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Abstract —Reliable communication in wireless sensor networks 

constitutes an essential factor in maintaining critical systems 

operational. Despite this, wireless sensor networks are known to 

be volatile and prone to faults disrupting their normal working 

state. Particularly in open environments, wireless sensor 

networks must be able to detect arising faults to minimize 

subsequent failures of the network. This study deals with the 

detection and identification of faults in wireless sensor 

networks, notably faults that occur due to externally driven 

events, affecting network services, such as data transfers and 

communication between nodes. Faults commonly occurring due 

to such factors are loss of connectivity because of faulty node 

interfaces, disrupted connectivity due to obstacles, and extreme 

packet loss because of increased noise conditions or congestion. 

Detection, identification, and recovery of sensor network faults 

have been studied extensively in the literature. In this paper, a 

Machine Learning approach is used to detect and diagnose these 

faults. A decision tree algorithm was used to train the model. 

The produced model is consistently able to identify the faults on 

test data with an overall accuracy of 96.46%. Results also 

include high precision and recall values for each separate fault 

case, thus producing a successful fault identification model. 
 
Index Terms—autonomous networks, decision tree, fault 

diagnosis, wireless sensor networks 

 

I. INTRODUCTION 

With the advancement of Wireless Sensor Networking 

(WSN) many systems, including IoT devices being 

increasingly used in recent years, rely on the information 

collected from small sensor nodes. While the advantages 

of WSN are many, the fact remains that the individual 

nodes of a network are extremely sensitive and frequently 

exhibit faults. These faults disrupt the normal working 

state of the network on various levels; from the actual 

nodes, to corrupted data (collected or produced), as well 

as faults impairing the network’s services. The research 

to minimize such faults has been pursued extensively in 

the literature covering the multitude and diversity of the 

faults. The work presented here accounts for faults 

regarding the disruption of the communication in the 

network. Specifically targeting faults due to external 

events, i.e. events that the user does not have control 

over. Such faults are: 
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1) The loss of connectivity between nodes, either 

randomly due to obstacles or complete loss of 

connectivity because of a faulty interface. 

2) Extreme packet loss caused by: 

a) Increased noise due to extreme weather 

conditions. 

b) Disturbances in the network services, for 

instance, sensor nodes taking more measurements and 

producing more packets as a result of an external trigger, 

notably causing congestion and thus loss of packets or 

discovery messages. 

Faults that interrupt the communication services of the 

network, especially in sensor networks, can compromise 

the entire network. The detection of the faults, and 

subsequently their correct identification are the only ways 

to work towards any actions concerning the recovery of 

the network. Regarding the faults mentioned, as they are 

primarily triggered by external events, it is desirable that 

the nodes themselves can contribute to their recovery, 

particularly in the case where users are absent, or the 

nodes are placed in remote locations. In this context, our 

contributions include the detection and identification of 

communication faults encountered in WSN. Benefitting 

from machine learning techniques, the required accuracy 

and precision of these two actions can be enhanced to 

further advance fault management, especially 

autonomous recovery actions. 

By using machine learning algorithms, correlations 

that cannot be otherwise detected are taken into account, 

thus producing an accurate model for fault detection and 

identification. Ideally, every fault would have a specific 

set of symptoms describing the problematic situation. 

However, in most cases these symptoms are difficult to 

discern by humans and machines alike, given the variety 

of sensor networks and their applications. Difficulties 

developing a detection and identification scheme are 

apparent in empirical systems, especially in edge cases. 

On the other hand, when using machine learning 

techniques, a general set of network metrics can be used 

to best describe the faults whilst simultaneously not 

targeting specific cases. 

The faults covered in this paper are not the foreground 

of most existing fault detection schemes. Our work is 

realized by means of an application regarding structural 

health monitoring (SHM), specifically a wireless sensor 

network deployed on a bridge. In applications such as 

described in [1], the communication in the network is 



affected by the faults, especially given the open 

environment plan of most SHM deployments. 

This application field is ideal for the problem at hand, 

especially considering that autonomous fault management 

schemes and the correct diagnosis of faults can be 

valuable assets in this area. Given the faults examined in 

this study, their close connection to the communication 

services of the network, and potential self-recovery steps, 

the necessary dataset for this work is generated via the 

simulation of a realistic network. The dataset includes all 

the faults mentioned above and are simulated with respect 

to the structural health monitoring aspect of the network 

and the physical restraints of sensor nodes deployed on a 

realistic bridge topology. Through the process of 

simulating each fault case in the network, samples of data 

were collected using various network metrics. By 

maintaining a subset of the most beneficial network 

metrics, features for the problem were extracted and 

labels for each fault case were defined, as determined by 

supervised machine learning algorithms. The problem is 

represented as a multiclass classification problem with 

categorical labels for each fault case. 

The tools used in the proposed solution include the 

Opportunistic Networking Environment simulator (ΟΝΕ) 

[2], and the Machine Learning and Statistics Toolbox [3] 

in MATLAB for the subsequent training of the model 

using a Decision Tree algorithm. Python scripts are used 

for data manipulation, to extract beneficial information 

from the simulator’s report files. Preprocessing of the 

data is completed in MATLAB before passing the final 

dataset to the toolbox. By testing the produced model, 

each type of fault including the normal state of the 

network is classified with high accuracy, recall, and 

precision. The model is able to clearly distinguish 

between the fault cases, while only misclassifying 

samples from fault classes with known similarities. 

Overall, the model has an accuracy of 96.46% across six 

classes. 

The rest of the paper is organized as follows. Chapter 2 

presents the related work regarding the various categories 

of faults in wireless sensor networks (WSNs) whilst 

including the machine learning techniques used to solve 

the problems stated. Chapter 3 showcases the formulation 

of the problem, describing the faults the paper sets to 

successfully detect and identify. Chapter 4 makes way for 

the experimental aspect of the paper, entailing the 

generation of the dataset through the simulation of a 

realistic network. Chapter 5 presents the proposed 

solution highlighting feature extraction. Chapter 6 

evaluates the model and presents the results. Finally, 

Chapter 7 concludes the paper and presents the future 

work. 

II. RELATED WORK 

In the process of eliminating or at least mitigating 

faults and failures in WSNs many studies have provided 

schemes with effective solutions for various applications 

using numerous techniques. The selection of works 

presented here offers insight to the problem domain, 

highlighting positive attributes from each study, while 

comparing the methods used to our own work and goals. 

It includes similar methods such as an empirical decision 

tree, as well as other machine learning techniques. As the 

faults in WSN can be approached in many different ways 

and with different goals in mind, the faults, while similar 

in all cases, are diagnosed with varying identification 

titles referring usually to the potential recovery steps each 

study hopes to act upon. 

To begin with, in [4], the tool developed, Sympathy, 

relies on the amount of data reaching the sink to infer 

failures in the network. Using a selection of metrics, the 

sources of faults are identified and subsequently divided 

into certain fault categories to be reported with a level of 

urgency to the network’s users. The goal in this work is 

to restore data collection in the network via user 

notification, thus pinpointing the offending section of 

network is essential to the recovery of the network. 

However, Sympathy uses an empirically developed 

decision tree to determine the most likely cause of data 

loss in the network, which in turn triggers insufficient 

data collection at the sink. Given the unreliable nature of 

WSN and the magnitude of applicable fields, a rule-based 

method slowly eliminating the fault causes via basic node 

health, connectivity, and communication status, could 

reasonably not take into consideration useful metrics or 

values. Important correlations could be overlooked, thus 

substituting empirically developed methods with machine 

learning techniques constitutes fewer chances to miss 

such correlations in the data. Such an approach was 

chosen in our work, in hopes of generating a holistic 

method so that, given set of metrics, faults can be 

accurately detected in sensor networks. A final aspect 

which is considered is the amount of user notification. As 

faults are considerably common in sensor networks, our 

goal is to be able to identify faults, which not only disrupt 

the communication status of the network but can also be 

rectified by the sensor nodes themselves, eliminating cost 

heavy notification actions in the network. 

Another study which uses machine learning techniques 

to discover faults in sensor networks is described in [5]. 

Here, the problem is directed at uncovering unknown 

faults which disrupt the network, thus the study focuses 

on unsupervised machine learning techniques to produce 

results. The authors’ argument against supervised 

techniques is the lack of sufficient domain knowledge to 

learn all the rules describing the problem. Although in 

some cases this is true, the sheer degree of diversity in 

WSN applications gives way to developing solutions 

which are based on the same principles but highly 

customizable. Our work exhibits a first study-case of 

applying machine learning techniques to structural health 

monitoring problems targeting a set of faults specifically 

regarding communication in the network. As it is 

anticipated, the authors of [5] focus on the problem at 

hand, which benefits from detecting unknown faults. 



Their work, Agnostic Diagnosis, is tested on a real-life 

network (i.e. GreenOrbs) with positive results. This 

motivates the physical implementation of our own work 

to further study the promising simulated results. Even 

though this study uses machine learning techniques, the 

use of the same database to compare experimental results 

with our own work was not possible as different aspects 

of fault diagnosis were highlighted in each study. This 

shows the amount of diversity in the field regarding faults 

in WSN, including the wide range of viable solutions for 

each application domain. Their study uses both temporal 

and spatial detection; temporal detection is achieved 

through a cumulative sum with change point detection for 

the time series, whereas the algorithm K-MEANS is used 

for spatial detection, thus highlighting the use of 

unsupervised machine learning techniques. Even though a 

complex paradigm was put in place for Agnostic 

Diagnosis the authors admit that through the selection of 

metrics used, some faults can be easily detected, whereas 

others require agnostic detection. This further motivates 

our work in building a more focused set of faults, not 

only ensuring detection between normal and faulty states 

but also identifying specific faults which can be 

subsequently dealt with by the nodes themselves using 

recovery actions. 

At this point it is worthy to note that both [4] and [5] 

use a similar selection of network metrics to diagnose 

faults in the network. This reinforces the fact that faults in 

WSN can be detected through metric changes and notably 

the selection of the most meaningful metrics in 

combination with the most robust technique for each 

application will ultimately produce the best results. 

The work in [6] interprets fault diagnosis in WSN as a 

pattern classification problem, taking advantage of the 

inherent characteristics of WSNs. Specifically, the notion 

of a node’s nearest neighbours is taken into account to 

increase the robustness of the introduced Neighbourhood 

Hidden Conditional Random Field (NHCRF) model. The 

method models the WSN as a graph and is able to detect 

faulty sensors as well as faulty transmission paths, by 

using transmission time based features, such as signal 

strength and signal delay. Knowing that a node or a 

transmission path is faulty, while desirable, does not give 

an accurate amount of information regarding the fault. 

While detection and identification are the primary steps 

in the fault management process, poorly identified faults 

may hinder secondary but essential recovery steps in 

subsequent works. Overall, the NHCRF model presents 

impressive comparative performance in regard to popular 

machine learning algorithms and various study cases, 

however, the only performance metric used is accuracy. 

A more comprehensive assessment of the experimental 

results would be useful as accuracy has the tendency to 

produce a bias towards the majority class of the dataset. 

Ιn [7] the authors’ goal is to target reliability 

complications in WSNs. Firstly, by providing a model to 

assess link quality and secondly, a way to improve 

resource efficiency due to storage constraints in WSNs. 

Both link quality and storage constraints contribute to 

packet loss in WSNs, thus optimizing these issues in the 

network will have beneficial outcomes. While this study 

covers only an aspect of the work we present in this 

paper, i.e. the link quality, the methods used are the same. 

Machine learning techniques, specifically supervised 

algorithms and more to the point decision trees and 

additionally rule learners are used to solve the problem at 

hand. As in our case, the authors cite the advantages of 

automatic correlation discovery, not relying on 

application specific heuristics and unreliable 

environmental factors. Another point of reference is the 

similar network metrics used as features. This shows that 

using a subset of metrics common to WSNs can be used 

to solve different problems with various applications, 

while remaining accessible to any wireless sensor 

network, as is also noticeable in [4] and [5]. However, the 

point of view of the study differs greatly from our own. 

The authors use supervised learning to essentially, detect 

and identify disruptive elements and take subsequent 

preventative actions to better routing and reliability in 

WSNs. Our work takes into account the challenges that 

arise in link quality analysis and to perform detection and 

identification. This is merely a part of the work presented 

here, as a variety of faults is targeted rather than gaining 

specialist insight to only one aspect. The positive results 

and successful outcome of the authors’ work highlight the 

advantages of machine learning algorithms and motivates 

our own work accordingly. 

Another fault detection scheme [8] uses both 

supervised and unsupervised techniques to build a system 

for autonomous decision making in WSNs. Using 

optimized versions of linear discriminant analysis (LDA) 

and clustering techniques the authors have produced a 

system to collect data, and infer decisions through 

knowledge gained from correlations in the data. The 

faults, or anomalies, as they are referred to, include 

physical jamming, collisions, misdirection, and selective 

forwarding. The faults and their features, which include 

carrier sensing count, packet send ratio, retransmission 

count, packet drop ratio, and misdirection count, can be 

found in WSNs regardless of the field of application, 

making this system easily transferrable. However, the 

faults selected have little potential in regard to recovery 

techniques. As most fault detection schemes will attest, 

their future goal is the ability to recover the network from 

serious implications disrupting its services. In any case, 

the authors provide insight to the mentioned machine 

learning techniques, specifying that LDA requires fewer 

samples to learn correlations between data compared to 

clustering yet has higher learning complexity, whereas 

clustering has lower overhead. 

Moving in a different direction, many schemes provide 

fault detection with support from machine learning 

algorithms by using the sensors’ actual readings. By 

comparing the output of the sensors to previous instances 

or to neighbouring sensors’ outputs, faults are discovered 

through the discrepancies in the data. In such cases, 



effective modelling of the network while benefitting from 

machine learning techniques increases successful 

detection. For instance, in [9] the network is modelled as 

a modified recurrent neural network (MRNN), 

concentrating on the sensor node, its dynamics and the 

interconnections with other nodes to build an accurate 

model for sensor fault detection. This takes into account 

neighbouring nodes’ outputs as well. We also see works 

where techniques such as SVM classifiers [10] are used 

to detect faults in WSNs. Here, the authors concentrate on 

a precise solution to identifying faulty nodes whilst 

simultaneously minimizing loss. Failures detected are 

broadly identified as hardware, software, or 

communication faults all of which are closely related to 

the sensor operations. Therefore, using sensor data is the 

most suitable way of predicting faults in coherence with 

powerful machine learning techniques. 

Finally, the work presented in [11] is similar to our 

study in that it uses machine learning techniques for 

structural health monitoring. Here, a data-driven 

approach is followed to achieve a decentralized and 

autonomous fault detection system as a way to produce 

more reliable and accurate structural health monitoring. 

Having a reliable sensor network is a key component to 

SHM as sensor readings can be affected by faults. This 

work is closely related to our own with the exception of 

the type of data utilized and machine learning algorithm 

selected to solve the problem. The authors use the sensor 

data in combination with an artificial neural network to 

infer faults in the network, in contrast to our work in 

which network metrics are used as features for a decision 

tree algorithm. Taking advantage of the redundant 

information obtained by sensors, the faults detected are 

bias and precision degradation with regard to the sensor 

data, whereas our work focuses on communication fault. 

In neither case is there a requirement of any application 

specific data or information. 

In conclusion, the works evidently present the wide 

range of possible solutions to this problem and the 

diversity of techniques which can be used. 

III. PROBLEM STATEMENT 

Faults can disrupt working networks to the point of a 

complete halt; for instance, in the case of SHM, the 

network can no longer transfer monitoring data because 

of a faulty interface. In other cases, the reported results 

may not be accurate due to missing data caused by packet 

loss, as a result of either excessive noise or congestion 

leading to degraded communication. In any case, these 

issues are not desirable, but in the event that they occur, it 

is, first and foremost necessary to diagnose the faults to 

be able to take any remedial actions. Possible ways of 

rectifying the type of faults we set to diagnose include 

increasing signal strength in cases of increased noise and 

to bypass the obstructing object, and backup interfaces 

can start working in the case the primary interface is 

faulty. Methods referring to recovery actions are not 

further discussed, as they are not the focal point of this 

paper and are frequently associated with the application 

field of the network. 

To detect faults in WSN, the normal working state of 

the network needs to be precisely defined. From there, 

any potential faulty states arise from discrepancies within 

the normal state. The goal is to be able to analyze the 

symptoms of each fault and its corresponding 

characteristics. In this way, a fault profile can be formed 

containing the network metrics, which are affected by the 

fault, so that coherent features can be extracted from the 

data. 

To begin with, faults that disrupt the network can 

occur for longer or shorter time periods, randomly within 

the working lifetime of a network. In the case of faults 

occurring due to external events, depending on the type, 

they can severely impact the network, by losing 

connectivity between nodes or less so, for instance, by 

introducing higher noise levels. 

Regarding the faults studied in our work, connectivity 

and its quality is shown as a multifaceted issue. Firstly, a 

node can be cut off from its neighbours due to a faulty 

interface. In this case, the node has no way to contact 

either neighbouring nodes or system administrators to 

report the fault or indeed to rectify it, at least not 

immediately. Thereby, it is taken as a given that this sort 

of fault lasts a long time period. Another side effect of 

this fault is the fact that neighbouring nodes also face a 

fault as they themselves lose a single neighbour, the link 

to the faulty interfaced node. Thereby, declaring faulty 

neighbour nodes as another fault in the case study. 

Symptoms of this failure are the inability to transfer 

packets to their next hop node or their destination. In 

severe situations, a network may be split into smaller 

networks without the ability to communicate, if the node 

is acting as the connecting node. Secondly and 

predominately in our application area, SHM, obstacles 

can affect connectivity between nodes for shorter 

intervals (with regard to faulty interfaces). Here, the link 

between two nodes is lost, so nodes can still 

communicate with their remaining neighbours until the 

object is no longer obstructing the communication. Such 

an instance could be a truck passing upon a bridge whilst 

in traffic. In response to these faults the network will 

exhibit the following symptoms: Neighbour lists will 

drop nodes, especially if the interface is faulty, or drop 

the nodes and then reinstate them to the list if an obstacle 

is obstructing connectivity. Packet loss is expected to 

increase particularly in the case where connectivity is lost 

during packet transfer. Other symptoms include very low 

signal strength for lost connections and limited packets 

being transferred when the interface is faulty. 

Moving forward, an increased level of noise due to 

extreme weather conditions accentuates difficulties in 

transferring packets in the network. Rain, heavy fog, and 

even dust storms can affect noise levels. In this case, the 

quality of communication is affected, not allowing 

packets to be transferred with the same ease compared to 



normal conditions and even more so in critical situations, 

when packets may be lost completely due to the weather 

conditions. Symptoms which can be observed in this case 

include low signal strength, increased packet loss and 

delay. The number of packets sent in such conditions is 

expected to be larger than in normal conditions due to 

retransmissions as packets are less likely to be delivered 

at the destination. 

 
Fig. 1. Topology of the simulated WSN. 

Finally, in the case that sensor nodes produce more 

measurements, communication within the network is 

affected. Most commonly, initial stages of congestion can 

be detected or in more extreme cases, as a result, network 

discovery packets can be lost in the network. In the latter 

case, nodes mistakenly cannot communicate with their 

neighbours, as the packets pertaining to their availability 

are lost. These conditions are more often than not, 

aftereffects of unpredictable events (emergency or 

otherwise). Events can be considered of emergency status 

if they result in damaging the structure the network is set 

to monitor. For instance, natural disasters such as 

earthquakes fit this category. The resulting packets 

generated and sent within the network are significant 

enough to cause disturbances in the network. The excess 

of generated packets can be cumbersome to the networks’ 

services due to the sheer magnitude of packets sent into 

the network, resulting in congestion. This will affect the 

network’s ability to transfer packets as a result of 

increased buffer sizes and larger packet delays. 

IV. DATASET GENERATION 

A dataset incorporating the above faults and the 

normal state is essential for investigating the problem. Of 

course, a dataset produced by a real network containing 

these faults would be ideal. However, this would require 

a lengthy amount of time to set up and test said network, 

even more so to ensure data from all fault cases are 

collected. To alleviate these restraints a network 

simulation was preferred. Each network state was 

simulated as realistically as possible to gauge the effect 

the faults have on the network. Common network metrics 

obtainable in all WSNs are used to identify faults. These 

are reported by the simulator to ultimately discern the 

status of the network. 

To properly simulate all the fault cases, the simulator 

was modified to incorporate extra features concerning the 

faults. The simulator chosen was the Opportunistic 

Networking Environment (ONE). Given its easy to 

modify structure, ONE was ideal for simulating the 

network at hand and incorporating new features. Such 

features include the received signal strength indicator 

(RSSI) to simulate the noise levels used in the extreme 

weather conditions case, the loss of connectivity between 

two nodes, thus removing one link from each 

corresponding node, while ensuring the remaining links 

are intact, and finally simulating the loss of the node’s 

interface. 

A static network was used, based upon the actual 

topology of a WSN deployed on a bridge [12], which 

incorporates sensor nodes on the bridge pylons and the 

road, as shown in Fig. 1. The nodes are represented as 

dots with the appropriate name tags (i.e. n1), their 

corresponding interface range and connections to other 

nodes. In total, 33 nodes make up the network and one 

node acts as the sink node. Each node generates packets 

to be sent to the sink node, whereas the sink node does 

not generate any packets. The network operates with a 

duty cycle; nodes are active for twenty-minute intervals 4 

times a day, and in those intervals one packet is generated 

and sent into the network. The simulated network uses an 

epidemic routing algorithm. As for the interface IEEE 

802.15.14 is used at 20kbps and at a frequency of 

868MHz. The 868MHz frequency was chosen as there 

are fewer power requirements for data transfer, while less 

noise is apparent in link connection [13]. 

The experiments from the simulated network cover the 

faults mentioned, firstly by simulating the base case, 

Normal, i.e. the normal working state of the network. The 

rest of the cases simulated are the No Interface, Weather, 

Obstacle, and External Event cases referring to the faults 

explained in section III. Included in the No Interface case 

are the faults due to the loss of the interface, regarding 

both the faulty node and its neighbouring nodes. 

For the Obstacle case a single node in the network 

experiences a fault, whereas in the Normal and Weather 

cases all nodes of the network experience the same 

effects of the scenario. In the No Interface case one node 

is considered as having a faulty interface, while all its 

neighbours will also lose the corresponding connection, 

thus being faulty as an aftereffect. Finally, in the External 

Event case one node is denoted as faulty, i.e. the node 

which produces excessive measurements, while the rest 

of the network becomes active to ensure the packets can 

be transferred throughout the network. This scenario is 

more likely to occur in emergency events. 

For all cases, the faults are simulated as random 

periods during the simulation time of each experiment 

and the point at which the fault starts to take effect is 

randomly chosen. 



TABLE I: FEATURE SELECTION 

Feature Name Corresponding Metric 

conTime Connection Time per Node 

signalStrength RSSI value 

xmitPkts Transmitted Packets 

buffer Buffer Size 

buffer_diff Buffer Size Difference 

pktLoss Packet Loss 

 

For the Normal case in particular, the RSSI values are 

between -50dBm and -100dBm, whereas in the Weather 

case each link has a random value between -80dBm and -

100dBm for the faulty periods [14]. Each experiment 

lasts 7 days. Faults occur separately; practically, nodes 

suffer a single fault per experiment or are in normal 

conditions. Approximately 1000 experiments were run, 

covering all fault cases, for each node of the network. 

Thus, ensuring the dataset has sufficient information 

regarding both each fault case and each of node in the 

network, bearing in mind that the generated model is 

common for all the nodes. 

V. PROPOSED SOLUTION 

Through the analysis of each fault and its 

corresponding symptoms it is clear that WSNs depend on 

the reliability of the network in order to perform the tasks 

each application requires. Hence, by using network 

metrics as attributes for the machine learning algorithm 

and selecting those common to all WSNs, the solution is 

independent of the application field. In essence, the 

features used in this problem are based on commonplace 

network metrics readily available in WSNs, which 

collectively describe the symptoms which the faults 

exhibit in the network. 

The features are selected by processing the reports 

from the simulator which contain information regarding 

events that take place in the network for each study case, 

such as the creation of a packet, the transmission and 

delivery of a packet given the simulation time, 

connectivity status, buffer occupancy, and packets which 

have been aborted during their transfer. For the simulated 

time, samples are taken in 100s intervals and each sample 

is labelled with the corresponding fault tag. Faults are 

considered only if they occur for at least 30% of the time 

interval given. This value is selected depending on the 

characteristics of the network and the sensitivity the fault 

diagnosis system is set to achieve. A lower value would 

consider faults almost immediately, whereas larger values 

would take longer to consider a fault. A middle ground 

was reached for this value. 

The features selected are given in Table I and 

explained below. 

• conTime: The connection time of a node with its 

neighbours for the duration of the sample time. This 

feature is expressed as a value between 0 and 1. A 

value of 1 represents a node demonstrating no 

connectivity problems with any of its neighbours. 

Any values below 1 indicate that at least one link has 

been affected by a fault, thus a link has been lost 

during the sample time. 

• signalStrength: The mean RSSI value for the node, 

taking into account the quality per link for each 

neighbour for the sample time. 

• xmitPkts: The number of transmitted packets per node 

for the sample time. 

• buffer: The buffer size of the node. 

• buffer_diff: The increase in buffer size per sample. 

• pktLoss: The number of lost packets as result of a 

fault. This includes aborted packets due to excessive 

noise or a lost connection and dropped packets due to 

overflowing buffer queues. 

In the proposed solution a distributed logic is applied 

when making predictions. In this way, in subsequent 

work each node can participate in its own recovery 

actions. 

For the modelling, instead of using separate models for 

each node, data is collected to produce a general fault 

model incorporating instances from every node in the 

network. This is why features such as conTime are 

included, expressing the connectivity of each node 

without directly focusing on the number of its 

neighbours. 

While more characteristics were obtained from the 

simulation reports, metrics such as packet delay had 

many missing values as a delay value could only be 

described when a packet was sent into the network. In 

combination with the network’s duty cycle the values did 

not possess any complementary information and were not 

useful for determining fault patterns. 

TABLE II: LABELS DEFINITIONS 

Label Fault Case Network Status 

Normal Normal Normal 

No_Intf No Interface 

Loss of Node 

Connectivity – 

Faulty Interface 

Weather Weather 
Extreme Weather 

Conditions 

Obstacle Obstacle 

Loss of Link 

Connectivity – 

Obstacle 

Faulty_Nbr No Interface 

Faulty Neighbour 

due to faulty 

interface 

Ext_Event External Event 
Excessive Packet 

Generation 

 



The samples are labeled manually based on the time 

periods exhibiting faults, as multiple simulated seconds 

are recorded in a single sample. The faults labels are 

defined in Table II with the corresponding faults cases 

and the status of the network. 

Upon completion of the dataset, it is then subjected to 

preprocessing techniques to be fit for training. As the 

network is expected to be working normally for most of 

its lifetime, the faults only take up a small percentage of 

the dataset which is commonly seen in such problems. 

Randomly undersampling the majority class is used to 

balance each class of faults, which is essential when 

training a new model. This step is then followed by the 

separation of the dataset into a training set and a testing 

set, resulting in a 70% - 30% split respectively. Finally, 

the training dataset is normalized using the SoftMax 

function. 

A decision tree algorithm is used to train the model 

from the Machine Learning and Statistics Toolbox in 

MATLAB. Decision trees are ideal training algorithms 

for the problem at hand as they can classify both binary 

and multiclass datasets and are able to work well with 

categorical labels, thus being a good choice when 

predicting our selected fault labels which are multiclass 

categorical labels. Given the large dataset at our disposal, 

the fast prediction speed of the algorithm is desirable, 

benefitting both prediction accuracy and training time. 

Decision trees are well suited for imbalanced datasets and 

are preferred in such cases, as the problem by default 

does not generate balanced classes and undersampling is 

used for the majority class. The training dataset is fed to 

the app and the model is produced. It is then exported so 

that the model’s performance can be assessed through the 

test set. 

VI. RESULTS 

For the evaluation of the model, the testing set 

undergoes the same processing steps as the training set. 

The metric used to primarily measure the model’s 

performance is accuracy. In our case the formula of 

balanced classification accuracy (BCA) is used to make 

the classes further comparable [15], just as the majority 

class was undersampled, the performance metric accounts 

for unbalanced data as well. Other metrics used include 

sensitivity and specificity, as well as the positive and 

negative predictive value, and finally the F-Score [16]. 
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The model’s overall balanced accuracy is 96.46% and 

has a misclassification rate of 3.54% across the six 

classes. In combination with a high overall accuracy 

value, each fault class also has a high balanced accuracy. 

Namely, the Weather class has the highest of the values at 

99.36% followed by the Normal class with a value of 

98.47%. The External Event class has a value of 96.01% 

while the Obstacle class is at 95.93%. Finally, the No 

Interface class has a value of 95.8% and the Faulty 

Neighbour class a value of 93.2%. 

 
Fig. 1. The model’s accuracy in the form of a confusion matrix. 

Supplementary to this evaluation and depicting more 

so the quality of the model are the metrics sensitivity and 

precision and their negative counterparts, specificity and 

negative predictive value. Sensitivity and specificity 

indicate the positive and negative hit rates, i.e. how often 

the model predicts positive and negative samples, 

whereas precision and negative predictive value indicate 

the predictive value of the model, essentially how 

believable the classes it predicts for each sample are. 

These are detailed in Table III. High values are observed 

for each metric in every class. 

The model’s F-Score offers insight to the model’s 

quality as the harmonic mean of sensitivity and precision. 

Here, the Faulty Neighbour class has the lowest F-Score, 

as a result of the lowest sensitivity value, indicating the 

low positive hit rate for the class. The Obstacle class has 

the second lowest F-Score value expressing the lowest 

precision value of the classes, which is expected as the 

Obstacle class misclassifies samples from all the classes 

regarding connectivity as well as the Normal class. In 

both instances, the symptoms arising in these classes have 

similar attributes which makes the distinction between the 

two classes both less than ideal and responsible for the 

lower values in regard to the rest of the faulty classes. 

The confusion matrix of the tested data is depicted in 

Fig. 2 giving the number of correctly classified samples 

for each class including the samples which are 

misclassified. As shown, the number of incorrectly 

classified samples is low for each class and 

misclassifications occur between similar faults rather than 

across the board. For instance, the fault cases Faulty 

Neighbour and Obstacle have completely different 

causes, which would make recovery efforts different, but 

have similar fault symptoms thus easier to misclassify. 

Keeping this in mind, both faults are distinguishable, 

however improvements can be made. 



TABLE III: RESULTS 

 
Balanced 

Accuracy 
Sensitivity Specificity Precision 

Negative 

Predictive Value 
F- Score 

Ext_Event 0.9601 0.9212 0.9990 0.9949 0.9842 0.9566 

Normal 0.9847 0.9894 0.9800 0.9398 0.9966 0.9640 

No_Intf 0.9580 0.9160 1 1 0.9954 0.9562 

Faulty_Nbr 0.9320 0.8768 0.9872 0.9265 0.9775 0.9010 

Obstacle 0.9593 0.9486 0.9699 0.8936 0.9861 0.9203 

Weather 0.9936 0.9890 0.9981 0.9911 0.9977 0.9900 

 

This is also observed for the cases Weather-Normal 

and External Event-Normal. Samples from the Weather 

and External Event classes are misclassified only with 

regard to the Normal case. Each class is presented 

distinctly as thereare no misclassified samples between 

the Weather and External Event classes, or the remaining 

classes. 

The No Interface class misclassifies samples only in 

relation to the Obstacle class. No samples from other 

classes are mistakenly predicted as No Interface, as 

shown with the specificity metric, depicting that this 

particular class is well defined within the problem. 

Finally, it is worth noting that the model misclassifies 

samples to multiple classes with regard to the true 

Normal class. Also, the predicted class Obstacle contains 

incorrectly classified samples which originate from 

various classes. This shows that the Obstacle case may 

need to be more precisely defined in the future, whereas 

the Normal case is the most general case, as it defines the 

normal state of the network and all fault cases arise from 

this state, which is expected. 

VII. CONCLUSIONS 

In conclusion, fault management constitutes a key 

feature for the reliable operation of a WSN. Emphasis is 

given to detection and identification as WSNs are 

susceptible to various faults and without these steps any 

form of recovery is not possible. In this paper, faults 

disrupting the communication process were examined, 

particularly originating from external factors in which 

network users have little or no control over. Such faults 

need to be identified as precisely as possible so that 

recovery actions can be considered or take place 

immediately. 

The faults examined in this paper are lack of 

connectivity between nodes due to a faulty interface, 

obstacles hindering communication, and packet loss due 

to extreme weather conditions which increase noise levels 

or as a result of the effects of excessively generated 

packets. In total, the above cases were considered as well 

as a normal case regarding a normally functioning 

network and a faulty neighbour case which takes into 

account the status of the remaining neighbours in the 

faulty interface case. 

Using a topology that corresponds to a realistic WSN 

deployed on a bridge, the network is simulated to 

generate data referring to each study case, to be then used 

to train the machine learning model. While our work 

focuses on a specific application, namely a WSN 

deployed for SHM, the holistic use of data from all the 

network nodes ensures a more general model which can 

be applicable to various domains. 

Using machine learning techniques detection and 

identification of these faults was achieved. A successful 

model was produced classifying each fault with high 

accuracy and precision. To reiterate, the model’s overall 

accuracy is 96.46%. All faults are detectable specifically, 

the Weather class has an accuracy value of 99.36% 

followed by the Normal class with a value of 98.47%. 

The External Event class has a value of 96.01% while the 

Obstacle class is at 95.93%. Finally, the No Interface 

class has a value of 95.8% and the Faulty Neighbour 

class a value of 93.2%. More importantly the faults are 

presented as distinct cases as shown by the hit rates and 

predictive values of each class. Even though similar 

symptoms can be observed in the fault cases, such as 

Obstacle and Faulty Neighbour, the model is able to 

distinguish each class. 

Future work of this paper primarily includes the 

improvement of the dataset. Here, the work is evaluated 

using simulated data, which demonstrates the potential of 

the study. However, using a more realistic environment, 

such as implementing a small-scale testbed to produce a 

non-synthetic dataset would be ideal for a more 

representative performance evaluation of the system. This 

would also be complemented with more diverse study 

cases, scenarios and experiments. 

Moreover, a better understanding of the fault 

symptoms and how they are expressed in the network 

might provide a better selection of features, thus being 

able to better describe the faults to classify the data 

samples. Therefore, highlighting the enhancement of the 

feature subset. 



With regard to the machine learning approach, a 

decision tree was the best option to initially solve the 

problem, however there are many algorithms and 

techniques which might improve the extracted model and 

the results obtained. For instance, incorporating the time 

series elements of the problem to its solution. As all 

events in the network are time based (packet transfers, 

packet drops and so forth), an algorithm which also 

considers this factor will potentially enhance the 

detection and identification of the faults. 

Finally in the future work and to complete the fault 

management scheme, recovery steps to alleviate the faults 

described in this paper would move in the right direction 

in delivering a reliable system capable of dealing with its 

own faults. 
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