
Autonomous Fault Detection and Diagnosis in Wireless

Sensor Networks using Decision Trees

Angeliki Laiou1, Christina M. Malliou1, Sotirios-Angelos Lenas1and Vassilis Tsaoussidis1
1 Department of Electrical and Computer Engineering, Democritus University of Thrace, Xanthi 67100, Greece

Email: laios.angela@gmail.com; {cmalliou, slenas, vtsaousi}@ee.duth.gr

Abstract —Reliable communication in wireless sensor networks

constitutes an essential factor in maintaining critical systems

operational. Despite this, wireless sensor networks are known to

be volatile and prone to faults disrupting their normal working

state. Particularly in open environments, wireless sensor

networks must be able to detect arising faults to minimize

subsequent failures of the network. This study deals with the

detection and identification of faults in wireless sensor

networks, notably faults that occur due to externally driven

events, affecting network services, such as data transfers and

communication between nodes. Faults commonly occurring due

to such factors are loss of connectivity because of faulty node

interfaces, disrupted connectivity due to obstacles, and extreme

packet loss because of increased noise conditions or congestion.

Detection, identification, and recovery of sensor network faults

have been studied extensively in the literature. In this paper, a

Machine Learning approach is used to detect and diagnose these

faults. A decision tree algorithm was used to train the model.

The produced model is consistently able to identify the faults on

test data with an overall accuracy of 96.46%. Results also

include high precision and recall values for each separate fault

case, thus producing a successful fault identification model.

Index Terms—autonomous networks, decision tree, fault

diagnosis, wireless sensor networks

I. INTRODUCTION

With the advancement of Wireless Sensor Networking

(WSN) many systems, including IoT devices being

increasingly used in recent years, rely on the information

collected from small sensor nodes. While the advantages

of WSN are many, the fact remains that the individual

nodes of a network are extremely sensitive and frequently

exhibit faults. These faults disrupt the normal working

state of the network on various levels; from the actual

nodes, to corrupted data (collected or produced), as well

as faults impairing the network’s services. The research

to minimize such faults has been pursued extensively in

the literature covering the multitude and diversity of the

faults. The work presented here accounts for faults

regarding the disruption of the communication in the

network. Specifically targeting faults due to external

events, i.e. events that the user does not have control

over. Such faults are:

Manuscript received January 30th, 2019; revised February 24th, 2019.

This work was supported by the EC H2020 project SENSKIN under

Grant No. 635844.

Corresponding author email: slenas@ee.duth.gr.

doi:10.12720/jcm.v.n.p-p

1) The loss of connectivity between nodes, either

randomly due to obstacles or complete loss of

connectivity because of a faulty interface.

2) Extreme packet loss caused by:

a) Increased noise due to extreme weather

conditions.

b) Disturbances in the network services, for

instance, sensor nodes taking more measurements and

producing more packets as a result of an external trigger,

notably causing congestion and thus loss of packets or

discovery messages.

Faults that interrupt the communication services of the

network, especially in sensor networks, can compromise

the entire network. The detection of the faults, and

subsequently their correct identification are the only ways

to work towards any actions concerning the recovery of

the network. Regarding the faults mentioned, as they are

primarily triggered by external events, it is desirable that

the nodes themselves can contribute to their recovery,

particularly in the case where users are absent, or the

nodes are placed in remote locations. In this context, our

contributions include the detection and identification of

communication faults encountered in WSN. Benefitting

from machine learning techniques, the required accuracy

and precision of these two actions can be enhanced to

further advance fault management, especially

autonomous recovery actions.

By using machine learning algorithms, correlations

that cannot be otherwise detected are taken into account,

thus producing an accurate model for fault detection and

identification. Ideally, every fault would have a specific

set of symptoms describing the problematic situation.

However, in most cases these symptoms are difficult to

discern by humans and machines alike, given the variety

of sensor networks and their applications. Difficulties

developing a detection and identification scheme are

apparent in empirical systems, especially in edge cases.

On the other hand, when using machine learning

techniques, a general set of network metrics can be used

to best describe the faults whilst simultaneously not

targeting specific cases.

The faults covered in this paper are not the foreground

of most existing fault detection schemes. Our work is

realized by means of an application regarding structural

health monitoring (SHM), specifically a wireless sensor

network deployed on a bridge. In applications such as

described in [1], the communication in the network is

affected by the faults, especially given the open

environment plan of most SHM deployments.

This application field is ideal for the problem at hand,

especially considering that autonomous fault management

schemes and the correct diagnosis of faults can be

valuable assets in this area. Given the faults examined in

this study, their close connection to the communication

services of the network, and potential self-recovery steps,

the necessary dataset for this work is generated via the

simulation of a realistic network. The dataset includes all

the faults mentioned above and are simulated with respect

to the structural health monitoring aspect of the network

and the physical restraints of sensor nodes deployed on a

realistic bridge topology. Through the process of

simulating each fault case in the network, samples of data

were collected using various network metrics. By

maintaining a subset of the most beneficial network

metrics, features for the problem were extracted and

labels for each fault case were defined, as determined by

supervised machine learning algorithms. The problem is

represented as a multiclass classification problem with

categorical labels for each fault case.

The tools used in the proposed solution include the

Opportunistic Networking Environment simulator (ΟΝΕ)

[2], and the Machine Learning and Statistics Toolbox [3]

in MATLAB for the subsequent training of the model

using a Decision Tree algorithm. Python scripts are used

for data manipulation, to extract beneficial information

from the simulator’s report files. Preprocessing of the

data is completed in MATLAB before passing the final

dataset to the toolbox. By testing the produced model,

each type of fault including the normal state of the

network is classified with high accuracy, recall, and

precision. The model is able to clearly distinguish

between the fault cases, while only misclassifying

samples from fault classes with known similarities.

Overall, the model has an accuracy of 96.46% across six

classes.

The rest of the paper is organized as follows. Chapter 2

presents the related work regarding the various categories

of faults in wireless sensor networks (WSNs) whilst

including the machine learning techniques used to solve

the problems stated. Chapter 3 showcases the formulation

of the problem, describing the faults the paper sets to

successfully detect and identify. Chapter 4 makes way for

the experimental aspect of the paper, entailing the

generation of the dataset through the simulation of a

realistic network. Chapter 5 presents the proposed

solution highlighting feature extraction. Chapter 6

evaluates the model and presents the results. Finally,

Chapter 7 concludes the paper and presents the future

work.

II. RELATED WORK

In the process of eliminating or at least mitigating

faults and failures in WSNs many studies have provided

schemes with effective solutions for various applications

using numerous techniques. The selection of works

presented here offers insight to the problem domain,

highlighting positive attributes from each study, while

comparing the methods used to our own work and goals.

It includes similar methods such as an empirical decision

tree, as well as other machine learning techniques. As the

faults in WSN can be approached in many different ways

and with different goals in mind, the faults, while similar

in all cases, are diagnosed with varying identification

titles referring usually to the potential recovery steps each

study hopes to act upon.

To begin with, in [4], the tool developed, Sympathy,

relies on the amount of data reaching the sink to infer

failures in the network. Using a selection of metrics, the

sources of faults are identified and subsequently divided

into certain fault categories to be reported with a level of

urgency to the network’s users. The goal in this work is

to restore data collection in the network via user

notification, thus pinpointing the offending section of

network is essential to the recovery of the network.

However, Sympathy uses an empirically developed

decision tree to determine the most likely cause of data

loss in the network, which in turn triggers insufficient

data collection at the sink. Given the unreliable nature of

WSN and the magnitude of applicable fields, a rule-based

method slowly eliminating the fault causes via basic node

health, connectivity, and communication status, could

reasonably not take into consideration useful metrics or

values. Important correlations could be overlooked, thus

substituting empirically developed methods with machine

learning techniques constitutes fewer chances to miss

such correlations in the data. Such an approach was

chosen in our work, in hopes of generating a holistic

method so that, given set of metrics, faults can be

accurately detected in sensor networks. A final aspect

which is considered is the amount of user notification. As

faults are considerably common in sensor networks, our

goal is to be able to identify faults, which not only disrupt

the communication status of the network but can also be

rectified by the sensor nodes themselves, eliminating cost

heavy notification actions in the network.

Another study which uses machine learning techniques

to discover faults in sensor networks is described in [5].

Here, the problem is directed at uncovering unknown

faults which disrupt the network, thus the study focuses

on unsupervised machine learning techniques to produce

results. The authors’ argument against supervised

techniques is the lack of sufficient domain knowledge to

learn all the rules describing the problem. Although in

some cases this is true, the sheer degree of diversity in

WSN applications gives way to developing solutions

which are based on the same principles but highly

customizable. Our work exhibits a first study-case of

applying machine learning techniques to structural health

monitoring problems targeting a set of faults specifically

regarding communication in the network. As it is

anticipated, the authors of [5] focus on the problem at

hand, which benefits from detecting unknown faults.

Their work, Agnostic Diagnosis, is tested on a real-life

network (i.e. GreenOrbs) with positive results. This

motivates the physical implementation of our own work

to further study the promising simulated results. Even

though this study uses machine learning techniques, the

use of the same database to compare experimental results

with our own work was not possible as different aspects

of fault diagnosis were highlighted in each study. This

shows the amount of diversity in the field regarding faults

in WSN, including the wide range of viable solutions for

each application domain. Their study uses both temporal

and spatial detection; temporal detection is achieved

through a cumulative sum with change point detection for

the time series, whereas the algorithm K-MEANS is used

for spatial detection, thus highlighting the use of

unsupervised machine learning techniques. Even though a

complex paradigm was put in place for Agnostic

Diagnosis the authors admit that through the selection of

metrics used, some faults can be easily detected, whereas

others require agnostic detection. This further motivates

our work in building a more focused set of faults, not

only ensuring detection between normal and faulty states

but also identifying specific faults which can be

subsequently dealt with by the nodes themselves using

recovery actions.

At this point it is worthy to note that both [4] and [5]

use a similar selection of network metrics to diagnose

faults in the network. This reinforces the fact that faults in

WSN can be detected through metric changes and notably

the selection of the most meaningful metrics in

combination with the most robust technique for each

application will ultimately produce the best results.

The work in [6] interprets fault diagnosis in WSN as a

pattern classification problem, taking advantage of the

inherent characteristics of WSNs. Specifically, the notion

of a node’s nearest neighbours is taken into account to

increase the robustness of the introduced Neighbourhood

Hidden Conditional Random Field (NHCRF) model. The

method models the WSN as a graph and is able to detect

faulty sensors as well as faulty transmission paths, by

using transmission time based features, such as signal

strength and signal delay. Knowing that a node or a

transmission path is faulty, while desirable, does not give

an accurate amount of information regarding the fault.

While detection and identification are the primary steps

in the fault management process, poorly identified faults

may hinder secondary but essential recovery steps in

subsequent works. Overall, the NHCRF model presents

impressive comparative performance in regard to popular

machine learning algorithms and various study cases,

however, the only performance metric used is accuracy.

A more comprehensive assessment of the experimental

results would be useful as accuracy has the tendency to

produce a bias towards the majority class of the dataset.

Ιn [7] the authors’ goal is to target reliability

complications in WSNs. Firstly, by providing a model to

assess link quality and secondly, a way to improve

resource efficiency due to storage constraints in WSNs.

Both link quality and storage constraints contribute to

packet loss in WSNs, thus optimizing these issues in the

network will have beneficial outcomes. While this study

covers only an aspect of the work we present in this

paper, i.e. the link quality, the methods used are the same.

Machine learning techniques, specifically supervised

algorithms and more to the point decision trees and

additionally rule learners are used to solve the problem at

hand. As in our case, the authors cite the advantages of

automatic correlation discovery, not relying on

application specific heuristics and unreliable

environmental factors. Another point of reference is the

similar network metrics used as features. This shows that

using a subset of metrics common to WSNs can be used

to solve different problems with various applications,

while remaining accessible to any wireless sensor

network, as is also noticeable in [4] and [5]. However, the

point of view of the study differs greatly from our own.

The authors use supervised learning to essentially, detect

and identify disruptive elements and take subsequent

preventative actions to better routing and reliability in

WSNs. Our work takes into account the challenges that

arise in link quality analysis and to perform detection and

identification. This is merely a part of the work presented

here, as a variety of faults is targeted rather than gaining

specialist insight to only one aspect. The positive results

and successful outcome of the authors’ work highlight the

advantages of machine learning algorithms and motivates

our own work accordingly.

Another fault detection scheme [8] uses both

supervised and unsupervised techniques to build a system

for autonomous decision making in WSNs. Using

optimized versions of linear discriminant analysis (LDA)

and clustering techniques the authors have produced a

system to collect data, and infer decisions through

knowledge gained from correlations in the data. The

faults, or anomalies, as they are referred to, include

physical jamming, collisions, misdirection, and selective

forwarding. The faults and their features, which include

carrier sensing count, packet send ratio, retransmission

count, packet drop ratio, and misdirection count, can be

found in WSNs regardless of the field of application,

making this system easily transferrable. However, the

faults selected have little potential in regard to recovery

techniques. As most fault detection schemes will attest,

their future goal is the ability to recover the network from

serious implications disrupting its services. In any case,

the authors provide insight to the mentioned machine

learning techniques, specifying that LDA requires fewer

samples to learn correlations between data compared to

clustering yet has higher learning complexity, whereas

clustering has lower overhead.

Moving in a different direction, many schemes provide

fault detection with support from machine learning

algorithms by using the sensors’ actual readings. By

comparing the output of the sensors to previous instances

or to neighbouring sensors’ outputs, faults are discovered

through the discrepancies in the data. In such cases,

effective modelling of the network while benefitting from

machine learning techniques increases successful

detection. For instance, in [9] the network is modelled as

a modified recurrent neural network (MRNN),

concentrating on the sensor node, its dynamics and the

interconnections with other nodes to build an accurate

model for sensor fault detection. This takes into account

neighbouring nodes’ outputs as well. We also see works

where techniques such as SVM classifiers [10] are used

to detect faults in WSNs. Here, the authors concentrate on

a precise solution to identifying faulty nodes whilst

simultaneously minimizing loss. Failures detected are

broadly identified as hardware, software, or

communication faults all of which are closely related to

the sensor operations. Therefore, using sensor data is the

most suitable way of predicting faults in coherence with

powerful machine learning techniques.

Finally, the work presented in [11] is similar to our

study in that it uses machine learning techniques for

structural health monitoring. Here, a data-driven

approach is followed to achieve a decentralized and

autonomous fault detection system as a way to produce

more reliable and accurate structural health monitoring.

Having a reliable sensor network is a key component to

SHM as sensor readings can be affected by faults. This

work is closely related to our own with the exception of

the type of data utilized and machine learning algorithm

selected to solve the problem. The authors use the sensor

data in combination with an artificial neural network to

infer faults in the network, in contrast to our work in

which network metrics are used as features for a decision

tree algorithm. Taking advantage of the redundant

information obtained by sensors, the faults detected are

bias and precision degradation with regard to the sensor

data, whereas our work focuses on communication fault.

In neither case is there a requirement of any application

specific data or information.

In conclusion, the works evidently present the wide

range of possible solutions to this problem and the

diversity of techniques which can be used.

III. PROBLEM STATEMENT

Faults can disrupt working networks to the point of a

complete halt; for instance, in the case of SHM, the

network can no longer transfer monitoring data because

of a faulty interface. In other cases, the reported results

may not be accurate due to missing data caused by packet

loss, as a result of either excessive noise or congestion

leading to degraded communication. In any case, these

issues are not desirable, but in the event that they occur, it

is, first and foremost necessary to diagnose the faults to

be able to take any remedial actions. Possible ways of

rectifying the type of faults we set to diagnose include

increasing signal strength in cases of increased noise and

to bypass the obstructing object, and backup interfaces

can start working in the case the primary interface is

faulty. Methods referring to recovery actions are not

further discussed, as they are not the focal point of this

paper and are frequently associated with the application

field of the network.

To detect faults in WSN, the normal working state of

the network needs to be precisely defined. From there,

any potential faulty states arise from discrepancies within

the normal state. The goal is to be able to analyze the

symptoms of each fault and its corresponding

characteristics. In this way, a fault profile can be formed

containing the network metrics, which are affected by the

fault, so that coherent features can be extracted from the

data.

To begin with, faults that disrupt the network can

occur for longer or shorter time periods, randomly within

the working lifetime of a network. In the case of faults

occurring due to external events, depending on the type,

they can severely impact the network, by losing

connectivity between nodes or less so, for instance, by

introducing higher noise levels.

Regarding the faults studied in our work, connectivity

and its quality is shown as a multifaceted issue. Firstly, a

node can be cut off from its neighbours due to a faulty

interface. In this case, the node has no way to contact

either neighbouring nodes or system administrators to

report the fault or indeed to rectify it, at least not

immediately. Thereby, it is taken as a given that this sort

of fault lasts a long time period. Another side effect of

this fault is the fact that neighbouring nodes also face a

fault as they themselves lose a single neighbour, the link

to the faulty interfaced node. Thereby, declaring faulty

neighbour nodes as another fault in the case study.

Symptoms of this failure are the inability to transfer

packets to their next hop node or their destination. In

severe situations, a network may be split into smaller

networks without the ability to communicate, if the node

is acting as the connecting node. Secondly and

predominately in our application area, SHM, obstacles

can affect connectivity between nodes for shorter

intervals (with regard to faulty interfaces). Here, the link

between two nodes is lost, so nodes can still

communicate with their remaining neighbours until the

object is no longer obstructing the communication. Such

an instance could be a truck passing upon a bridge whilst

in traffic. In response to these faults the network will

exhibit the following symptoms: Neighbour lists will

drop nodes, especially if the interface is faulty, or drop

the nodes and then reinstate them to the list if an obstacle

is obstructing connectivity. Packet loss is expected to

increase particularly in the case where connectivity is lost

during packet transfer. Other symptoms include very low

signal strength for lost connections and limited packets

being transferred when the interface is faulty.

Moving forward, an increased level of noise due to

extreme weather conditions accentuates difficulties in

transferring packets in the network. Rain, heavy fog, and

even dust storms can affect noise levels. In this case, the

quality of communication is affected, not allowing

packets to be transferred with the same ease compared to

normal conditions and even more so in critical situations,

when packets may be lost completely due to the weather

conditions. Symptoms which can be observed in this case

include low signal strength, increased packet loss and

delay. The number of packets sent in such conditions is

expected to be larger than in normal conditions due to

retransmissions as packets are less likely to be delivered

at the destination.

Fig. 1. Topology of the simulated WSN.

Finally, in the case that sensor nodes produce more

measurements, communication within the network is

affected. Most commonly, initial stages of congestion can

be detected or in more extreme cases, as a result, network

discovery packets can be lost in the network. In the latter

case, nodes mistakenly cannot communicate with their

neighbours, as the packets pertaining to their availability

are lost. These conditions are more often than not,

aftereffects of unpredictable events (emergency or

otherwise). Events can be considered of emergency status

if they result in damaging the structure the network is set

to monitor. For instance, natural disasters such as

earthquakes fit this category. The resulting packets

generated and sent within the network are significant

enough to cause disturbances in the network. The excess

of generated packets can be cumbersome to the networks’

services due to the sheer magnitude of packets sent into

the network, resulting in congestion. This will affect the

network’s ability to transfer packets as a result of

increased buffer sizes and larger packet delays.

IV. DATASET GENERATION

A dataset incorporating the above faults and the

normal state is essential for investigating the problem. Of

course, a dataset produced by a real network containing

these faults would be ideal. However, this would require

a lengthy amount of time to set up and test said network,

even more so to ensure data from all fault cases are

collected. To alleviate these restraints a network

simulation was preferred. Each network state was

simulated as realistically as possible to gauge the effect

the faults have on the network. Common network metrics

obtainable in all WSNs are used to identify faults. These

are reported by the simulator to ultimately discern the

status of the network.

To properly simulate all the fault cases, the simulator

was modified to incorporate extra features concerning the

faults. The simulator chosen was the Opportunistic

Networking Environment (ONE). Given its easy to

modify structure, ONE was ideal for simulating the

network at hand and incorporating new features. Such

features include the received signal strength indicator

(RSSI) to simulate the noise levels used in the extreme

weather conditions case, the loss of connectivity between

two nodes, thus removing one link from each

corresponding node, while ensuring the remaining links

are intact, and finally simulating the loss of the node’s

interface.

A static network was used, based upon the actual

topology of a WSN deployed on a bridge [12], which

incorporates sensor nodes on the bridge pylons and the

road, as shown in Fig. 1. The nodes are represented as

dots with the appropriate name tags (i.e. n1), their

corresponding interface range and connections to other

nodes. In total, 33 nodes make up the network and one

node acts as the sink node. Each node generates packets

to be sent to the sink node, whereas the sink node does

not generate any packets. The network operates with a

duty cycle; nodes are active for twenty-minute intervals 4

times a day, and in those intervals one packet is generated

and sent into the network. The simulated network uses an

epidemic routing algorithm. As for the interface IEEE

802.15.14 is used at 20kbps and at a frequency of

868MHz. The 868MHz frequency was chosen as there

are fewer power requirements for data transfer, while less

noise is apparent in link connection [13].

The experiments from the simulated network cover the

faults mentioned, firstly by simulating the base case,

Normal, i.e. the normal working state of the network. The

rest of the cases simulated are the No Interface, Weather,

Obstacle, and External Event cases referring to the faults

explained in section III. Included in the No Interface case

are the faults due to the loss of the interface, regarding

both the faulty node and its neighbouring nodes.

For the Obstacle case a single node in the network

experiences a fault, whereas in the Normal and Weather

cases all nodes of the network experience the same

effects of the scenario. In the No Interface case one node

is considered as having a faulty interface, while all its

neighbours will also lose the corresponding connection,

thus being faulty as an aftereffect. Finally, in the External

Event case one node is denoted as faulty, i.e. the node

which produces excessive measurements, while the rest

of the network becomes active to ensure the packets can

be transferred throughout the network. This scenario is

more likely to occur in emergency events.

For all cases, the faults are simulated as random

periods during the simulation time of each experiment

and the point at which the fault starts to take effect is

randomly chosen.

TABLE I: FEATURE SELECTION

Feature Name Corresponding Metric

conTime Connection Time per Node

signalStrength RSSI value

xmitPkts Transmitted Packets

buffer Buffer Size

buffer_diff Buffer Size Difference

pktLoss Packet Loss

For the Normal case in particular, the RSSI values are

between -50dBm and -100dBm, whereas in the Weather

case each link has a random value between -80dBm and -

100dBm for the faulty periods [14]. Each experiment

lasts 7 days. Faults occur separately; practically, nodes

suffer a single fault per experiment or are in normal

conditions. Approximately 1000 experiments were run,

covering all fault cases, for each node of the network.

Thus, ensuring the dataset has sufficient information

regarding both each fault case and each of node in the

network, bearing in mind that the generated model is

common for all the nodes.

V. PROPOSED SOLUTION

Through the analysis of each fault and its

corresponding symptoms it is clear that WSNs depend on

the reliability of the network in order to perform the tasks

each application requires. Hence, by using network

metrics as attributes for the machine learning algorithm

and selecting those common to all WSNs, the solution is

independent of the application field. In essence, the

features used in this problem are based on commonplace

network metrics readily available in WSNs, which

collectively describe the symptoms which the faults

exhibit in the network.

The features are selected by processing the reports

from the simulator which contain information regarding

events that take place in the network for each study case,

such as the creation of a packet, the transmission and

delivery of a packet given the simulation time,

connectivity status, buffer occupancy, and packets which

have been aborted during their transfer. For the simulated

time, samples are taken in 100s intervals and each sample

is labelled with the corresponding fault tag. Faults are

considered only if they occur for at least 30% of the time

interval given. This value is selected depending on the

characteristics of the network and the sensitivity the fault

diagnosis system is set to achieve. A lower value would

consider faults almost immediately, whereas larger values

would take longer to consider a fault. A middle ground

was reached for this value.

The features selected are given in Table I and

explained below.

• conTime: The connection time of a node with its

neighbours for the duration of the sample time. This

feature is expressed as a value between 0 and 1. A

value of 1 represents a node demonstrating no

connectivity problems with any of its neighbours.

Any values below 1 indicate that at least one link has

been affected by a fault, thus a link has been lost

during the sample time.

• signalStrength: The mean RSSI value for the node,

taking into account the quality per link for each

neighbour for the sample time.

• xmitPkts: The number of transmitted packets per node

for the sample time.

• buffer: The buffer size of the node.

• buffer_diff: The increase in buffer size per sample.

• pktLoss: The number of lost packets as result of a

fault. This includes aborted packets due to excessive

noise or a lost connection and dropped packets due to

overflowing buffer queues.

In the proposed solution a distributed logic is applied

when making predictions. In this way, in subsequent

work each node can participate in its own recovery

actions.

For the modelling, instead of using separate models for

each node, data is collected to produce a general fault

model incorporating instances from every node in the

network. This is why features such as conTime are

included, expressing the connectivity of each node

without directly focusing on the number of its

neighbours.

While more characteristics were obtained from the

simulation reports, metrics such as packet delay had

many missing values as a delay value could only be

described when a packet was sent into the network. In

combination with the network’s duty cycle the values did

not possess any complementary information and were not

useful for determining fault patterns.

TABLE II: LABELS DEFINITIONS

Label Fault Case Network Status

Normal Normal Normal

No_Intf No Interface

Loss of Node

Connectivity –

Faulty Interface

Weather Weather
Extreme Weather

Conditions

Obstacle Obstacle

Loss of Link

Connectivity –

Obstacle

Faulty_Nbr No Interface

Faulty Neighbour

due to faulty

interface

Ext_Event External Event
Excessive Packet

Generation

The samples are labeled manually based on the time

periods exhibiting faults, as multiple simulated seconds

are recorded in a single sample. The faults labels are

defined in Table II with the corresponding faults cases

and the status of the network.

Upon completion of the dataset, it is then subjected to

preprocessing techniques to be fit for training. As the

network is expected to be working normally for most of

its lifetime, the faults only take up a small percentage of

the dataset which is commonly seen in such problems.

Randomly undersampling the majority class is used to

balance each class of faults, which is essential when

training a new model. This step is then followed by the

separation of the dataset into a training set and a testing

set, resulting in a 70% - 30% split respectively. Finally,

the training dataset is normalized using the SoftMax

function.

A decision tree algorithm is used to train the model

from the Machine Learning and Statistics Toolbox in

MATLAB. Decision trees are ideal training algorithms

for the problem at hand as they can classify both binary

and multiclass datasets and are able to work well with

categorical labels, thus being a good choice when

predicting our selected fault labels which are multiclass

categorical labels. Given the large dataset at our disposal,

the fast prediction speed of the algorithm is desirable,

benefitting both prediction accuracy and training time.

Decision trees are well suited for imbalanced datasets and

are preferred in such cases, as the problem by default

does not generate balanced classes and undersampling is

used for the majority class. The training dataset is fed to

the app and the model is produced. It is then exported so

that the model’s performance can be assessed through the

test set.

VI. RESULTS

For the evaluation of the model, the testing set

undergoes the same processing steps as the training set.

The metric used to primarily measure the model’s

performance is accuracy. In our case the formula of

balanced classification accuracy (BCA) is used to make

the classes further comparable [15], just as the majority

class was undersampled, the performance metric accounts

for unbalanced data as well. Other metrics used include

sensitivity and specificity, as well as the positive and

negative predictive value, and finally the F-Score [16].

𝐵𝐶𝐴𝑖 =

1

2
(
𝑇𝑃

𝑃
+
𝑇𝑁

𝑁
).

 (1)

𝐵𝐶𝐴 =

1

𝐿
 𝐵𝐶𝐴𝑖
𝐿
𝑖=𝐿 .

 (2)

The model’s overall balanced accuracy is 96.46% and

has a misclassification rate of 3.54% across the six

classes. In combination with a high overall accuracy

value, each fault class also has a high balanced accuracy.

Namely, the Weather class has the highest of the values at

99.36% followed by the Normal class with a value of

98.47%. The External Event class has a value of 96.01%

while the Obstacle class is at 95.93%. Finally, the No

Interface class has a value of 95.8% and the Faulty

Neighbour class a value of 93.2%.

Fig. 1. The model’s accuracy in the form of a confusion matrix.

Supplementary to this evaluation and depicting more

so the quality of the model are the metrics sensitivity and

precision and their negative counterparts, specificity and

negative predictive value. Sensitivity and specificity

indicate the positive and negative hit rates, i.e. how often

the model predicts positive and negative samples,

whereas precision and negative predictive value indicate

the predictive value of the model, essentially how

believable the classes it predicts for each sample are.

These are detailed in Table III. High values are observed

for each metric in every class.

The model’s F-Score offers insight to the model’s

quality as the harmonic mean of sensitivity and precision.

Here, the Faulty Neighbour class has the lowest F-Score,

as a result of the lowest sensitivity value, indicating the

low positive hit rate for the class. The Obstacle class has

the second lowest F-Score value expressing the lowest

precision value of the classes, which is expected as the

Obstacle class misclassifies samples from all the classes

regarding connectivity as well as the Normal class. In

both instances, the symptoms arising in these classes have

similar attributes which makes the distinction between the

two classes both less than ideal and responsible for the

lower values in regard to the rest of the faulty classes.

The confusion matrix of the tested data is depicted in

Fig. 2 giving the number of correctly classified samples

for each class including the samples which are

misclassified. As shown, the number of incorrectly

classified samples is low for each class and

misclassifications occur between similar faults rather than

across the board. For instance, the fault cases Faulty

Neighbour and Obstacle have completely different

causes, which would make recovery efforts different, but

have similar fault symptoms thus easier to misclassify.

Keeping this in mind, both faults are distinguishable,

however improvements can be made.

TABLE III: RESULTS

Balanced

Accuracy
Sensitivity Specificity Precision

Negative

Predictive Value
F- Score

Ext_Event 0.9601 0.9212 0.9990 0.9949 0.9842 0.9566

Normal 0.9847 0.9894 0.9800 0.9398 0.9966 0.9640

No_Intf 0.9580 0.9160 1 1 0.9954 0.9562

Faulty_Nbr 0.9320 0.8768 0.9872 0.9265 0.9775 0.9010

Obstacle 0.9593 0.9486 0.9699 0.8936 0.9861 0.9203

Weather 0.9936 0.9890 0.9981 0.9911 0.9977 0.9900

This is also observed for the cases Weather-Normal

and External Event-Normal. Samples from the Weather

and External Event classes are misclassified only with

regard to the Normal case. Each class is presented

distinctly as thereare no misclassified samples between

the Weather and External Event classes, or the remaining

classes.

The No Interface class misclassifies samples only in

relation to the Obstacle class. No samples from other

classes are mistakenly predicted as No Interface, as

shown with the specificity metric, depicting that this

particular class is well defined within the problem.

Finally, it is worth noting that the model misclassifies

samples to multiple classes with regard to the true

Normal class. Also, the predicted class Obstacle contains

incorrectly classified samples which originate from

various classes. This shows that the Obstacle case may

need to be more precisely defined in the future, whereas

the Normal case is the most general case, as it defines the

normal state of the network and all fault cases arise from

this state, which is expected.

VII. CONCLUSIONS

In conclusion, fault management constitutes a key

feature for the reliable operation of a WSN. Emphasis is

given to detection and identification as WSNs are

susceptible to various faults and without these steps any

form of recovery is not possible. In this paper, faults

disrupting the communication process were examined,

particularly originating from external factors in which

network users have little or no control over. Such faults

need to be identified as precisely as possible so that

recovery actions can be considered or take place

immediately.

The faults examined in this paper are lack of

connectivity between nodes due to a faulty interface,

obstacles hindering communication, and packet loss due

to extreme weather conditions which increase noise levels

or as a result of the effects of excessively generated

packets. In total, the above cases were considered as well

as a normal case regarding a normally functioning

network and a faulty neighbour case which takes into

account the status of the remaining neighbours in the

faulty interface case.

Using a topology that corresponds to a realistic WSN

deployed on a bridge, the network is simulated to

generate data referring to each study case, to be then used

to train the machine learning model. While our work

focuses on a specific application, namely a WSN

deployed for SHM, the holistic use of data from all the

network nodes ensures a more general model which can

be applicable to various domains.

Using machine learning techniques detection and

identification of these faults was achieved. A successful

model was produced classifying each fault with high

accuracy and precision. To reiterate, the model’s overall

accuracy is 96.46%. All faults are detectable specifically,

the Weather class has an accuracy value of 99.36%

followed by the Normal class with a value of 98.47%.

The External Event class has a value of 96.01% while the

Obstacle class is at 95.93%. Finally, the No Interface

class has a value of 95.8% and the Faulty Neighbour

class a value of 93.2%. More importantly the faults are

presented as distinct cases as shown by the hit rates and

predictive values of each class. Even though similar

symptoms can be observed in the fault cases, such as

Obstacle and Faulty Neighbour, the model is able to

distinguish each class.

Future work of this paper primarily includes the

improvement of the dataset. Here, the work is evaluated

using simulated data, which demonstrates the potential of

the study. However, using a more realistic environment,

such as implementing a small-scale testbed to produce a

non-synthetic dataset would be ideal for a more

representative performance evaluation of the system. This

would also be complemented with more diverse study

cases, scenarios and experiments.

Moreover, a better understanding of the fault

symptoms and how they are expressed in the network

might provide a better selection of features, thus being

able to better describe the faults to classify the data

samples. Therefore, highlighting the enhancement of the

feature subset.

With regard to the machine learning approach, a

decision tree was the best option to initially solve the

problem, however there are many algorithms and

techniques which might improve the extracted model and

the results obtained. For instance, incorporating the time

series elements of the problem to its solution. As all

events in the network are time based (packet transfers,

packet drops and so forth), an algorithm which also

considers this factor will potentially enhance the

detection and identification of the faults.

Finally in the future work and to complete the fault

management scheme, recovery steps to alleviate the faults

described in this paper would move in the right direction

in delivering a reliable system capable of dealing with its

own faults.

REFERENCES

[1] Konstantinos Loupos et al, “Structural Health Monitoring for

bridges based on skin-like sensor”, IOP Conf. Ser.: Mater. Sci.

Eng., 236 012100, 2017

[2] A. Keränen, J. Ott and T. Kärkkäinen, "The ONE Simulator for

DTN Protocol Evaluation," in SIMUTools '09: Proceedings of the

2nd International Conference on Simulation Tools and

Techniques, Rome, Italy, 2009.

[3] "Statistics and Machine Learning Toolbox™ User's Guide," The

MathWorks, Inc., 2017.

[4] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler and D.

Estrin, "Sympathy for the sensor network debugger," in

Proceedings of the 3rd international conference on Embedded

networked sensor systems, New York, NY, USA, 2005.

[5] X.Miao, K.Liu, Y.He, D.Papadias, Q.Ma and Y.Liu, "Agnostic

Diagnosis: Discovering Silent Failures in Wireless Sensor

Networks," IEEE Transactions on Wireless Communications, vol.

12, no. 12, pp. 6067-6075, December 2013.

[6] P. Tang and T. W. S. Chow, "Wireless Sensor-Networks

Conditions Monitoring and Fault Diagnosis Using Neighborhood

Hidden Conditional Random Field," IEEE Transactions on

Industrial Informatics, vol. 12, no. 3, pp. 933-940, 2016.

[7] Y. Wang, M. Martonosi and L. s. Peh, "Supervised Learning in

Sensor Networks: New Approaches with Routing, Reliability

Optimizations," in 2006 3rd Annual IEEE Communications

Society on Sensor and Ad Hoc Communications and Networks,

Reston, VA, 2006.

[8] S. Krishnamurthy, G. Thamilarasu and C. Bauckhage,

"MALADY: A Machine Learning-Based Autonomous Decision-

Making System for Sensor Networks," in 2009 International

Conference on Computational Science and Engineering,

Vancouver, BC, 2009.

[9] A. I. Moustapha and R. R. Selmic, "Wireless Sensor Network

Modeling Using Modified Recurrent Neural Networks:

Application to Fault Detection," IEEE Transactions on

Instrumentation and Measurement, vol. 57, no. 5, pp. 981-988,

May 2008.

[10] S. Zidi, T. Moulahi and B. Alaya, "Fault Detection in Wireless

Sensor Networks Through SVM Classifier," IEEE Sensors

Journal, vol. 18, no. 1, pp. 340-347, 2018.

[11] K. Smarsly, K. Dragos and J. Wiggenbrock, "Machine learning

techniques for structural health monitoring.," in Proceedings of the

8th European Workshop on Structural Health Monitoring

(EWSHM 2016), Spain, Bilbao, 5–8 July 2016.

[12] S. A. Jang and B. F. J. Spencer, "Structural Health Monitoring for

Bridge Structures using Smart Sensors," Newmark Structural

Engineering Laboratory. University of Illinois at Urbana-

Champaign., 2015-05.

[13] M. Woehrle, M. Bor and K. Langendoen, "868 MHz: A noiseless

environment, but no free lunch for protocol design," in 2012 Ninth

International Conference on Networked Sensing (INSS), Antwerp,

2012.

[14] K. Srinivasan, P. Dutta, A. Tavakoli and P. Levis, "An empirical

study of low-power wireless," ACM Transactions on Sensor

Networks , vol. 6, no. 2, pp. 1-49, 2010.

[15] K. H. Brodersen, C. S. Ong, K. E. Stephan and J. M. Buhmann,

"The Balanced Accuracy and Its Posterior Distribution," in 2010

20th International Conference on Pattern Recognition, Istanbul,

2010.

[16] D. M. W. Powers, "Evaluation: from Precision, Recall and F-

measure to ROC, Informedness, Markedness and Correlation,"

Journal of Machine Learning Technologies, vol. 2, no. 1, pp. 37-

63, 2011

