_ACK2.

In an error-free environment with no congestion,
the two RTT measurements should be more or less equal.
The receiver would then set the wave level in accordance
with the experienced RTT, which would also be used to set
the value of the baseline throughput BT. For the case in
which the RTT is deemed too high to set an acceptable BT
value, connection is abandoned. The application protocol
can then initialize the connection establi shment again,
letting the application or the user decide whether, under
such conditions, a connection should be establi shed. A user
may even set the desired wave level according to his
preference (time or energy) although our protocol does not
yet support this mechanism. In the event that one RTT is
significantly different from the other, the receiver first
checks that the more pessimistic (higher) RTT value does
not indicate unacceptable congestion; if so, it cancels the
connection. Otherwise, it would use the lower RTT value to
set BT and set the wave level at 1. The algorithm below
summarizes the situation.

if RTT1 = RTT2
if RTT1 < Threshold

set BT
else

abandon
else (if RTT1 <>RTT2)

if max[RTT1, RTT2] < Threshold
set Wave Level = 1

set BT according to min[RTT1, RTT2]
else

abandon

There are several detail s about the connection-management
strategy of WWP and the appropriate calibration of its
mechanisms that should be discussed further. Although a
detailed analysis of exceptional cases is beyond our
purview, there are a couple of cases that ought to be
mentioned. For example, the sender’s timeout for the
D_WAIT state should be quite large: at least as large as the
timeout value that would cause a receiver in the READY
state to make a transition to the CLOSED state. In addition,
using an equally large timeout, the receiver in ESTAB
mode moves back to CLOSED if no data is received (this
could correspond to the case where the sender's timeout

Page 6

expires because D_WAIT has not yet been received).
Another exceptional case that was considered is when the
receiver is forced to re-initiate his first RTT measurement
because the sender timed out and repeated the SYN. Upon
completion of both RTT measurements, and if they were to
yield similar values below the threshold, the receiver would
nevertheless set wave level 1. The logic here is that the
sender's timeout might indicate higher congestion levels
than the equal-valued RTTs might suggest.

3.2 Probing

The probing phase is somewhat similar to the
connection-establi shment phase. A 4-way handshake is
used as shown in the state transition diagram of Figure 3.
The receiver estimates the congestion risk-level using the
Round Trip Time (RTT) measured between its transmitting
a PROBE_ACK and receiving the corresponding PROBE2
segments, and then sets the next wave level. Only one RTT
measurement is used here rather than two as in the
connection-establi shment phase because, by now, the
receiver has gained some experience of the network's
behavior, which could be used together with the RTT
measurement in setting the next wave level.

4. Implementation & Testing

The protocol was implemented using the x-kernel
[5, 8] protocol framework.
The high-level test protocol sends messages of 1024 bytes
to the underlying WWP layer. These are then buffered until
there are enough segments to form a wave at the level
needed. The sender's buffer was set to 40 segments.
Semaphore-based flow control was implemented between
WWP and the test protocol at the sending side, so that the
latter does not try to push new segments into a full buffer.
The receiver's buffer was set to 256 segments so that it will
not be forced to unnecessaril y drop incoming segments
during its selective-repeat mode of operation.

4.1 Testing Environment and Methodology.

 We ran tests simulating a fairly low bandwidth
environment. The tests were carried out in a single session,
with both client and server running on one and the same
host, so as to avoid unpredictable conditions with distorting
effects on the protocol's performance. Congestion was
simulated by dropping and delaying segments using the x-
kernel protocols VDROP and VDELAY. VDROP
deterministically drops segments at a fixed rate specified
for the duration of a test. VDELAY holds (delays) each
segment for an amount of time randomly distributed
between 0 and the time value specified for the test, and
independently chosen for each segment in turn. Since the
action of x-kernel's VDROP is in effect for the entire
duration of an execution run, we developed a second
version that alternates On/Off phases during which the
action of VDROP is in effect and is suspended,
respectively. Thus, during a connection period, the protocol

would experience phases that are error free and others with
simulated congestion effects. This modification enabled us
to test the protocol's behavior in response to sudden
changes in the simulated environment, and its abil ity to
rapidly re-adapt to varying congestion conditions. VDROP
and VDELAY combined simulate different congestion
conditions, while VDROP used just by itself may be viewed
as simulating unreliable connections. Both protocols were
configured above IP, with WWP configured on top of them,
and our high-level testing protocol configured above WWP.
We also ran TCP (Tahoe) under a similar configuration.
Representative results from our tests are given in the table
below.

We compare our protocol with TCP since TCP is a
reliable protocol with end-to-end service similar to WWP.
It is also a topic of current research interest with respect to
its behavior in wireless environments. However, TCP does
not distinguish well between congestion, on the one hand,
and transmission burst errors, on the other, although each
requires distinct actions in response to its occurrence (e.g.
slow down, and feed the network, respectively). TCP's
optimization capabil ity is well known (e.g. [1], [7]), and
implementation problems can be predicted or avoided
altogether [4], making it a good standard of comparison.

Note that our WWP implementation makes no
attempt to calibrate the various protocol parameters (data
segment size, number of segments per wave at each wave
level, timeout values, etc.) for optimal performance with
respect to the overall characteristics of the protocol's
operational environment. The segment payload was
1Kbyte; W(i) = 12 X i, i = 0,1,2,3 ; SEND_T = 1 second;
REC_T = 2 seconds; BT was assumed fixed at the rather
conservative value of 40 Kbyte/second, and was not
increased when the receiver detected higher throughput. All
this probably causes WWP to understate its potential.

In order to represent the protocol overhead rate
required to complete reliable transmission under different
conditions, we used the formula:
Effort Overhead = (Total - Effective) / Effective,
where,
• Effective is the number of bytes deli vered to the

high level protocol at the receiver, and is shown in
the column Original Data of the table;

• Total is the sum of the number of bytes transmitted
by the transport layers at the sender and the receiver,
which are given in the columns Sender Total Bytes
and Receiver Overhead, respectively.

While the formula gives a measure for the overall
effectiveness of a protocol, where energy saving in
particular is concerned Sender Total Bytes gives a measure
of the energy expenditure for the sender, and (Original
Data + Receiver Overhead) similarly for the receiver.

Entries in the Original Data, Receiver Overhead,
and Sender Total Bytes columns are based on 1-minute
snapshots. For VDROP with On/Off phase behavior, On
and Off phases were of equal duration; this phase duration
is given in the column VDROP Phase in which the entry
Always means that VDROP was on throughout. The

Page 7

VDROP Rate reported is the dropping rate for the On
phases, not the averaged overall rate across On/Off phases.

4.2 Analysis of Protocol Behavior.

WWP is designed for low-bandwidth, error-prone
environments with unstable characteristics. Energy saving
is a major concern when the protocol is used for battery-
powered devices.
Energy: As demonstrated by test sets 1, 2, 4, and 5, the
throughput achieved by WWP in a problematic
environment in which congestion is the cause of packets
being dropped, is 6-10 times more than the throughput
achieved with TCP. For an equal amount of data to be
transmitted, TCP would require up to 5 times longer.
During this time, TCP transmits relatively aggressively -
depending on the environment - and so increases the actual
transmission time, thereby expending more energy. While
comprehensive and extensive results are not being reported
in this paper, the tests above clearly demonstrate the
validity of our statement. In addition, it is notable that the
effectiveness of the protocol is very high. The overhead
needed for completion of the transmission is much lower
than TCP.
Behavior under continuous congestion: In contrast to the
behavior described above for situations of adequate
bandwidth, the protocol becomes very conservative when
problems are detected. As shown in the 3rd test set, under a
consistently high dropping rate WWP delivers half as much
bytes to the application as TCP, but at comparable effort
overhead. This results in less overall data transmission, and
so energy is saved for later, possibly better, conditions
when transmission can take place at lesser energy cost.
Both protocols detect congestion in an intelligent manner,
and their effort overhead is similar, but the decision as to
whether to transmit or back off differs. A duality exists
between WWP's "relaxed" attitude to transmission in the
presence of congestion, on the one hand, and the delay
tolerance of low-priority traff ic in the presence of higher-
priority traff ic, on the other. As such, WWP can be adapted
for low-priority applications in other network environments
(e.g. wired).
Behavior under periodic congestion: When congestion
appears on a periodic basis, WWP attempts to back-off and
save energy while continuously probing. As soon as
available bandwidth is detected, WWP aggressively
transmits data. There is benefit to both throughput and
effectiveness as shown in test sets 1, 2, 4, 5.
Behavior in unreliable channels with available bandwidth:
WWP possesses the important ability of distinguishing
between congestion, and transmission burst errors, due to
an unreliable link or a low frequency channel. When
congestion is the problem, the probe does not come
through, or it comes through delayed. The duration of such
conditions vary. Unlike congestion, an error caused by a
lossy network is transient. WWP detects this by probing:
when the probe reaches the destination with acceptable
RTT characteristics, the protocol's decision is to send waves
accordingly. In an environment with relatively infrequent

errors occurring in a stably-sustained pattern, WWP is not
aggressive. TCP also adapts itself quite well . However,
when the error pattern becomes unstable and varying, TCP
is unable to readjust itself, and wastes enormous amounts of
energy and time to transmit the required data, behaving as if
the problem were congestion. WWP, on the other hand, is
able to detect opportunities of error-free conditions, and
takes advantage of them using appropriate wave levels. It
keeps transmitting at high rates. This is demonstrated by the
6th and 7th sets of tests.

5. Conclusion and Future Work

We have presented a protocol that trades connection time
for energy saving. Our results clearly demonstrate that
network conditions can be effectively detected, and
retransmissions and duplications can be avoided. In a
sender - receiver context, the receiver passes control
information to the sender which adjusts the data-wave
length accordingly. The risk of congestion is estimated at
the receiver and the higher this risk, the lower the wave
level attempted. When the risk is too high, the sender
remains idle, periodicall y probing the receiver for updates
on congestion level. The total number of bytes transmitted
is not significantly greater than the application's original
message. Comparison results at different congestion levels
demonstrate suitable behavior by the protocol. In contrast to
TCP, totals for overall bytes transmitted are significantly
less, so energy saving is proportionally higher. As
mentioned above, the protocol has not yet been optimized.
Results from the existing version of the protocol already
clearly demonstrate that significant time/energy tradeoffs
are being tapped.

Acknowledgements. We gratefull y acknowledge
Peter Konecny for his contribution and help in coding the x-
kernel-based implementation of the protocol.

7. References
1. M. Allman, V. Paxson, W. Stevens, "TCP Congestion

Control", RFC 2581, April 1999
2. R. Marasli, P. Amer, P. Conrad, "An analytic Study of

Partially ordered Transport Services" Computer Networks
and ISDN Systems, 1998

3. R. Marasli, P. Amer, P. Conrad, "Partially Reliable Transport
Service" ISCC '97, Alexandria, Egypt, July 1997.

4. V. Paxson, et.al., "Known TCP implementation problems",
RFC 2525, March 1999.

5. L. Peterson, B. Davie, "Computer Networks: A Systems
Approach", Morgan Kaufman, 1996

6. Wei S. and V. Tsaoussidis, "An Appli cation oriented
Transport Protocol for multimedia communications over IP",
IEEE Conference on Computational Intelligence and
Multimedia Applications, ICCIMA '99, September 1999.

7. J. Touch, John Heidemann, Amy Hughes, "Issues in TCP
Slow-Start Restart After Idle", 04/10/1998, <draft-ietf-
tcpimpl-restart-00.txt>

8. The X-kernel: www.cs.arizona.edu/xkernel
9. 3COM, Technical Documents: "Palm OS 3.0 Documentation

" www.3com.com, April 1998

Page 1

Appendix: Figures and Tables.

Figure. 2: Connection Establishment State Diagram

Figure 3: Probing: State Diagram

Test # Protocol VDELAY VDROP
Rate

VDROP
Phase

Original
Data

Receiver
Overhead

Sender Total
Bytes

Effort
Overhead

1.1 TCP 50ms 20% 10sec 881,996 15,928 936,202 0.08

1.2 WWP 50ms 20% 10sec 6,387,712 1,617 6,507,656 0.019

2.1 TCP 50ms 20% 2sec 811,096 14,828 861,428 0.08

2.2 WWP 50ms 20% 2sec 5,551,104 1,662 5,803,805 0.046

3.1 TCP 50ms 20% Always 333,230 6,068 425,712 0.296

3.2 WWP 50ms 20% Always 143,360 590 185,645 0.299

4.1 TCP 50ms 33.33% 10sec 506,226 9,128 530,686 0.066

4.2 WWP 50ms 33.33% 10sec 5,408,768 1,459 5,556,645 0.028

5.1 TCP 50ms 33.33% 2sec 479,284 8,628 530,686 0.125

5.2 WWP 50ms 33.33% 2sec 5,581,824 1,789 5,816,213 0.042

6.1 TCP 0 5% Always 1,024,200 14,908 1,093,168 0.081

6.2 WWP 0 5% Always 1,119,232 763 1,185,978 0.060

7.1 TCP 0 5% 2sec 1,024,000 14,628 1,044,276 0.034

7.2 WWP 0 5% 2sec 23,012,352 4,694 23,189,859 0.007

Table 1: TCP and WWP test results

CLOSED
LISTEN

READY

ESTAB

SEND

REPEAT

READY

Active Open / SYNSYN_ACK1 /
 SYN_ACK1

SYN /
SYN_ACK2

SYN/SYN_ACK1
SYN_ACK 1/ SYN

SYN_ACK2/
D_WAIT

Time-out or 0
level

Time-out

D_WAIT/

Time-out

IDLE
LISTEN

ACCEPT

PROBE1

PROBE2

SEND

Timeout "Wait" expires

Send PROBE1

PROBE_ACK

PROBE2

P-S_ACK

DATA

PROBE1

PROBE_ACK

PROBE2

P-S_ACK

PROBE Timeout

PROBE Timeout

